July 19, 2023

# Ultralight dark matter searches with laser interferometry



#### Yuta Michimura

LIGO Lab, Caltech

yuta@caltech.edu

RESCEU, UTokyo

michimura@phys.s.u-tokyo.ac.jp





# **Dark Matter Mystery**

- Accounts for ~80% of all the matter of the universe
- Searches focused on WIMPs, but not detected yet
- Motivates new searches for other candidates



# Ultralight DM with Interferometers

- Bosonic ultralight field (<~1 eV) are well-motivated from cosmology
- Behaves as classical waves

$$f = 242 \text{ Hz} \left( \frac{m_{\text{DM}}}{10^{-12} \text{ eV}} \right)$$

 Laser interferometers are sensitive to such oscillating changes





#### Sensitive to Various DM Models



#### Sensitive to Various DM Models



# **Our DM Search Projects**

 Use both table-top optical cavities and large-scale laser interferometric gravitational wave detectors



#### **Axion and Axion-Like Particles**

- Pseudo-scalar particle originally introduced to solve strong CP problem (QCD axion)
- Various axion-like particles (ALPs) predicted by string theory and supergravity
- Many experiments to search for ALPs through axion-photon coupling

Especially by using magnetic fields



# **Polarization Modulation from Axions**

- Axion-photon coupling  $(\frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu})$  gives different phase velocity between left-handed and righthanded circular polarizations
  - $c_{\rm L/R} = \sqrt{1 \pm \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$ coupling constant axion field axion field
- Linear polarization will be modulated p-pol sidebands will be generated from s-pol
- Search can be done without magnetic field



# Optical Cavity to Amplify the Signal

- Polarization rotation is small for short optical path

  Laser
- Optical cavities can increase the optical path, but the polarization is flipped by mirror reflections



• Bow-tie cavity can amplify the rotation



# **DANCE** Setup

Dark matter Axion search with riNg Cavity Experiment

bow-tie

 Look for amount of modulated p-pol generation in each frequency







# First Observing Run in May 2021

- First 12-day run was performed
- Used 24-hour data to put an upper limit
- Demonstrated the principle and the data analysis methods (Analysis methods presented in H. Nakatsuka+, <u>arXiv:2205.02960</u>)



# **Upgrade Underway**

 Aiming for broadband sensitivity improvement by co-resonating both polarizations



#### Linear Cavities for Axion Search

- Polarization flip at mirror reflection can be used to enhance the signal when the round-trip time equals odd-multiples of axion oscillation period
- Long baseline linear cavities in gravitational wave detectors are suitable



#### Linear Cavities for Axion Search

- Polarization flip at mirror reflection can be used to enhance the signal when the round-trip time equals odd-multiples of axion oscillation period
- Long baseline linear cavities in gravitational wave detectors are suitable





# **Optics for Axion Search Installed**

- For KAGRA, polarization optics were installed for X-arm transmission in July 2021 and Y-arm transmission in December 2021
   Data to be taken during O4
- For LIGO, auxiliary port of output
   Faraday isolator
   can be used
   (calibration method needs to be developed)



<u>klog #17692</u>

# Gauge Boson

 Possible new physics beyond the standard model: New gauge symmetry and gauge boson

Proton

Neutron

Electron

Nucleus

gauge

field

- New gauge boson can be dark matter
- B-L (baryon minus lepton number)
  - Conserved in the standard model
  - Can be gauged without additional ingredients
  - Equals to the number of neutrons
  - Roughly 0.5 per neutron mass, but slightly different between materials Fused silica: 0.501 Sapphire: 0.510
- Gauge boson DM gives oscillating force

# **Oscillating Force from Gauge Field**

Acceleration of mirrors



 Almost no signal for symmetric cavity if cavity length is short



#### Search with KAGRA KAGRA

 KAGRA uses cryogenic sapphire mirrors for arm cavities, and fused silica mirrors for others

Laser

0.510

photodiode







Force

DARM

 $L_{\rm x}$  –





# Search with KAGRA KAGRA



# KAGRA Gauge Boson Sensitivity

- Auxiliary length channels have better design sensitivity than DARM (GW channel) at low mass range
- Sensitivity better than equivalence principle tests frequency\_(Hz) YM, T. Fujita, S. Morisaki, 10<sup>1</sup> 10<sup>3</sup> H. Nakatsuka, I. Obata,  $10^{-20}$ PRD 102, 102001 (2020)  $10^{-21}$ S. Morisaki, T. Fujita, YM, H. Nakatsuka, I. Obata,  $\mathcal{E}_B$ PRD 103, L051702 (2021)  $10^{-22}$ coupling Eöt-Wash 10<sup>-23</sup> torsion pendulum DARM  $10^{-24}$ (GW channel)  $10^{-25}$ MICROSCOPE mission aths MICH  $10^{-26}$  $10^{-12}$  $10^{-11}$ 10 gauge boson mass  $m_A$  (eV)

#### **KAGRA 2020 Data Analysis**

- KAGRA performed joint observing run in April 2020 with GEO600 (O3GK)
- Displacement sensitivity still not good
  ~ 6 orders of magnitude to go at 10 Hz
- Data analysis  $10^{\circ}$ Measured  $10^{-10}$ underway using  $10^{-11}$ ЧZ  $10^{-12}$ the same pipeline **MICH**  $10^{-13}$ used for DANCE  $10^{-14}$ D H. Nakatsuka+,  $10^{-15}$ arXiv:2205.02960  $10^{-16}$  Results will isplac  $10^{-17}$ esigned  $10^{-18}$ be available  $10^{-19}$ summer 2023 after  $10^{-20}$ 10<sup>2</sup> 10<sup>1</sup> LVK internal review frequency (Hz)

# Summary

- Laser interferometers open up new possibilities for dark matter search
- Axion DM search with DANCE
  - First result from 24-hour data reported
  - Upgrade underway
- Axion DM search with LIGO-Virgo-KAGRA
  - Polarization optics installed in KAGRA and LIGO
  - First search to be done with O4 data
- Vector DM search with LIGO-Virgo-KAGRA
  - Most stringent bound obtained from LIGO-Virgo
  - New search using sapphire mirrors of KAGRA underway



What is dark matter? - Comprehensive study of the huge discovery space in dark.









#### **Additional Slides**

# **Coherence Time**

- SNR grows with √Tobs if integration time is shorter than coherence time
- SNR grows with (Tobs)<sup>1/4</sup> if integration time is longer



## **Freq-Mass-Coherence Time**

| Frequency | Mass       | Coherent Time      | Coherent Length |
|-----------|------------|--------------------|-----------------|
| 0.1 Hz    | 4.1e-16 eV | 0.32 year          | 3e12 m          |
| 1 Hz      | 4.1e-15 eV | 1e6 sec<br>12 days | 3e11 m          |
| 10 Hz     | 4.1e-14 eV | 1.2 days           | 3e10 m          |
| 100 Hz    | 4.1e-13 eV | 2.8 hours          | 3e9 m           |
| 1000 Hz   | 4.1e-12 eV | 17 minutes         | 3e8 m           |
| 10000 Hz  | 4.1e-11 eV | 1.7 minutes        | 3e7 m           |