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Abstract

A search for Lorentz violation in electrodynamics was performed by measuring

the resonant frequency difference between two counterpropagating directions

of an optical ring cavity. Our cavity contains a dielectric element, which makes

our cavity sensitive to the parity-odd violations. The laser frequency is stabi-

lized to the counterclockwise resonance of the cavity, and the transmitted light

is reflected back into the cavity for resonant frequency comparison with the

clockwise resonance. This double-pass configuration enables a null experiment

and gives high common mode rejection of environmental disturbances.

The cavity was rotated to modulate the Lorentz violation signal. From the

analysis of a year-long observational data containing 1.7 million cavity rota-

tions, we found no evidence for dipole and hexapole components of anisotropy

at the level of δc/c ≲ 10−15. This result was more than an order of magnitude

stringent than previous best cavity limits, and was the first limit on hexapole

components.

Within the framework of the Standard Model Extension (SME), our result

put the first constraints on parity-odd higher order Lorentz violations. Abso-

lute sensitivity to the SME camouflage coefficients (c¬(d)
F )

(0E)
jlm of dimension 6

is improved by a factor of a million over existing parity-even microwave cav-

ity bounds. Sensitivity to dimension 8 violations is improved by 14 orders of

magnitude.
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要旨

光リング共振器の時計回りの共振周波数と反時計回りの共振周波数を比較す

ることで、電磁気学における Lorentz不変性の破れの探査を行った。我々の共

振器には光路の一部に屈折率を変える媒質が入っており、これによって奇パリ

ティな Lorentz不変性の破れに感度を持たせた。共振器に入射するレーザー光

の周波数は反時計回りの共振周波数に安定化し、共振器の透過光を打ち返して

再入射することで時計回りの共振周波数との差を取る。このダブルパス構成に

より本実験は null測定になっている。また、この構成では環境変動に伴う雑音

に対し、高い同相雑音除去が効くため、優れた構成になっている。

我々は共振器を回転させることで、Lorentz不変性の破れ信号を変調した。

1年に渡る 1.7 × 106回転分の観測データの解析を行ったが、δc/c ≲ 10−15の

精度で、異方性の双極子成分と六重極成分が存在するという証拠は見つからな

かった。この結果は、これまでの共振器による上限値に比べて 1桁以上厳しい

ものである。また、六重極成分に対しては初めての上限値である。

拡張標準理論 (SME)の枠組みでは、我々の結果は Lorentz不変性の高次の

破れのうち、奇パリティ成分に初の上限値をつけたことになる。既に存在する

マイクロ波共振器による偶パリティ成分への上限値に比べて、質量次元 d = 6

の SMEのカモフラージュ係数 (c¬(d)
F )

(0E)
jlm に対して、6桁厳しい上限値をつけた。

また、d = 8の係数に対しては、14桁厳しい上限値をつけた。

指導教員: 安東正樹 (准教授)

論文題目: 光リング共振器を用いたローレンツ不変性の検証
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Chapter 1
Introduction

Special Relativity is based upon two postulates, the special principle of relativ-

ity and the principle of the constancy of the speed of light. Starting from these

two postulates, Einstein revealed that Lorentz transformation, not Galilean

transformation, is the space-time coordinate transformation [1]. Special Rela-

tivity was the first theory to propose that Lorentz invariance is the universal

symmetry of space-time and is valid not only for the Maxwell’s equations of

electrodynamics, but also for other laws of physics. Since Einstein’s first pa-

per, wide variety of experimental tests have been carried out for more than 100

years, but no one could find any violation [2, 3, 4]. As a consequence, Lorentz

invariance underlies all the theories of fundamental interactions, such as the

Standard Model of particle physics and General Relativity.

However, theoretical works towards the unification of fundamental interac-

tions, such as string theories or loop quantum gravity, have led to the idea that

Lorentz invariance may only be approximate at attainable energies [5, 6, 7].

Also, the observed anisotropy of the cosmic microwave background (CMB)

suggests a possible preferred frame in the Universe [8]. We could say that the

dipole component of the CMB anisotropy comes from red and blue shifts from

our velocity with respect to the CMB rest frame. If the CMB rest frame is

the preferred frame, which is denied by Special Relativity, our vision of the

Universe will be turned upside down.

There are almost no quantitative predictions at what level we can observe

Lorentz violation. For example, Ref. [13] suggests Lorentz violation at 10−17

level, but this number only comes from the ratio between the Planck mass

and the electroweak scale. Thus, we should perform experimental searches

for Lorentz violations with increasing precision. Even if we could not find

1



1 Introduction

any violation within the experimental precision, we can restrict possible new

theories.

Here, we test Lorentz invariance by testing the isotropy of the speed of light

using an optical ring cavity. Especially, we have tested if the speed of light

propagating in one direction and that in the opposite direction are the same.

This one-way test cannot be done with usual electromagnetic interferometers or

cavities used for previous Michelson-Morley type experiments. This is because

usual interferometers or cavities have closed paths for electromagnetic wave

and can only measure the average speed of light propagating back and forth.

We have solved this problem by placing a piece of dielectric material along

one side of the optical path of a triangular optical ring cavity. If there is a

difference between the speed of light propagating in opposite directions, the

resonant frequencies for the clockwise direction and the counterclockwise di-

rection will be shifted in opposite signs. Thus, we measured the resonant

frequency difference between two counterpropagating directions with double-

pass configuration to get the Lorentz violation signal. This double-pass con-

figuration enables a null measurement of the resonant frequency difference.

Also, this differential measurement is highly insensitive to environmental dis-

turbances because the effects of cavity length fluctuations are common to both

resonances.

This thesis is organized as follows: Chapter 2 introduces test theories of

Special Relativity and Lorentz invariance, and reviews previous tests of Lorentz

invariance, particularly in electrodynamics or photons. Chapter 3 describes the

experimental principle of testing Lorentz invariance with an optical ring cavity.

Also, noise sources and noise requirements for improving previous upper limits

on Lorentz violation are discussed. Chapter 4 describes the experimental setup

and shows that our apparatus fulfilled the requirements. Chapter 5 explains

how to extract Lorentz violation parameters from the data taken and gives the

result of the data analysis. Chapter 6 concludes the results of this work and

gives future prospects of this research.

The author of this thesis tried to make this thesis readable for nonexperts

of the Standard Model Extension. Details of the analysis within the frame

2



work of the Standard Model Extension are described in Appendix A.

We note here that the tests of Lorentz invariance in photons have also been

done very precicely with gamma ray astronomy, taking advantage of cosmolog-

ical distances. From polarization measurements and light-curve measurements

of light from gamma ray burts, there are tight constraints on the vacuum bire-

fringence [56, 64] and the vacuum dispersion [65, 68]. However, anisotropy in

the speed of light arises from the different kind of Lorentz violation, which is

hard to search with gamma ray astronomy.

The author of this thesis designed and developed the experimental appa-

ratus, performed the year-long observation run, and did the data analysis.

Nobuyuki Matsumoto helped developing the optics and kept the laser fre-

quency to be locked during the observation run. Matthew Mewes theoretically

analyzed the apparatus in the framework of the Standard Model Extension.

Masaki Ando provided the idea of making use of double-pass configuration.

Noriaki Ohmae, Wataru Kokuyama, and Yoichi Aso gave important advice on

optics and noise sources. Kimio Tsubono and Masaki Ando were the supervi-

sors and the leaders of our group. This work has been done at the University

of Tokyo.

The results of this research are also published in the following papers by

the author of this thesis.

• Yuta Michimura, Nobuyuki Matsumoto, Noriaki Ohmae, Wataru Koku-

yama, Yoichi Aso, Masaki Ando, and Kimio Tsubono, Phys. Rev. Lett.

110, 200401 (2013).

New Limit on Lorentz Violation Using a Double-Pass Optical Ring Cavity

• Yuta Michimura, Nobuyuki Matsumoto, Noriaki Ohmae, Wataru Koku-

yama, Yoichi Aso, Masaki Ando, and Kimio Tsubono, Proceedings of the

Sixth Meeting on CPT and Lorentz Symmetry, edited by V. A. Kost-

elecký, pp.216-219 (World Scientific, Singapore, 2014) [arXiv: 1307.5266].

Testing Lorentz Invariance with a Double-Pass Optical Ring Cavity

• Yuta Michimura, Matthew Mewes, Nobuyuki Matsumoto, Yoichi Aso,

and Masaki Ando, Phys. Rev. D 88, 111101(R) (2013).

Optical cavity limits on higher order Lorentz violation
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Chapter 2
Tests of Lorentz Invariance

Tests of Lorentz invariance have been performed in wide variety of fields since

Einstein’s special relativity was formulated more than 100 years ago. In this

chapter, we will review previous tests of Lorentz invariance, particularly in the

field of electrodynamics.

Firstly, Section 2.1 introduces test theories of special relativity and Lorentz

invariance, which parameterize possible Lorentz violation. Section 2.2 reviews

previous tests of the constancy of the speed of light and shows current upper

limits on Lorentz violation. Section 2.3 describes the purpose and the scope

of our experiment.

2.1 Test theories

In order to compare the precision of various experimental tests of Lorentz

invariance, it is useful to introduce Lorentz violating parameters to physical

theories. There are various test theories which have their own sets of param-

eters depending on their assumptions, but Robertson’s framework [9] devel-

oped in 1949 was one of the first test theories of special relativity. In 1977,

Mansouri and Sexl extended Robertson’s framework, and their framework has

been widely used in the tests of special relativity [10, 11, 12]. Recently, the

theoretical framework of the Standard Model Extension (SME) [13] has been

developed and used not only in the field of electrodynamics but also in other

interactions.

Here, we will describe assumptions and meanings of the Lorentz violating

parameters of those test theories. We will also introduce a spherical harmonic

5
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Y

X

x

y

lab velocity
∑

S

Figure 2.1: Preferred frame Σ and inertial frame S which moves with constant
velocity v, with respect to Σ.

decomposition of the light speed anisotropy to compare precision of each test

more phenomenologically.

2.1.1 Robertson framework

Robertson started constructing his framework from these two postulates:

• Postulate 1: There exists a preferred frame Σ(T,X, Y, Z), in which the

constancy of the speed of light holds true.

• Postulate 2: There is no preferred direction in Σ.

Let’s consider an inertial frame S(t, x, y, z) which moves with constant ve-

locity v, with respect to Σ, as shown in Fig. 2.1. Robertson also assumed the

use of Einstein’s method to synchronize clocks at different coordinate points

in S.

In Newtonian mechanics, time flows constantly at the same speed inde-

pendent of points, and a comparison of clocks at different points was just a

technical problem. However, in special relativity, it is no longer true and we

have to take some way to synchronize clocks. Einstein’s method was to sent a

light signal back and force between two points.

Consider synchronizing the clocks at points A and B in the frame S. A light

signal is sent out from A at time t = 0, as recorded by the clock at A, reflected

at B(t1, x1, y1, z1), and received back at A at clock time t2. By assuming

6



2.1 Test theories

• Assumption: The time it takes for light to go back and forth is the

same,

we can synchronize the clocks with

t1 =
t2
2
. (2.1)

One can write the space-time coordinate transformation from Σ to S in the

most general linear form as

t = aT + ϵx+ ϵ2y + ϵ3z, (2.2a)

x = b1T + bX + b2Y + b3Z, (2.2b)

y = d1T + d2X + dY + d3Z, (2.2c)

z = e1T + e2X + e3Y + eZ. (2.2d)

Parameters introduced here could be functions of the velocity of S. By using

three assumptions mentioned above, this transformation can be simplified into
t

x

y

z

 =


γ/g0 −vγ/g0 0 0

−vγ/g1 γ/g1 0 0

0 0 1/g2 0

0 0 0 1/g2




T

X

Y

Z

 , (2.3)

where γ = 1/
√
1− v2 [9]. This is the coordinate transformation in Robertson

frame work, and the metric in S may be written as

ds2 = −g20dt2 + g21dx
2 + g22(dy

2 + dz2). (2.4)

Recall that Lorentz transformation between Σ and S is
t

x

y

z

 =


γ −vγ 0 0

−vγ γ 0 0

0 0 1 0

0 0 0 1




T

X

Y

Z

 . (2.5)

By comparing this with Robertson’s transformation in Eq. (2.3), it is clear

7



2 Tests of Lorentz Invariance

that g0, g1 and g2 are the parameters for the time dilation, length contraction

in the direction of v, and length contraction in the direction orthogonal to v,

respectively. In special relativity, g0 = g1 = g2 = 1.

We can also derive the speed of light in S. Consider a light propagating in

the x-y plane of S in the angular direction θ from x-axis (Fig. 2.1). Relations

between coordinates in S are

x = c(θ)t cos θ, (2.6a)

y = c(θ)t sin θ, (2.6b)

z = 0. (2.6c)

The propagation of light can be expressed with a geodesic equation

− T 2 +X2 + Y 2 + Z2 = 0. (2.7)

By substituting (t, x, y, z) for (T,X, Y, Z) in Eq. (2.7) using Eq. (2.3) and

Eq. (2.6), we obtain

c(θ) =
g0√

g21 cos
2 θ + g22 sin

2 θ
. (2.8)

The speed of light is no longer constant in S and is anisotropic. Note that

the speed of light in S can also be dependent of v since gi’s can be v-dependent.

Since Robertson used Einstein synchronization of clocks, c(θ) = c(θ + π).

Robertson framework is not a good framework for discussing tests of the

isotropy of the one-way speed of light.

2.1.2 Mansouri-Sexl framework

Mansouri and Sexl started from the same two postulates (Postulates 1 and

2 in the previous section) Robertson assumed. However, instead of Einstein

synchronization, they used slow clock transport scheme for the clock synchro-

nization in order to avoid assuming c(θ) = c(θ+π). In the slow clock transport

scheme, the clock is slowly transported to one point and another to synchronize

the clocks at different points. If the speed of the clock being transported is

small enough compared with the speed of light, the effect of the time dilation

8



2.1 Test theories

will be negligible.

If we only assume Postulates 1 and 2 in the previous section, a general

linear form of coordinate transformations in Eq. (2.2) will be simplified into

[10] 
t

x

y

z

 =


a− ϵbv ϵb 0 0

−vb b 0 0

0 0 d 0

0 0 0 d




T

X

Y

Z

 . (2.9)

The speed of light in S can be derived in the same way as in the previous

section:

c(θ) =
ϵb(1− v2) cos θ + av cos θ − a

√
cos2 θ + b2d−2(1− v2) sin2 θ

[ϵ2b(1− v2)− a2b−1 + 2ϵav] cos2 θ − a2bd−2 sin2 θ
. (2.10)

Here, let’s consider expanding the four parameters introduced in Mansouri-

Sexl framework, ϵ, a, b and d, with v. From Postulate 2, a, b and d should

be independent of the direction, or sign, of v. The parameter ϵ is related to

the clock synchronization and should be an odd function of v. Also, Eq. (2.9)

should be (T,X, Y, Z) = (t, x, y, z) when v = 0. Thus, we can expand the four

parameters as follows [14]:

ϵ(v) = εv(1− ε2v
2 + · · · ), (2.11a)

a(v) = 1 + αv2 + α2v
4 + · · · , (2.11b)

b(v) = 1 + βv2 + β2v
4 + · · · , (2.11c)

d(v) = 1 + δv2 + δ2v
4 + · · · . (2.11d)

Equation (2.10) now can be rewritten as

c(θ) = 1−(ε+1)v cos θ−
(
β − δ +

1

2

)
v2 sin2 θ−(α−β+1)v2+O(v3). (2.12)

If we use slow clock transport for the clock synchronization,

ε = 2α (2.13)

follows. Thus, the speed of light in S can be written up to the second order of

9



2 Tests of Lorentz Invariance

v as

c(θ) = 1− 2

(
α +

1

2

)
v cos θ −

(
β − δ +

1

2

)
v2 sin2 θ − (α− β + 1)v2. (2.14)

The use of the Einstein synchronization, on the other hand, ε = −1, and

the anisotropic term for the one-way speed of light will disappear. So, here we

adopt the slow clock transport for the clock synchronization. Details of the

derivation can be found in Refs. [10, 15].

In Special Relativity, c(θ) = 1 and therefore α = −1/2, β = 1/2, and

δ = 0. Also, it is clear that the combined parameters α+1/2, β− δ+1/2, and

α − β + 1 represent the difference between the speed of light propagating in

opposite directions, directional dependence of the round-trip speed of light, and

dependence of the speed of light on the velocity of the light source, respectively.

Each combined parameter is measured with different types of experiments.

Classically, types of those experiments are called Ives-Stilwell type, Michelson-

Morley type, and Kennedy-Thorndike type experiments, respectively.

Note that we have to set the preferred frame and the velocity of the lab-

oratory frame v in order to derive these Lorentz violation parameters from

the experimental data. One of the most natural candidates of the preferred

frame is the CMB rest frame, and this frame has been often used. The CMB

rest frame is the frame on which the dipole component of the measured CMB

anisotropy cancels out. From the COBE observation, the speed of our Sun with

respect to the CMB rest frame is obtained to be v = 369 km/s ≃ 10−3c [8].

Since this speed is considered to be constant for our timescale, these Lorentz

violation parameters in the Sun centered frame are usually shown after the

data analysis.

2.1.3 Standard Model Extension

Robertson framework and Mansouri-Sexl framework were the test theories of

special relativity, and can only be used for the tests of Lorentz invariance in

electrodynamics. Since late 1990’s, a test theory called Standard Model Ex-

tension (SME) [13, 16] has been developed by Kostelecký and his co-workers to

encompass all known physics and all realistic violations of Lorentz invariance.
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Since then, the framework of the SME has been widely used to compare the

precision of various experimental tests, and experimental results for the SME

coefficients are summarized in the Data Tables for Lorentz and CPT Violation

[3].

The framework of the SME starts with adding Lorentz violating terms in

the Lagrangian density. When the Lorentz violating terms are added in the

photon sector of the Lagrangian density, the Maxwell equations are modified,

which result in a violation of the constancy of the speed of light. The Lorentz

violating terms are partially characterized by the mass dimension d of the

operator. The effects from higher d terms result in more complex form of the

dependence of the speed of light on the source velocity, the polarization, the

wavelength, and the propagation direction. In particular, higher d terms result

in more complex multipole structures of the anisotropy.

For example, d = 4 terms give dipole and quadrupole structures, which

resemble the anisotropy in the one-way speed of light and round-trip speed

of light, respectively. d = 8 terms give dipole, quadrupole, and hexapole

structures. d = 3 and d = 4 terms do not have photon momentum dependence,

and they are renormalizable. However, d > 4 terms have photon momentum

dependence of pd−4, and they are nonrenormalizable.

The restriction to renormalizable dimensions yields the so-called minimal

SME (mSME). The mSME has been studied extensively, and coefficients for

the mSME have been limited by a number of experiments. On the other

hand, nonminimal terms have received comparatively less attention due to the

large variety and complexity of the higher order violations. However, a recent

theoretical work has established phenomenology that opens up the nonminimal

sector to experimentation [63]. The push to consider nonminimal terms in the

SME is motivated in part by the apparent nonrenormalizability of gravity and

by the possibility that higher-order violations with d > 4 might dominate.

Theories based on noncommutative spacetime coordinates provide an example

where Lorentz violation emerges in the form of operators of nonrenormalizable

dimension only [17, 18].

In this thesis, we focus on the higher order violations from d > 4 terms. In

particular, we focus on parity-odd higher order violations, since they have not

been explored yet. Detailed calculations are shown in Appendix A.
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2 Tests of Lorentz Invariance

Figure 2.2: Spherical (left) and atomic orbital (right) visualization of spherical
harmonics. Red portions represent where the function is positive, and blue
portions represent where the function is negative.

2.1.4 Spherical harmonic decomposition of anisotropy

Although the framework of Mansouri-Sexl and the Standard Model Extension

have been widely used to compare the upper limits of Lorentz invariance tests,

they are not intuitive to be used for comparing experimental precision of each

test. This is because the parameters introduced do not directly reflect the

relative speed of light difference, δc/c.

To compare the precision more phenomenologically, it is useful if we simply

expand the light speed anisotropy, without any theoretical assumptions or

background. Using the spherical harmonics (Fig. 2.2)

Y m
l (θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ, (2.15)

the speed of light can be expanded as

c(θ, ϕ) = 1 +
∞∑
l=0

l∑
m=0

Re [(y¬m
l )

∗Y m
l (θ, ϕ)] . (2.16)

Here, θ ∈ [0, π] and ϕ ∈ [0, 2π) is the polar angle and the azimuthal angle of
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2.2 Previous tests of Lorentz invariance

the spherical coordinates, respectively. Pm
l is associated Legendre polynomials,

and l and m are integers. y¬m
l are the complex anisotropy spherical coefficients

which are zero when Lorentz invariance holds, and ∗ represents the complex

conjugate.

l = 0 term in Eq. (2.16) represents the isotropic shift of the speed of light

and can be assigned to multiple Lorentz violations, such as dependence of the

speed of light on the source velocity, polarization, or wavelength. In this thesis,

we will neglect these terms because of the two reasons. One reason is because

the leading order source velocity modulation only occurs at the period of a year

from the revolution of the Earth around the sun. The other reason is because

there are strict bounds on the Lorentz violation which cause the birefringence

and dispersion. The detailed discussions will be addressed in Section A.1.

l = 1, 2, 3, · · · terms represent the dipole, quadrupole, hexapole, ... com-

ponents of the anisotropy of the speed of light and can be measured separately

by paying attention to the different types of rotational symmetries. l = 2k+1

terms can be measured with Ives-Stilwell type, or odd-parity, experiments, and

l = 2k terms can be measured with Michelson-Morley type, or even-parity, ex-

periments.

This framework of the spherical harmonic decomposition is also useful to

do an analysis of anisotropy data independent of the choice of test theory. In

this thesis, we will use this framework first to do an analysis and to show the

experimental precision, and then do an analysis in the framework of the SME.

It is natural to consider the spherical harmonic decomposition considering the

fact that the SME also predicts multipole structure of the anisotropy.

2.2 Previous tests of Lorentz invariance

There has been a tremendous number of experimental tests of Lorentz invari-

ance performed in a wide variety of fields. One of the most traditional and

direct ways to test Special Relativity is to test the constancy of the speed of

light. These tests are considered as tests of Lorentz invariance in electrody-

namics, or in photons.

Here, we will review previous tests of the constancy of the speed of light

and show current upper limits on Lorentz violation. We will classify those
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2 Tests of Lorentz Invariance

tests into Ives-Stilwell type [19], Michelson-Morley type [20], and Kennedy-

Thorndike type [21] experiments. Ives-Stilwell type experiments search for the

odd-parity components of the light speed anisotropy, and Michelson-Morley

type experiments search for the even-parity components. Kennedy-Thorndike

type experiments search for the source velocity dependence of the speed of

light.

There are also other types of tests of Lorentz invariance in electrodynam-

ics, such as the independence of the speed of light on the polarization or the

wavelength. These are tested to very high precision by astrophysical observa-

tions, since the effects of Lorentz violation are enhanced by the cosmological

distances. Bounds on those Lorentz violations are given in the framework of

the SME, so we will review these tests in Section A.1.

2.2.1 Michelson-Morley type experiments

Michelson-Morley type experiments look for the directional dependence of the

round-trip speed of light. In the Mansouri-Sexl frame work, these experiments

can be considered as measurements of β − δ + 1/2. In the framework of the

Standard Model Extension, these experiments are measurements of the parity-

even Lorentz violating parameters of the photonic sector.

Michelson-Morley experiment

The first search for the anisotropy in the speed of light was originally done by

Michelson and Morley in 1887 [20], as a measurement of the velocity of the

ether wind. An apparatus they used is known as a Michelson interferometer

shown in Fig. 2.3. The light from the source was split into two orthogonal

paths by a beam splitter, and each beam was reflected back with a mirror.

They tried to measure the difference between the speed of light propagating

in the two directions as an interference fringe, since two beams interfere when

coming back to the beam splitter again.

In Mansouri-Sexl framework, the round-trip phase difference between the
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Figure 2.3: Michelson interferometer.
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Figure 2.4: Brillet-Hall experiment.
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Figure 2.5: Michelson-Morley type experiment with two orthogonal Fabry-
Perot cavities.

two beams can be written as

ϕ− =

(
lω

c(θ)
+

lω

c(θ + π)

)
−
(

lω

c(θ + π/2)
+

lω

c(θ + 3π/2)

)
= −2lω

(
β − δ +

1

2

)
v2 cos 2θ, (2.17)

where l ≡ lx = ly is the arm length of the Michelson interferometer, and ω is

the angular frequency of the light. If there exists an ether wind, an interference

pattern changes as the interferometer rotates and θ changes. Michelson and

Morley looked for the fringe change as they rotate the interferometer which
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was floated in a mercury pool, but they could not find any significant change.

Their experimental precision can be evaluated with the upper limit on the

Mansouri-Sexl parameter as [12]

|β − δ + 1/2| ≲ 10−3. (2.18)

This is equivalent to ∣∣∣∣δcc
∣∣∣∣ ≲ 10−9 (2.19)

of the fractional change in the speed of light.

Brillet-Hall experiment

Since the first experiment by Michelson and Morley, the anisotropy searches

had been repeatedly performed as measurements of the velocity of the ether

wind. The major breakthrough for the improvement of the sensitivity was

brought by an invention of lasers in 1960. Among experiments done after

the invention of lasers, an experiment by Brillet and Hall in 1979 [22] was

especially a milestone experiment. To test the isotropy of the speed of light,

they measured the change in the resonant frequency of a Fabry-Perot cavity

(see Section C.1) as they rotate the cavity. As shown in Fig. 2.4, they locked the

laser frequency to the resonant frequency of the rotating Fabry-Perot cavity,

and took the beat signal from the laser and another stationary laser to measure

the resonant frequency shift from rotation.

In Mansouri-Sexl framework, the resonant frequency of a Fabry-Perot cav-

ity with the cavity length of L can be written as

ν = m

(
c(θ)

L
+
c(θ + π)

L

)
=

m

2L

[
1−

(
β − δ +

1

2

)
v2 cos 2θ − 2(α− β + 1)v2

]
, (2.20)

where m is a natural number. Thus, if v is constant during the measurement,

we can measure the directional dependence of the round-trip speed of light by

extracting twice the cavity rotation frequency component of the beat frequency
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change. The fractional speed of light change they measured was

δc

c
= (1.5± 2.5)× 10−15. (2.21)

Their experimental precision was limited by the cavity deformation caused

by the change of the cavity tilt in the rotational period. Amazingly, their

precision was so high that it was the most precise measurement in the world

until 2000’s.

Recent cavity experiments

In 2000’s, European groups started competing with each other by introducing

modern techniques, such as cryogenic operation, ultra-high vacuum, and high

level vibration isolation. The most stringent upper limit at this point is given

by an experiment done by Eisele et al. [23], and their upper limit was

β − δ + 1/2 = (−1.6± 6± 1.2)× 10−12, (2.22)

in Mansouri-Sexl framework. Since the anisotropy in the round-trip speed of

light can be written as (β − δ + 1/2)v2 cos 2θ, this is equivalent to putting an

upper limit of ∣∣∣∣δcc
∣∣∣∣ ≲ 9× 10−18 (2.23)

to the fractional change in the speed of light. Herrmann et al. [24] also reported

a comparable upper limit at almost the same time.

As shown in Fig. 2.5, they locked two laser frequencies to two orthogonal

Fabry-Perot cavities, and measured the beat frequency of the two lasers to

look for the anisotropy. Since they used two Fabry-Perot cavities, their sensi-

tivity to the anisotropy is simply twice the Brillet-Hall experiment. Moreover,

they fabricated two Fabry-Perot cavities with a single spacer to make use of

a high common mode rejection of environmental disturbances. For example,

the cavity length fluctuation caused by the temperature fluctuation is mostly

common to both cavities, and won’t effect the beat signal.

The cavity deformation due to the tilt change, however, is also unavoidable

in this setup. The first uncertainty in Eq. (2.22) is the statistical uncertainty,
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and the second uncertainty is the systematic uncertainty in the tilt measure-

ment. In their experiment, they monitored the tilt of the cavity and subtracted

the effect from the beat signal, and this was the main cause of the systematic

uncertainty.

Also, there is a similar experiment done by using two orthogonally aligned

cryogenic sapphire oscillators [66]. They analyzed their year-long data within

the framework of the Standard Model Extension and placed bounds on parity-

even higher order Lorentz violating coefficients. Their bounds in terms of

δc/c was at 10−16 level, and the analysis was done up to d = 8 camouflage

coefficients (see Section A.1.2). This means that they put upper limits on

quadrupole and octupole components of anisotropy.

2.2.2 Kennedy-Thorndike type experiments

Kennedy-Thorndike type experiments search for the dependence of the speed

of light on the source velocity. In the Mansouri-Sexl frame work, these exper-

iments can be considered as measurements of α − β + 1. In the framework

of the Standard Model Extension, these experiments are measurements of the

isotropic shift of the speed of light κ̃tr.

Kennedy-Thondike experiment

If the lengths of two orthogonal arms of a Michelson interferometer are differ-

ent, it will be sensitive to the source velocity dependence of the speed of light.

In the Mansouri-Sexl framework, the round-trip phase difference between the

two beams of an asymmetric Michelson interferometer can be written as

ϕ− =

(
lxω

c(θ)
+

lxω

c(θ + π)

)
−
(

lyω

c(θ + π/2)
+

lyω

c(θ + 3π/2)

)
= 2lxω

(
β − δ +

1

2

)
v2 sin2 θ − 2lyω

(
β − δ +

1

2

)
v2 cos2 θ

+2(lx − ly)ω (α− β + 1) v2. (2.24)

Tighter constraints are set on β − δ + 1/2 by Michelson-Morley type experi-

ments, so first two terms can be neglected for the measurement of α − β + 1.

Since the Earth goes around the sun with the velocity of about 30 km/s ∼
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10−4c, v changes over a year. Thus, by measuring the interference fringe change

in a period of a year, α− β + 1 can be measured.

In 1932, Kennedy and Thorndike firstly demonstrated the measurement

based on this principle [21]. Their upper limit in Mansouri-Sexl parameter

was [12]

α− β + 1 ≲ (2± 2)× 10−2. (2.25)

Since the velocity modulation is on the order of δv ≃ 10−4, this is equivalent

to putting an upper limit of∣∣∣∣δcc
∣∣∣∣ ≲ 2× 10−2 × [(v + δv)2 − v2] ∼ 5× 10−9 (2.26)

to the fractional change in the speed of light.

Recent cavity experiments

Recently, the dependence of the speed of light on the source velocity is mea-

sured using cavities. As apparent from Eq. (2.20), the resonant frequency of a

cavity will have v dependence if there is Lorentz violation. The current best

upper limit is given by Tobar et al. [25]. By measuring the frequency difference

between a cryogenic sapphire oscillator and a hydrogen maser for 6 years, they

gave

α− β + 1 = (−4.8± 3.7)× 10−8. (2.27)

This is equivalent to putting an upper limit of∣∣∣∣δcc
∣∣∣∣ ≲ 3.7× 10−8 × [(v + δv)2 − v2] ∼ 9× 10−15 (2.28)

to the fractional change in the speed of light.

2.2.3 Ives-Stilwell type experiments

Ives-Stilwell type experiments look for the difference between the speed of light

propagating in opposite directions. In the Mansouri-Sexl frame work, these

experiments can be considered as measurements of α+1/2. In the framework

of the Standard Model Extension, these experiments are measurements of the

19



2 Tests of Lorentz Invariance

Li
+

Figure 2.6: Ives-Stilwell experiment
with lithium ions.

clock A

clock B

Figure 2.7: Clock comparison experi-
ment.

parity-odd Lorentz violating parameters of the photonic sector.

Ives-Stilwell experiment

The frequency of the laser which is absorbed by fast moving atoms or ions will

be shifted by Doppler effect when applying the light in parallel and antiparallel

to the particles’ motion, as shown in Fig. 2.6. This Doppler shift was firstly

measured with hydrogen atoms by Ives and Stilwell in 1938 [19].

If the resonance frequency at the atoms’ rest frame is ν0, and the Doppler-

shifted frequencies in parallel and antiparallel are νp and νa, respectively, an

equation

ν20 = νpνa (2.29)

holds for the Special Relativity. However, this is not true if Lorentz invariance

is violated. Instead, in Mansouri-Sexl framework,

νpνa
ν20

= 1 + 2

(
α +

1

2

)
(v2atom + 2v · vatom), (2.30)

where vatom is the speed of atoms [26].

Thus, by measuring νp and νa, α + 1/2 can be measured. The current

most stringent upper limit is set by the experiment done by Reinhardt et

al. [26], and they used lithium ions at two different velocities. They used an

optical frequency comb for the measurement of the resonance frequency, and

the current precision in Mansouri-Sexl framework is

α + 1/2 = (−4.8± 8.4)× 10−8. (2.31)

Since the anisotropy in the one-way speed of light is expressed by 2(α +
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1/2)v cos θ, this upper limit is equivalent to∣∣∣∣δcc
∣∣∣∣ ≲ 2× 8.4× 10−8v ∼ 2× 10−10 (2.32)

of the fractional hange in the speed of light.

Clock comparison experiments

The difference between the speed of light propagating in opposite directions

can also be measured by comparing the phases of two clocks at distant places.

Suppose there are two clocks at the positions A and B as shown in Fig. 2.7.

The distance between A and B is D, and the angle between the vector AB

and the laboratory velocity vector v is θ. If we send a clock signal from the

position A to B, and compare its phase with a clock signal at the position B,

the phase difference can be written as

ϕ = ϕ0 +
Dω

c(θ)
= ϕ0 +Dω + 2Dω

(
α +

1

2

)
v cos θ +O(v2), (2.33)

in the Mansouri-Sexl framework. Here, ϕ0 is the phase offset between the

origins of the clocks at the positions A and B, and is constant if the two

clocks are moving slowly enough compared with the speed of light. Thus, by

measuring dependence of ϕ on θ, α + 1/2 can be measured.

Krisher et al. [27] reported the upper limit on α + 1/2 by measuring the

sidereal change in the phase difference of two hydrogen-maser frequency stan-

dards on the Earth placed 21 km away from each other. Wolf et al. [28] did

the similar experiment with a hydrogen maser on the Earth, and Caesium and

Rubidium atomic clocks on GPS satellites. The upper limit from the latter

measurement was more stringent, and it was

|α + 1/2| < 1× 10−6. (2.34)

This upper limit is equivalent to∣∣∣∣δcc
∣∣∣∣ ≲ 2× 1× 10−6v ∼ 2× 10−9 (2.35)
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2 Tests of Lorentz Invariance

of the fractional change in the speed of light.

Trimmer experiment

As shown in Eq. (2.17), the difference between the speed of light propagating in

opposite directions cannot be measured using Michelson interferometers. This

is because Michelson interferometers change their fringes when the round-trip

phase of the light change. Other usual interferometers, including cavities, also

have closed loops, and so they cannot be used for searches for anisotropy in

the one-way speed of light. For example, in the Mansouri-Sexl framework, the

phase shift of light created in a closed loop propagation can be written as

ϕloop =

∮
dlω

c(θ)

≃
∮

dlω

[
1 + 2

(
α +

1

2

)
v cos θ

]
=

∮
dlω, (2.36)

and the one-way anisotropy term is canceled out.

However, if the refractive index changes in a closed loop, the one-way

anisotropy term remains. The experiment done by Trimmer et al. [29] in 1973

was the first experiment to utilize this idea. They searched for the anisotropy

by placing a piece of glass in a Sagnac interferometer as shown in Fig. 2.8.

The phase difference between the light propagating in the clockwise direc-

tion and that in the counterclockwise direction in this Sagnac interferometer

can be written as

ϕ− = 4(n− 1)dω

(
α +

1

2

)
v cos θ, (2.37)

where θ is the angle between the laboratory frame velocity v and the vector

along the glass piece, n and d are the refractive index and the length of the

glass piece, respectively. Thus, α + 1/2 can be measured when n ̸= 1. This

is because the directions of light propagation in the glass piece are opposite

between the clockwise and the counterclockwise propagation.
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BS

laser
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Figure 2.8: Trimmer experiment with the Sagnac interferometer with a glass
piece.

laser1

PD1

freq. lock freq. lock

laser2

PD2

dielectric

beat

�LV signal

Figure 2.9: Experimental setup of Baynes et al. using asymmetric optical ring
cavity. Note that their setup is slightly different from this figure since they split
the beam from one source into two, and used an acousto-optic modulators to
shift the frequency of the two, instead of using the second laser.

In the paper by Trimmer et al., they expressed the anisotropy as

1

c(θ)
= 1 + b1P1(cos θ) + b3P3(cos θ), (2.38)

where Pl are the Legendre polynomials. The measurement for the anisotropy

that behaves as the first Legendre polynomial was

b1 = (0.1± 8.4)× 10−11, (2.39)

23



2 Tests of Lorentz Invariance

and that for the third Legendre polynomial was

b3 = (2.3± 1.5)× 10−11. (2.40)

Recent cavity experiments

Recently, improving the sensitivity by changing the Trimmer-type triangular

Sagnac interferometer to a ring cavity was proposed [30, 31] and demonstrated

[32, 33]. Baynes et al. [32, 33] looked for a nonzero resonant frequency differ-

ence between two counterpropagating directions of an asymmetric optical ring

cavity. Their experimental setup is shown in Fig. 2.9. The asymmetric optical

ring cavity was made with three mirrors and a piece of glass was placed along

one side of the triangle. They locked the frequency of the two laser sources to

the resonant frequencies of two counterpropagating directions and compared

the frequency of the two.

Their upper limit on the fractional change in the speed of light was∣∣∣∣δcc
∣∣∣∣ ≲ 2× 10−13. (2.41)

This limit was achieved by using data taken for 2 months.

Compton scattering experiment

The current best limit on anisotropy in the one-way speed of light is obtained

by a Compton scattering experiment. When low energy photons are head-on

scattered by relativistic electrons, the energy of the scattered photons in the

laboratory frame can be written as [34]

E ′
γ(φ) =

4γ2Eγ

1 + 4γEγ/me + φ2γ2
, (2.42)

where φ is the angle between the scattered photon and the incident direction

of the electron (see Fig. 2.10), γ and me is the Lorentz factor and the mass of

the electron, respectively. The maximum energy of the scattered photons is

obtained when φ = 0, and is called the Compton edge energy ECE
0 ≡ E ′(0).

This Compton edge energy will be modified when there is light speed
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2.2 Previous tests of Lorentz invariance

anisotropy, since the dispersion relation of photons will be modified as

ω = (1− κ · k̂)k, (2.43)

where ω and k are the angular frequency and the wave number of photons,

respectively. k̂ is a unit three-dimentional vector and κ is a three-dimentional

vector of Lorentz violation parameters. In this case, the Compton edge energy

will be modified as

ECE = ECE
0

[
1 +

2γ2

(1 + 4γEγ/me)2
κ · k̂

]
. (2.44)

Thus, when the propagation direction of photons k̂ changes, the Compton edge

energy should change.

Bocquet et al. [35] used ultraviolet laser and 6.03 GeV electrons to measure

the Compton edge energy at the European Synchrotron Radiation Facility’s

GRAAL facility. They took data for a week and searched for the sidereal

variations in the Compton edge energy. No significant variation was found

and they yielded the constraint on the Lorentz violation parameters as√
κ2X + κ2Y < 1.6× 10−14. (2.45)

This means that their upper limit on the fractional change in the speed of light

was ∣∣∣∣δcc
∣∣∣∣ < 1.6× 10−14. (2.46)

Note that their upper limit is given at 95% confidence level. Limits from the

other experiments discussed in this section are usually given at 1σ level.

The indices J for κJ in Eq. (2.45) runs from X to Z, which represent the

spatial coordinate axes of the sun-centered celestial equatorial frame (SCCEF)

defined in Section 5.1.1. They did not put separate upper limits on κX and

κY since they only measured the sidereal modulation amplitude, and did not

account for the phase of the variation. Also, since the Z-axis is aligned with

the Earth’s rotational axis and they only use the Earth’s rotation to modulate

the propagation direction of the speed of light, it is not possible to measure

κZ with their setup.
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2 Tests of Lorentz Invariance

e
-

Figure 2.10: Compton scattering experiment.

Table 2.1: Summary of previous experiments with the current best sensitivities
in terms of δc/c. Note that the limit from Bocquet et al. is at 95 % confidence
level, while others are at 1σ. Also, the experiment done by Bocquet et al.cannot
put limits on all the individual components for dipole anisotropy.

l 1 2 3 4
dipole quadrupole hexapole octupole

Eisele+ [23] no access 9× 10−18 no access no analysis
Parker+ [66] no access ∼ 10−16 no access ∼ 10−16

Baynes+ [33] 2× 10−13 no access no analysis no access
Bocquet+ [35] 1.6× 10−14 (*) no access no analysis no access
This work improve limits no access first analysis no access

Cavity experiments, on the other hand, can measure each component of the

anisotropy separately by doing the phase sensitive analysis and by rotating the

apparatus.

2.3 Purpose of our experiment

We have reviewed the previous Michelson-Morley type, Kennedy-Thorndike

type, and Ives-Stilwell type experiments. Table 2.1 summarizes the current

best sensitivities on each anisotropy component. The current upper limits

on even-parity and odd-parity components of the light speed anisotropy were

at 10−17 level and 10−14 level at the fractional change in the speed of light,

respectively. The source velocity independence of the speed of light was tested

at 10−15 level.

Although upper limits on the odd-parity components were improved by
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2.4 Summary of this chapter

about 3 orders of magnitude by using asymmetric optical ring cavity, instead

of fast ions, they were less stringent by 3 orders of magnitude as compared

with even-parity components. The purpose of our experiment is to improve the

sensitivity in searching for the odd-parity anisotropy components by refining

the setup using asymmetric optical ring cavity.

Also, we will do the data analysis in the framework of the spherical har-

monic decomposition and the SME to do the search for the higher order Lorentz

violations. Our ring cavity is sensitive to the parity-odd violations, which had

not been searched for.

2.4 Summary of this chapter

• Robertson framework, Mansouri-Sexl framework, and the Standard Model

Extension (SME) are the test theories of special relativity and Lorentz

invariance. The latter ones include more different types of the violations

of the constancy of the speed of light.

• The SME introduces birefringence, dispersion, and multipole structures

of the anisotropy.

• The spherical harmonic decomposition of the anisotropy, and its spherical

coefficients y¬m
l were introduced. y¬m

l represent the size of the anisotropy

for each component.

• The current upper limits on anisotropy in the round-trip and one-way

speed of light are δc/c ≲ 10−17 and δc/c ≲ 10−14 level, respectively.

The former was given by the cavity experiments. The latter cannot be

measured by simple interferometers or cavities, and the current best limit

was given by the Compton scattering experiment.

• Anisotropy in the one-way speed of light can be measured by the asym-

metric ring cavity, which has a dielectric piece inside the ring.

• The purpose of our experiment is to measure anisotropy in the one-way

speed of light with improved sensitivity. Also, we search for the parity-

odd higher order Lorentz violation for the first time.
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Chapter 3
Optical Ring Cavity

In this chapter, we will show the experimental principle of testing Lorentz

invariance with an optical ring cavity. In Section 3.1, the experimental prin-

ciple is explained, and a double-pass configuration which we will employ is

introduced. Section 3.2 shows the sensitivity goal to improve the current up-

per limits, and various noise sources and their requirements are described in

Section 3.3.

3.1 Experimental principle

A ring cavity will have direct sensitivity to the odd-parity Lorentz violation

if the refractive index changes asymmetrically through its path. The resonant

frequency will be shifted if there is Lorentz violation. As the signs of the

frequency shift are opposite between the clockwise and counterclockwise direc-

tions, measuring the resonant frequency difference between two counterprop-

agating directions gives us the Lorentz violation signal. We use a double-pass

configuration to do this differential measurement.

3.1.1 Principle

To show the experimental principle briefly, we simplify the spherical harmonic

decomposition of the light speed anisotropy in Eq. (2.16) as

c(θ) = 1 +
1

2
√
π
y¬0
1 cos θ, (3.1)

and ignore any other terms.
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3 Optical Ring Cavity

M1

M3

M2

dielectric

Figure 3.1: An optical ring cavity containing a dielectric.

Consider a triangular ring cavity which consists of 3 mirrors, M1, M2,

and M3, and a dielectric material as shown in Fig. 3.1. The length and the

refractive index of the material are d and n, respectively.

If we write the counterclockwise resonant frequency of the ring cavity as

ν+, the resonant condition (see Eq. (C.9)) can be written as

m

ν+
=

(l1 − d)

c(θ)
+

nd

c(θ)
+

l3
c(θ − θ2 + π)

+
l2

c(θ + θ3 + π)
, (3.2)

using a natural number m. By inserting Eq. (3.1) to the equation above,

m

ν+
≃ l1 − d+ nd+ l2 + l3

− 1

2
√
π
y¬0
1 [(l1 − d) cos θ + nd cos θ − l3 cos (θ − θ2)− l2 cos (θ + θ3)]

= L+ (n− 1)d− 1

2
√
π
y¬0
1 (n− 1)d cos θ. (3.3)

Here, L ≡ l1 + l2 + l3.

Similarly, the clockwise resonant frequency ν− follows the equation

m

ν−
= L+ (n− 1)d+

1

2
√
π
y¬0
1 (n− 1)d cos θ. (3.4)

If there is no Lorentz violation and y¬0
1= 0, the resonant frequencies are

ν = m/[L + (n − 1)d] for both directions, but the resonant frequencies are

shifted in opposite signs when Lorentz invariance is violated. Also, this shift

cannot be measured when n = 1, and changing the refractive index of a portion
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3.1 Experimental principle

of the optical path is the key for this measurement.

The resonant frequency difference between both directions is

δν

ν
≡ ν+ − ν−

ν
=

(n− 1)d

L+ (n− 1)d

1√
π
y¬0
1 cos θ. (3.5)

This difference signal is zero when there is no Lorentz violation. In our exper-

iment, we record this Lorentz violation signal as we rotate the ring cavity and

modulate θ. By demodulating the data with the rotational frequency, y¬0
1 can

be extracted. Other y¬m
l with odd l can also be measured similarly.

The optical path of a ring cavity is determined uniquely when arrangements

of consisting mirrors are fixed. The optical paths are exactly the same for the

counterclockwise and the clockwise directions. Thus, even if the cavity length

fluctuated because of temperature fluctuations or tilt fluctuations, ν+ and ν−

fluctuates in-phase, and δν ≡ ν+ − ν− does not change. This common mode

rejection is a big merit of this differential measurement.

It is possible that the refractive index also has the directional dependence.

Modification of the Maxwell’s equations could result in both of the directional

dependence of the speed of light and the refractive index, and their effects

could cancel each other. However, an example modification of the Maxwell’s

equations that does not cancel the effect is already proposed (e.g. Ref. [36]).

The directional dependence of the refractive index is also the Lorentz violation,

but it is considered to be the Lorentz violation in electrons, not in photons. In

our experiment, we assume that the Lorentz invariance holds in the electron

sector, and search for the Lorentz violation in photons.

3.1.2 Double-pass configuration

One of the most straightforward methods to compare the counterclockwise and

the clockwise resonant frequencies is to prepare two laser sources and lock the

laser frequencies of the two to each resonance, as shown in Fig. 2.9. Baynes et

al. used this method and compared the laser frequencies of the two.

However, the frequencies of the two laser beams have to be different by more

than a few hundred Hz to use this method in real life. The counterclockwise

and the clockwise beams couple to each other via backscattering inside the
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laser
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Figure 3.2: Our optical setup using a double-pass configuration.

cavity, and the coupling effect is fed back to the laser frequency by the servo.

This feedback makes the frequencies of the two laser sources to be the same

even if there is the resonant frequency difference between counterpropagating

directions because of Lorentz violation.

This lock-in behavior is also a problem in ring laser gyroscopes [37]. In

order to avoid this lock-in behavior, the frequencies of the two laser sources

must have the frequency offset which is multiples of a free spectral range to

each other. This offset prevents the measurement to be null.

Instead, we employed the configuration called double-pass. A double-pass

configuration was originally proposed for use in mode cleaners for interferomet-

ric gravitational wave detectors [38, 39]. Our optical setup using a double-pass

configuration is shown in Fig. 3.2.

First, we get the error signal which is proportional to the difference between

the laser frequency and the counterclockwise resonant frequency ν+ using the

photodetector PD1, and lock the laser frequency to ν+. The cavity transmitted

beam which has the frequency of ν+ is reflected back into the cavity by a mirror

MR, and injected in the clockwise direction this time. If the clockwise resonant

frequency ν− is equal to ν+, the reflected beam also resonates in the cavity.

However, if there is a difference, we can get the signal which is proportional to

the difference δν ≡ ν+ − ν− from the second reflection on the photodetector

PD2.

The error signal from the PD2 is the Lorentz violation signal on its own, and

there exist only beams with the same frequency. Thus, there is no mechanism
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for lock-in behavior. This double-pass configuration is the method which make

the best out of the ring cavity, and allows high-precision null measurement of

the Lorentz violation.

3.1.3 Advantages compared with previous experiments

As we saw in Section 2.2.3, Ives-Stilwell type interferometric tests of isotropy

of the speed of light was firstly done by Trimmer et al. in 1973. They used a

Sagnac interferometer, but in Sagnac interferometers, positions or alignments

of mirrors change the optical paths of counterpropagating directions, and thus

temperature fluctuation and similar environmental disturbances will be noise

sources. In ring cavities, however, effects from environmental disturbances

are suppressed because of the high common mode rejection. Until recently,

an improvement of Trimmer experiment by using a ring cavity has not been

carried out.

The first ring cavity test of isotropy of the speed of light was done by

Baynes et al. [32], and they reported the results in October 2011. They first

used the Earth’s rotation alone to modulate the signal, but they also reported

the rotating experiment in June 2012 [33]. The setup they used was to use

two laser sources as shown in Fig. 2.9. They did not do the constant speed

rotation. The cavity was rotated for 180◦ each time, and the data were taken

for ∼ 10 minutes at each orientation when the cavity was stationary.

On the other hand, we rotate the cavity at the constant speed, and data

are taken continuously during the rotation. The rotational period of our ex-

periment is 12 seconds. Generally, noise level at higher frequency is smaller, so

higher rotational frequency is better. Also, we use a double-pass configuration

as shown in Fig. 3.2. This double-pass configuration enables a null measure-

ment of the resonant frequency difference with a simpler configuration than

that of Refs. [32, 33]. Also, stabilizing the frequencies of two counterpropagat-

ing beams of a ring cavity has the possibility of lock-in behavior [37], which is

a common effect in ring laser gyroscopes.

Also, we use silicon as a dielectric material since its refractive index and

transmittance is high at the wavelength of 1550 nm. Compared with using

optical glass, which has n = 1.44 at the wavelength of 1064 nm, silicon with
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n = 3.69 gives approximately 4 times better sensitivity to the Lorentz violation

(see Eq. (3.5)).

Moreover, the number of the Lorentz violation coefficients that can be

accessed by our experiment is larger than the previous experiments. Because

data were not taken continuously during the cavity rotation, Baynes et al.could

only access to the Lorentz violation coefficients which are related to the dipole

structure of the anisotropy. The Compton scattering experiment done at the

GRAAL facility [35] cannot access to the coefficients which are related to the

Z-axis symmetric anisotropies, as discussed in Section 2.2.3. On the contrary,

our setup can access all the coefficients related to parity-odd violations.

3.2 Sensitivity goal

The goal of our experiment is to measure the anisotropy in the one-way speed

of light to the level better than the current best limit obtained by a cavity

experiment. The limit is shown in Eq. (2.41), and this means that we have to

measure y¬m
1 at better than 10−13 level. Here, we estimate the sensitivity goal

to fulfill this requirement.

As we have shown in the previous section, the anisotropy signal s(t) is given

by Eq. (3.5), and

s(t) =
δν

ν
=

(n− 1)d

L+ (n− 1)d

1√
π
y¬0
1 cos θ. (3.6)

If we ignore the Earth’s rotation, θ ≃ ωrott, and thus ωrot component of s(t)

gives y¬0
1. The Fourier amplitude ξ at ωrot can be written as

ξ ∼

√∣∣∣∣ 2NS(ωrot)

∣∣∣∣2, (3.7)

where S(ω) is the discrete Fourier transform of s(t), and N is the number of

data points.

On the other hand, using the sampling frequency fs, the power spectral
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density of s(t) at ωrot can be written as

Ps(ωrot) =

√
1

Nfs
|S(ωrot)|2. (3.8)

Power spectral density is often used for evaluating a noise level or a sensitivity

level of a system in the frequency domain, and also called noise spectrum.

From Eq. (3.7) and Eq. (3.8), using Ps(ωrot), ξ can be written as

ξ ∼ 2√
T
Ps(ωrot). (3.9)

Here, T = N/fs is the measurement time, and from this equation, it is clear

that the measurement precision is inversely proportional to the square root of

the measurement time.

Our requirement is to determine y¬m
1 at level better than 10−13, so require-

ment for ξ determination is 10−13. If we set the measurement time to be 1

year, T = 3× 107 sec, requirement for the noise at ωrot is roughly

Ps(ωrot) ≲ 10−10 /
√
Hz. (3.10)

In the remaining part of this thesis, we use the same symbols for time series

data like s(t) and spectrum data like Ps(ω). This is possible since we deal with

linear response system.

3.3 Noise sources and requirements

Since we search for Lorentz violation by comparing the resonant frequencies of

the counterpropagating directions of the ring cavity, most of the noises from

environmental disturbances are canceled out by the common mode rejection.

However, the common mode rejection is not effective to some noises. Also,

even if the common mode rejection cancels out some effects, the common

mode rejection ratio is finite.

Here, we will enumerate the noises which could limit the sensitivity of our

apparatus, and show the requirements for each noise calculated from Eq. (3.10).

All the requirements are set at the rotational frequency frot = ωrot/(2π) =
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Table 3.1: Parameters of our apparatus used for the noise calculation.

laser wavelength λ = 1550 nm
laser frequency ν = 1.93× 1014 Hz
incident beam power P0 = 1 mW
finesse F = 120
cavity round-trip length L = 140 mm
area enclosed by the cavity optical path S = 530 mm2

silicon block length d = 20 mm
silicon block refractive index n = 3.69
rotational angular frequency ωrot = 30 ◦/sec

= 0.524 rad/sec

0.083 Hz, because the Lorentz violation signal appears at the rotational fre-

quency of the ring cavity.

The parameters used for the noise calculation are summarized in Table 3.1.

Strictly speaking, the incident beam powers in the counterclockwise direction

and the clockwise direction are different, but we use the approximation that

they are both P0 in the calculation below. Powers of both incident beams are

within the same order in our setup.

3.3.1 Shot noise

Shot noise arises from a quantum fluctuation of a number of photons on a

photodetector, and is one of the quantum noise which originates from Heisen-

berg’s uncertainty principle. Shot noise is a white noise, and its power spectral

density can be written as

δIshot =
√
2eIPD [A/

√
Hz], (3.11)

where IPD is a photocurrent of a detector [40].

Consider rewriting this equation with quantum efficiency η. Quantum ef-

ficiency is defined as a number of output electrons per one incident photon.

Thus, it can be written as

η ≡ IPD/e

PPD/(hν)
, (3.12)
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where PPD is the incident beam power on the photodetector, and

IPD =
e

hν
ηPPD (3.13)

follows. Here, e is the elementary charge, and h is the Planck’s constant. By

inserting this equation to Eq. (3.11), the minimum detectable power change

from the shot noise can be calculated as

δPshot =

√
2hνPPD

η
. (3.14)

In our experiment, we use the Hänsch-Couillaud method (or polarization

spectroscopy) [70, 71] to obtain the error signals. Detailed calculations in

Section C.3.1 show that in the Hänsch-Couillaud method, incident beam power

on one photodetector at the cavity resonance is

PPD =
1

4
P0. (3.15)

Also, the ratio between the change in the error signal Pdiff , and the change in

the round-trip phase of the ring cavity ϕ at near resonance is

∂Pdiff

∂ϕ
=

1

π
P0F . (3.16)

Therefore, the minimum detectable phase change from the shot noise is

δϕshot =
√
2δPshot

(
∂Pdiff

∂ϕ

)−1

=
π

F

√
hν

ηP0

. (3.17)

√
2 in the first line comes from the fact that we use the difference signal from

the two photodetectors to obtain the error signal, and the shot noises from the

two detectors are added incoherently.
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Since ϕ can be written as

ϕ =
2π

λ
[L+ (n− 1)d], (3.18)

the minimum detectable resonant frequency change from the shot noise is

δνshot
ν

=
δϕshot

ϕ
=

1

2[L+ (n− 1)d]F

√
chλ

ηP0

. (3.19)

The quantum efficiency is typically η ≃ 1. So, if we insert the parameters

for our ring cavity, we get

δνshot
ν

≃ 4× 10−16 /
√
Hz < 10−10 /

√
Hz. (3.20)

So, the design of our ring cavity is enough to meet the requirement. As it

is clear from Eq. (3.19), the shot noise can be further lowered by an order

of magnitude by increasing the cavity finesse by an order of magnitude or by

increasing the incident beam power by two orders of magnitude.

3.3.2 Laser intensity noise

In interferometric phase detections including our experiment, the phase change

is converted into the power change and detected by a photodetector. So,

if the apparatus cannot distinguish the intensity fluctuation from the phase

fluctuation, the intensity fluctuation of the incident beam will be a noise source.

We use the Hänsch-Couillaud method, and take difference of two photode-

tectors to obtain the error signal. Since the intensity noise is common to both

detectors, the effect can be eliminated by this method. However, the common

mode rejection ratio is finite and some effects are remained. From Eq. (3.15),

the intensity noise in the error signal can be written as

δPint =
1

4
γintCMRRP0

δP0

P0

, (3.21)

where γintCMRR is the common mode rejection ratio. Thus, the minimum de-
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tectable phase change from the intensity noise is

δϕint = δPint

(
∂Pdiff

∂ϕ

)−1

=
πγintCMRR

4F
δP0

P0

, (3.22)

and from Eq. (3.18), the minimum detectable resonant frequency change is

δνint
ν

=
δϕint

ϕ
=

γintCMRRλ

8[L+ (n− 1)d]F
δP0

P0

. (3.23)

Empirically, the common mode rejection ratio for the intensity noise is

roughly 1/100 at best. Here, we assume γintCMRR = 1/10, and the parameters

for our ring cavity give
δνint
ν

= 8× 10−10 δP0

P0

. (3.24)

Hense, the requirement for the relative intensity noise of the incident beam is

δP0

P0

<
10−10 /

√
Hz

8× 10−10

≃ 1× 10−1 /
√
Hz (@ frot = 0.083 Hz). (3.25)

This level is easily obtained without any intensity stabilization. The mea-

sured relative intensity noise at free run was 2× 10−3 /
√
Hz for our laser.

3.3.3 Laser frequency noise

We compare the resonant frequencies of counterpropagating directions by lock-

ing the laser frequency to the counterclockwise resonance, and injecting the

beam into the clockwise direction. Ideally, the laser frequency is perfectly

locked to the counterclockwise resonance, but in reality, there are some resid-

ual frequency fluctuations between the counterclockwise resonance and the

laser frequency.

Requirement for the residual laser frequency noise is the same as the one
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in Eq. (3.10), and is

δνfreq
ν

< 10−10 /
√
Hz (@ frot = 0.083 Hz). (3.26)

Details of the frequency stabilization are discussed in Section 4.2.3.

The full width at half maximum of the resonance of our cavity is (see

Section C.1.2)

νFWHM =
c

[L+ (n− 1)d]F
≃ 12 MHz. (3.27)

This means that the frequency noise of the cavity transmitted beam is the same

as the one for the laser frequency noise below Fourier frequency of ∼ 12 MHz.

Since we only care about the noise at the rotational frequency frot, we can

assume that the laser frequency stability directly affects the Lorentz violation

signal.

3.3.4 Noise from Sagnac effect

The clockwise and the counterclockwise resonant frequencies are different for

rotating ring cavities because of the Sagnac effect [41]. If the rotational speed

is constant, this resonant frequency difference is constant, so it does not affect

our measurement, but if the rotational speed fluctuates, it will be a noise

source.

The round-trip phase difference between the beams propagating in the

clockwise and the counterclockwise directions is [42]

ϕSagnac =
4π

cλ

∮
l

vl · dl, (3.28)

and is independent of the refractive index of the optical path. Here, dl is the

line element vector of the optical path, and vl is the speed of motion of that

line element from the rotation. Note that the equation above is true when

Fresnel-Fizeau effect is negligible, i.e. when ωrotR ≪ c/n, where R is the

average radius of the ring (see, also, Eq. (56) of Ref. [43]).

Therefore, by using Eq. (3.18) also, the resonant frequency difference be-
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3.3 Noise sources and requirements

tween counterpropagating directions caused by the Sagnac effect is

δνSagnac
ν

=
δϕSagnac

ϕ
=

8πSδωrot/(cλ)

2π[L+ (n− 1)d]/λ

=
4S

c[L+ (n− 1)d]
δωrot. (3.29)

Here, S is the area enclosed by the triangular cavity optical path.

By inserting the parameters for our ring cavity, we get

δνSagnac
ν

= 4× 10−11 (rad/sec)−1 δωrot. (3.30)

Thus, the requirement for the fluctuation of ωrot is

δωrot <
10−10 /

√
Hz

4× 10−11 (rad/sec)−1

≃ 3 rad/sec/
√
Hz (@ frot = 0.083 Hz). (3.31)

For the rotational speed servo, we used a commercial motor control system.

Details of the turntable are discussed in Section 4.3.

It is worth mentioning that the Sagnac effect can be fundamentally avoided

by taking the Lorentz violation data only when the cavity is stationary. Mod-

ulation of the cavity orientation can be done by rotating the cavity by a few

degrees and stopping it repeatedly. However, since the requirement for the

fluctuation of ωrot was not severe for our experiment, we chose to continuously

take data when the ring cavity is rotating. This is also beneficial for longer

measurement time.

3.3.5 Other noises

Seismic noise

Even if the cavity length fluctuates because of the seismic vibration or the

turntable vibration, the resonant frequencies of both directions change coher-

ently, and will not be a noise source for our measurement, in principle. Also,

by fixing the optics rigidly, the whole optical system moves in the same way,

and the effect of vibrations can be further reduced. To reduce the effect from
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the vibrations, we fix three mirrors of the ring cavity to a single spacer, and

also fix whole the optics to a single aluminum plate.

The level of the seismic vibration depends on places, local time, weather,

etc. but it roughly follows the following spectrum [44]:

xseis = 10−7

(
1 Hz

f

)2

m/
√
Hz (3.32)

The actual seismic vibration measured at our laboratory also follows this model

at frequencies higher than ∼ 10 Hz. Below 10 Hz, the measured spectrum is

typically smaller than the model. However, we use this model for overestimat-

ing the vibration level.

So, using γCMRR as the common mode rejection ratio of the resonant fre-

quencies of counterpropagating directions, and γrigidCMRR as the common mode

rejection ratio from fixing the mirrors rigidly on a spacer, the fluctuation in

the resonant frequency difference between counterpropagating directions can

be written as

δνseis
ν

∼ γCMRRγ
rigid
CMRR

δxseis
L

∼ γCMRRγ
rigid
CMRR × 10−6 /

√
Hz. (3.33)

To meet the requirement in Eq. (3.10),

γCMRRγ
rigid
CMRR ≲ 10−4 (3.34)

is required. Empirically, γrigidCMRR < 10−6 can be expected. So, this requirement

is not severe, and we can say that no special vibration isolation system is

needed.

We will also place all the optics on a single aluminum plate to reduce effects

from vibrations outside the ring cavity. However, since the vibration of the

turntable is expected to be much larger than the seismic vibration, we should

keep our eyes on the vibration. This turntable vibration issue will be discussed

in Section 4.3.3.
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3.3 Noise sources and requirements

Thermal noise

The surfaces of the mirrors and the spacer length fluctuate thermally because

the cavity is placed in a heat bath with a finite temperature. Those thermal

fluctuations induce unwanted cavity length changes, which result in thermal

noises. The amplitude of the fluctuating force is proportional to the mechanical

losses in the body itself, according to the fluctuation-dissipation theorem [45].

The surface thermal motion of the mirror caused by its substrate and coating

are called the mirror substrate thermal noise and the coating thermal noise,

respectively. The thermal fluctuation of the spacer length is called the spacer

thermal noise. Here, we only consider the Brownian noise.

The spectrum of the spacer thermal noise [46], the mirror substrate thermal

noise, and the coating thermal noise [47, 48] are represented by

δνspc
ν

=
1

L

√
4kBTcav
Qspcω

2ρl2

π2EspcM
, (3.35)

δνsub
ν

=
1

L

√
4kBTcav
Qsubω

1− σ2
sub√

πEsubw
, (3.36)

δνco
ν

=
1

L

√
4kBTcav
Qcoω

2dco(1 + σco)(1− 2σco)

πEsubw2
, (3.37)

respectively. These equations are valid in the frequency range below their

respective resonant frequencies. The expression for the spacer thermal noise

is obtained by assuming the spacer to be a cylinder. As we can see, lowering

the temperature Tcav and using higher Q-value materials give smaller thermal

noise. Q-values are related with the mechanical loss for each material, and

lower loss gives higher Q-values.

The definitions of each parameter and the values used for thermal noise

calculation are listed in Table 3.2. The resulting thermal noise levels are

δνspc
ν

= 2× 10−16 /
√
Hz, (3.38)

δνsub
ν

= 2× 10−16 /
√
Hz, and (3.39)

δνco
ν

= 4× 10−16 /
√
Hz (@ frot = 0.083 Hz). (3.40)
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Table 3.2: Parameters used for the thermal noise calculations. The spacer
material is Super Invar, and the mirror substrate is fused silica. The mirrors
are coated with delectric multi-layer coating. Material properties listed here
are conservative and empirical values taken from Refs. [46, 50, 49].

temperature Tcav = 300 K
spacer density ρ = 8× 103 kg/m3

spacer length l ∼ L/2
spacer weight M = 0.34 kg
spacer Q-factor Qspc = 104

spacer Young’s modulus Espc = 140 GPa
substrate Q-factor Qsub = 106

substrate Young’s modulus Esub = 70 GPa
substrate Poisson’s ratio σsub = 0.17
coating Q-factor Qco = 103

coating Poisson’s ratio σco = 0.17
coating thickness dco = 8 µm
beam radius w = 210 µm

Values in Table 3.2 come from the properties of the spacer material, Super

Invar, and the mirror substrate material, fused silica, in Ref. [50]. Q-values

and dco are empirically assumed conservative values [49]. Also, the mirror

substrate thermal noise and the coating thermal noise have to be multiplied

by
√
3 to incorporate the effect from 3 mirrors. Even so, the thermal noise

levels are more than 5 orders of magnitude below our requirement.

Thus, we need no cryogenic operation from the thermal noise point of view.

The thermal noise level might be even smaller if we consider that the thermal

noise is common to both clockwise and counterclockwise resonances.

Temperature fluctuation

The fluctuation in the cavity temperature changes the cavity optical length

because of the thermal expansion of the spacer and the silicon piece, and the

change in the refractive index of silicon. Since this effect is common to both

clockwise and counterclockwise resonances, this effect does not create noise in

principle.
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3.3 Noise sources and requirements

The fluctuation in the resonant frequency difference between counterpropa-

gating directions from the cavity temperature fluctuation δTcav can be written

as
δνtemp

ν
= γCMRR

αspcL+ αSi(n− 1)d+ dn
dT
d

L+ (n− 1)d
δTcav, (3.41)

where αspc and αSi are the thermal expansion coefficients of the spacer and

silicon, respectively. dn
dT

is the thermo-optic coefficient of silicon, and γCMRR is

the common mode rejection ratio of the resonant frequencies of counterprop-

agating directions.

As a material of the spacer, we use Super Invar which has low thermal

expansion coefficient (αL ∼ 10−7 /K [50]). The thermal expansion coefficient

of silicon is 3×10−6 /K at room temperature [50]. The thermo-optic coefficient

of silicon at 1550 nm and at room temperature is 2 × 10−4 /K [51]. Thus, if

we assume γCMRR = 1/100, requirement for the temperature stability is

δTcav ≲ 10−10 /
√
Hz

1/100 · (10−7 + 8× 10−6 + 2× 10−5) /K

= 4× 10−4 K/
√
Hz (@ frot = 0.083 Hz). (3.42)

This value is typically realized in usual laboratories, and we can say that no

special temperature stabilization is needed for our experiment. The measured

temperature fluctuation was less than 10−4 K/
√
Hz at 0.1 Hz.

However, in order to go further in the sensitivity, temperature stabilization

might be needed. Since the requirement on the temperature fluctuation mainly

comes from the thermo-optic effect in silicon, making thermo-optic coefficient

smaller also helps. This can be realized by operating the cavity at cryogenic

temperature. For example, the thermo-optic coefficient at 20 K is 2 orders of

magnitude smaller than that at the room temperature [51].

Cavity tilt fluctuation

If the rotational axis of the turntable and the direction of gravity is not parallel,

the tilt of the cavity changes in the rotational period, and the cavity changes

its length because of the gravitational deformation. This tilt fluctuation has

been a long standing issue for limiting the sensitivity of Michelson-Morley
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type experiments. However, this effect is also common to both clockwise and

counterclockwise resonances, and this effect won’t be a noise source for our

experiment in principle.

If we approximate that the shape of the spacer is a cuboid with length of

l, and its length is expanded by a gravitational acceleration of g sin δφ when

the cavity tilt from horizontal plane is δφ, the length change can be written

as [52]

δl

l
=

ρl2

2Espc

g sin δφ (3.43)

≃ ρl2g

2Espc

δφ. (3.44)

Here, ρ and Esub is the density and the Young’s modulus of the spacer.

Therefore, the fluctuation in the resonant frequency difference between

counterpropagating directions from the tilt fluctuation is

δνtilt
ν

∼ γCMRR
δl

l
= γCMRR

ρl2g

2Espc

δφ. (3.45)

Assuming γCMRR = 1/100, l ∼ L/2, and g = 9.8 m/s2, and inserting the

physical properties of Super Invar in Table 3.2, we get

δνtilt
ν

∼ 1× 10−11 /rad δφ. (3.46)

Thus, the requirement for the tilt fluctuation is

δφ ≲ 10−10 /
√
Hz

1× 10−11 /rad

= 1× 101 rad/
√
Hz (@ frot = 0.083 Hz). (3.47)

This requirement is 7 orders of magnitude larger than the requirement for other

Michelson-Morley type experiments [24], and we can say that no special tilt

control is needed for our experiment. However, tilt also couples into the signal

in multiple ways. For example, tilt of the turntable could introduce rotational

speed fluctuation in a rotational period. The actual measurement on the tilt
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3.3 Noise sources and requirements

coupling will be discussed in Section 5.4.

Noise from centrifugal force

If the rotational speed fluctuates, the centrifugal force acting on a cavity fluc-

tuates and the resonant frequency fluctuates by the cavity deformation. In

principle, this effect is also eliminated by the common mode rejection in our

experiment.

The length change of the spacer from centrifugal force can be written in

the similar way as Eq. (3.43), by replacing g sin δφ with fluctuation in the

centrifugal acceraration δ(rω2
rot),

δl

l
=

ρl2

2Esub

δ(rω2
rot)

=
ρl2rωrot

Esub

δωrot. (3.48)

Therefore, the fluctuation in the resonant frequency difference between

counterpropagating directions from the centrifugal force fluctuation is

δνcent
ν

∼ γCMRR
δl

l
= γCMRR

ρl2rωrot

2Esub

δωrot. (3.49)

By assuming γCMRR = 1/100 and r ∼ L/2, and inserting the cavity parameters,

we get
δνcent
ν

∼ 8× 10−14 (rad/sec)−1 δωrot. (3.50)

Thus, requirement for the rotational speed fluctuation is

δωrot ≲ 10−10 /
√
Hz

8× 10−14 (rad/sec)−1

= 1× 103 rad/sec/
√
Hz (@ frot = 0.083 Hz). (3.51)

This requirement is 3 orders of magnitude larger than Eq. (3.31), and the effect

from the centrifugal force is sufficiently small.
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Electrical noises

Since we use photodetectors, electrical circuits, and electrical devices for ac-

quiring data and feedback control, injection of electrical noises to the Lorentz

violation signal is unavoidable. ADC (analog-to-digital converter) noise and

aliasing noise could also contribute to the sensitivity of the apparatus. So, we

have to carefully design electrical components by estimating the coupling. The

noise coupling of each component can be estimated using the method described

in Section B.2.

Noises from sound, wind, etc.

Generally, when interferometers are built in air, the vibration from sound and

wind will be noise sources. Some amount of these effects will be canceled out

by the common mode rejection, but it is better to reduce these effects from

the stability point of view for the laser frequency servo.

In our experiment, the optical system including the cavity is placed in a

vacuum enclosure at roughly 1 kPa(= 10−2 atm). This gives not only the

soundproofing, but also the temperature stability of the system.

3.4 Summary of this chapter

• We use an optical ring cavity with a silicon piece inside to change the

refractive index of the path asymmetrically to search for the parity-odd

Lorentz violation.

• The Lorentz violation signal is the resonant frequency difference between

the counterclockwise and clockwise directions. We obtain this signal with

a double-pass configuration.

• The Lorentz violation signal obtained with a double-pass configuration

will be zero when there is no violation. Thus, our experiment is a null

experiment.

• Since we do the differential measurement of the resonant frequencies,

the noise from the cavity length fluctuations will be canceled out by a
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Table 3.3: Summary of requirements and estimations of various noise sources.
Requirements and estimations are the values at the cavity rotational frequency
0.083 Hz.

Noise Req. or est. Design

Shot noise 4× 10−16 /
√
Hz 6 orders of magnitude below

requirement

Laser intensity
δP0

P0

< 1× 10−1 /
√
Hz free-run is 2 orders of magni-

tude below requirement

Laser frequency
δνfreq
ν

< 10−10 /
√
Hz need to lock laser frequency on

cavity resonance

Sagnac effect δωrot < 3 rad/sec/
√
Hz stabilize rotational speed with

motor control system

Seismic noise γCMRRγ
rigid
CMRR ≲ 10−4 make a rigid cavity, place op-

tics on a single plate

Thermal noise 1× 10−15 /
√
Hz operation at room tempera-

ture

Temperature
fluctuation

δTcav < 4× 10−4 K/
√
Hz laboratory environment meets

requirement

Tilt fluctuation δφ < 1× 101 rad/
√
Hz no tilt stabilization needed

Centrifugal
force

δωrot < 103 rad/sec/
√
Hz stabilize rotational speed with

motor control system
Sound, wind,
etc.

- place optics in a vacuum en-
closure

high common mode rejection. Therefore, no special high vacuum en-

vironment, high performance vibration isolation system, nor cryogenic

operation is needed.

• By rotating the ring cavity, we upconvert the Lorentz violation signal to

higher frequency (0.083 Hz) to lower the noise effectively.

• We have estimated the noises from various sources to design the appara-

tus and set the requirement for the stabilization. The requirements and

estimations are summarized in Table 3.3.
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Chapter 4
Experimental Setup

Our experimental apparatus consists of the optical system including the ring

cavity, turntable, and data acquisition system. In this chapter, we will overview

the whole apparatus and describe details of each component. We will also

describe the details of the observational data taken for a year.

4.1 Overview

Schematic of the whole experimental setup is shown in Fig. 4.1. We use a

single-frequency DFB fiber laser (Koheras AdjustiK C15) with a wavelength

of 1550 nm as a laser source. The laser beam is fed into the vacuum enclosure

via a polarization maintaining fiber. The beam passes through an isolator to

avoid the beam returning into the source, and split into three using two beam

splitters, or fiber couplers. Two of three beams are used for monitoring the

laser intensity, and the last one is get out of the fiber by a collimator (Thorlabs

PAF-X-5-C) and fed into the ring cavity.

The beams for monitoring the laser intensity and the reflected beams

from the ring cavity are transduced to the electrical signals by photodetec-

tors (Hamamatsu Photonics G8194) and used as the intensity monitor signals,

the frequency servo error signal, and the Lorentz violation signal. The laser

source and the vacuum enclosure are fixed on a turntable. The rotation of the

turntable is controlled with a personal computer. The Lorentz violation signal

and other monitor signals are recorded with a data logger (Yokogawa DL750),

and used for data analysis.

The actual photographs of the experimental setup are shown in Appendix E.
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Figure 4.1: Schematic of the whole experimental setup. BS: beam splitter,
HWP: half-wave plate, QWP: quarter-wave plate, PBS: polarizing beam split-
ter. The rotational axis of the turntable is vertical to the optical plane.

4.2 Optical ring cavity

Here, we will discuss the ring cavity design, the optical configuration for ob-

taining the Lorentz violation signal, and the laser frequency servo. We will

also discuss the calibration of the Lorentz violation signal, and show sensitiv-

ity level achieved.

4.2.1 Design of the optical ring cavity

Our ring cavity shown in Fig. 4.2 is a triangular cavity constructed from three

half-inch mirrors. These mirrors are mechanically fixed on a spacer made

of Super Invar. Super Invar is an alloy which has a low thermal expansion

constant (αL ∼ 10−7 /K). As we have discussed in Section 3.3.5, common

mode rejection of effects from vibrations or temperature fluctuation etc. is
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Figure 4.2: Shape and dimensions of the ring cavity.

enhanced, and the frequency lock is expected to be more stable by fixing the

mirrors to a spacer.

The spacer has through holes for the optical path. The radii of the holes

are 4 mm and the beam radius inside the cavity is 260 µm at maximum

(see Fig. 4.4). The spacer also has a hole for placing a silicon piece along

one side of the triangle. This silicon piece is rectangular, and its size is

5 mm×10 mm×20 mm. The edge surfaces of this silicon piece are polished up

to the surface figure of λ/10, and antireflection coated for both polarizations

(r2 < 0.5%/surface). Also, the incident beam to this piece is slightly angled

(θin = 9.5◦) in order to avoid the cross-coupling between the counterpropagat-

ing beams. The incident angle to the silicon piece is chosen so that the silicon

piece is placed parallel to the spacer. The incident angle to the mirror M2 is

also 9.5◦, and the incident angles to M1 and M3 is 40.25◦.

Silicon has high transmittance and a large refractive index (measured value

n = 3.69) at wavelength λ = 1550 nm. The round-trip length of our cavity

is 14 cm and the designed finesse is about 120 for p-polarized light, with the

silicon piece inside the cavity. This finesse is large enough considering the shot

noise calculation in Section 3.3.1.
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Table 4.1: Parameters of the ring cavity. All values are designed values except
for n. ri values shown are for p-polarized light, and they are lower than those
for s-polarized light. F value shown is the designed value assuming 1% loss at
the silicon block. n value shown is for the light at λ = 1550 nm, and it is the
measured by Okamoto Optics.

M1 and M3 amplitude reflectivity r21 = r23 = 98%
M2 amplitude reflectivity r22 > 99%
M1 and M3 radius of curvature R1 = R3 = ∞ (flat)
M2 radius of curvature R2 = 200 mm
finesse F = 120
round-trip length L = 140 mm
silicon length d = 20 mm
silicon refractive index (measured) n = 3.69
free spectral range νFSR = 1.5 GHz
full width at half maximum νFWHM = 12 MHz

The optical parameters of the ring cavity are summarized in Table 4.1.

Terminology and treatment of optical cavities are summarized in Section C.1.

Also, for example, Refs. [53, 54] give basics of optical cavities.

4.2.2 Optical configuration

The optical setup for obtaining the Lorentz violation signal using the ring

cavity is shown in Fig. 4.3.

The laser beam is fed into the ring cavity in the counterclockwise direction

via a polarization maintaining fiber. A fiber collimator (Thorlabs PAF-X-5-C)

was used to align and mode-match the incident beam to the ring cavity. A

polarizing beam splitter (PBS) was placed right after the collimator output

in order to suppress the effect from the polarization drift. The incident beam

power to the ring cavity is about 1 mW. No external intensity stabilization

was employed.

From the cavity reflection of the counterclockwise beam, we get the error

signal which is proportional to the difference between the incident laser beam

frequency and the counterclockwise resonant frequency. We used the Hänsch-

Couillaud method [70, 71], or polarization spectroscopy, to obtain the error
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Figure 4.3: The optical setup for obtaining the Lorentz violation signal. HWP:
half-wave plate, QWP: quarter-wave plate, PBS: polarizing beam splitter.

signal. The Hänsch-Couillaud method utilizes the polarization selectability of

triangular ring cavities. Since there is an odd number of mirror reflections

in triangular ring cavities, the resonant frequencies for p-polarization and s-

polarization are different. The polarization component which is anti-resonant

in the incident beam is created by a half-wave plate (HWP). In our case,

the p-polarization beam resonates in the cavity, and s-polarization is anti-

resonant. In the cavity reflection, there are a p-polarization beam which went

through the cavity, and an s-polarization beam which is directly reflected by

an input mirror. So, by taking the interference between those two beams with

a quarter-wave plate (QWP) and PBS, we can obtain the error signal about

the cavity length with respect to the incident beam frequency. Also, by taking

the difference of two PD outputs (PDs1 and PDp1) to obtain an error signal,

we reduce the effect of laser intensity fluctuation.

The frequency of the laser beam is stabilized to the counterclockwise reso-

nance using this error signal. The frequency actuator of the laser source used

was a piezoelectric actuator attached on the fiber-made laser cavity. A high

voltage amplifier (Thorlabs MDT694A) was used to increase the frequency ac-

tuation range. The frequency actuation range was 1.3 GHz, which is roughly

1 FSR of the ring cavity. During the observation run, we also manually tuned
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Figure 4.4: Distances between optical components and the beam radius
changes. Red dots show the positions of the surfaces of the optics, and the
beam radii at those optics. Red dots for mirrors such as M1, M2, M3, and
MR, are for HR surfaces of those optics.

the laser frequency once in a while to compensate the frequency drift.

The transmitted light of the counterclockwise beam from the mirror M3

is then reflected back into the cavity in the clockwise direction by a reflec-

tion mirror (MR). We obtain the second error signal from the reflection of

this clockwise beam. This second error signal is proportional to the resonant

frequency difference between both directions, and in this signal we search for

the Lorentz violation. To obtain this error signal, we again used the Hänsch-

Couillaud method. Our experiment is a null experiment since this error signal

will be zero when there is no Lorentz violation.

The principle of the Hänsch-Couillaud method and its advantage in our

experiment are summarized in Appendix C. The photodetectors used for the

error signals (PDs1, PDp1, PDs2, and PDp2) are all G10899-02K from Hama-

matsu Photonics.
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The distances between the fiber collimator and the ring cavity, and the

ring cavity and the mirror MR is set so that the mode-matching of the beam is

maximized. The distances between optical components and the beam radius

change along the beam propagation are shown in Fig. 4.4. The radius of

curvature of the mirror MR is 200 mm, which is the same as the designed

wave front curvature at MR. Generally, the spatial mode of the incident beam

and the proper mode of the cavity should be matched to get enough intra-

cavity power. See, for example, Refs. [53, 54] for more details.

All the optics are placed in a 30 cm× 30 cm× 17 cm vacuum enclosure to

realize a stable operation. The vacuum level was ∼ 1 kPa at lowest, but since

we used sealed-off enclosure and did not evacuated the enclosure continuously,

the vacuum level decayed at the time scale of about a few weeks. We did not

monitor the vacuum level continuously, and only re-evacuated the enclosure

twice during the one-year observation run. This vacuum enclosure is fixed on

a turntable together with the laser source, and rotated. The details of the

turntable system are discussed in the next section (Section 4.3).

4.2.3 Frequency servo and calibration of the signal

The openloop transfer function of the laser frequency servo is shown in Fig. 4.5.

The unity gain frequency (UGF) is 1 kHz, and the phase margin is 80◦, which

indicate that the servo is stable. The servo bandwidth was limited by the

resonance of the piezoelectric actuator at around 23 kHz. This resonance can

be considered as a cause of the phase delay at high frequency.

In the Hänsch-Couillaud method, we can obtain the error signal which

is proportional to the difference between incident laser beam frequency and

the cavity reonant frequency. Using the constant of proportionality for this

error signal H [V/Hz], the transfer function of the servo filter F [V/V], and

the frequency actuation efficiency of the piezoelectric actuator A [Hz/V], the

openloop transfer function can be written as (see Appendix B)

G = HFA. (4.1)

Since F is the transfer function of the servo filter circuit we made, it is known

and independently measurable. Also, A can be measured using an asymmetric
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Figure 4.5: Openloop transfer function of the laser frequency servo.

Michelson interferometer (see Appendix D). Thus, by measuring the openloop

transfer function G, H can be measured. We used this H to calibrate the error

signal in volts to Hz.

This calibration method can also be used to calibrate the Lorentz violation

signal. This can be done by measuring the openloop transfer function of the

laser frequency lock using the error signal from the difference output of PDs2

and PDp2, not PDs1 and PDp1 (see Fig. 4.3).

4.2.4 Sensitivity of the stationary ring cavity

Figure 4.6 shows the result of the laser frequency servo. The green curve shows

the spectrum of the laser frequency noise without any frequency servo, and this

spectrum is estimated from the feedback signal of the servo (see Section B.2

for details of the calculation). The blue curve is the spectrum of the error

signal used for the laser frequency servo, and the red curve is the spectrum

of the Lorentz violation signal. Thus, the red curve shows the sensitivity of
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4.3 Turntable

our apparatus for Lorentz violation, and we can see that the noise level is well

below the required value, 1× 10−10 /
√
Hz at 0.083 Hz.

If the error signal perfectly reflects the fluctuation of the laser frequency

with respect to the ring cavity, the spectrum of the error signal and the Lorentz

violation signal should be equal. It is true for the frequency band higher than

∼ 70 Hz, and we can say that the residual laser frequency noise is the major

noise source for the Lorentz violation signal at the high frequency region.

However, at the low frequency region, the noise level for the Lorentz violation

signal is higher than the error signal. There are two ways to explain the reason

for this:

• Since the error signal is in-loop, the actual residual laser frequency noise

could be larger

• Other noises could be introduced when obtaining the Lorentz violation

signal

The major noise source to the Lorentz violation signal at the turntable ro-

tation frequency 0.083 Hz is not identified yet at this point. The contributions

from the noise from the electrical circuits and the shot noise are sufficiently

small and are not limiting the noise level of the Lorentz violation signal. How-

ever, note that these spectra are taken when the cavity is not rotated, and the

actual sensitivity for the Lorentz violation is determined by the spectra during

the cavity rotation. Identifying the noise source for the stationary cavity is not

important for improving the sensitivity, since the noise level for the rotating

cavity is much worse (see Section 4.3.3).

4.3 Turntable

In our experiment, we illuminate the ring cavity with a laser beam fed from

the source via optical fiber. The laser source and the ring cavity are rotated

to modulate the Lorentz violation signal. Power to the laser source is supplied

and the signals from the cavity are extracted with electrical cables, and we

rotated the turntable in positive and reverse directions alternately to avoid

the twist of the cables. Also, the rotational speed of the turntable should be
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Figure 4.6: Fractional frequency noise spectrum before and after the laser fre-
quency servo, and the noise spectrum of the Lorentz violation signal. The green
curve shows the spectrum of the free-running laser frequency noise estimated
from the feedback signal, the blue curve shows the spectrum of the in-loop
error signal, and the red curve shows the spectrum of the Lorentz violation
signal. Note that these spectra are taken when the cavity is stationary.

well controlled to avoid noise from the Sagnac effect (see Section 3.3.4). Such a

control of the turntable was done by a commercial motor and its servo system.

In this section, we show the details of the turntable setup and show mea-

sured rotational speed fluctuation. We also show the sensitivity to the Lorentz

violation signal when the cavity is rotating.

Note that the electric power supply and the data acquisition can also

be done even if the cavity is continuously rotated in one direction. Other

anisotropy experiments such as Refs. [23, 24] continuously rotated the cav-

ity together with the laser source and data taking instruments. In these cases,

they used slip rings to avoid the twist of cables. However, slip rings create elec-

trical noise at the turntable rotational frequency, and we need a larger scale
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Figure 4.7: Schematic of the turntable and data acquisition system. PI: pho-
tointerrupter.

rotational system to avoid this noise. Michelson-Morley type experiments are

less sensitive to the noise from slip rings since the Lorentz violation signal

appears at twice the turntable rotational frequency.

4.3.1 Setup of the turntable

A schematic of the turntable system is shown in Fig. 4.7. All the optics includ-

ing the ring cavity is placed inside the vacuum enclosure for sound-proofing

etc., and this enclosure is fixed on the turntable. The laser source is also put

on top of the enclosure and rotated together with the ring cavity. The vacuum

enclosure has the base size of 30 cm × 30 cm, the height of 17 cm, and the

mass of the rotating body is approximately 20 kg.

The turntable is rotated with a direct drive servo motor (Nikki Denso NMR-

CAUIA2A-151A), and its rotation is controlled by a motor driver (Nikki Denso

NCR-CDA1A1A-201D). Positive and reverse rotations of 420◦ are repeated al-

ternately in order to avoid the twist of the electrical cables hang down from the

top of the rotating body. We used thin cables (0.1 mm dia.) for reducing vi-

brations introduced through the cables. The rotational speed is ωrot = 30◦/sec
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Figure 4.8: Spectra of the rotational speed fluctuation. The blue curve is for
positive rotation, the green curve is for reverse rotation, and the red curve is
for stationary turntable.

(frot = 0.083 Hz), and S-curve acceleration and deceleration were used when

flipping the sign of the rotations in order to avoid sudden rotational speed

change. We rotated more than 360◦ in order to keep the rotational speed

constant for 360◦ part in the middle of each rotation.

The motor driver gives torque commands to the motor for controlling the

rotational speed by computing the rotation angle and the rotational speed

from the output signal from the built-in encoder. The encoder gives 6.4× 105

pulses (4 multiplication value) per one rotation. The rotation angle and the

rotational speed settings are done by writing a code with a personal computer

connected to the motor driver.
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4.3.2 Rotational speed fluctuation

Figure 4.8 shows the spectra of the rotational speed fluctuation of the turntable

controlled by the motor driver. The blue and green curves show the fluctua-

tion when the turntable is continuously rotated at the speed of ωrot = 30◦/sec

(frot = 0.083 Hz), which is used for the Lorentz violation search, in positive

and reverse directions, respectively. Here, we define positive rotation as the ro-

tation which the ring cavity rotates in counterclockwise directions when viewed

from the zenith. The rotational speed fluctuations in the both directions are

well below the required value.

Although there are peaks at the rotational frequency 0.083 Hz and its

harmonics in the measured spectrum, we consider that they originated from the

encoder itself and not the actual rotational speed fluctuations. The motor has

a disc which has slits equiangularly, and by counting the number of slits which

pass the sensor per unit time, it measures the rotational speed. This is how

the encoder works, but since the distances of the slits are not perfectly even,

the noise peaks at the rotational frequency and its harmonics are unavoidable.

We confirmed that the actual rotational speed fluctuation at the rotational

frequency is smaller by rotating the turntable without any load. If there are

actual rotational speed fluctuations at the rotational frequency, the probable

reason for this is because the gravitational force vector acting on the rotating

body and the rotation axis is not aligned. So, if we rotate the turntable without

any load, the measured rotational speed spectrum should give smaller peaks

at the rotational frequency. However, it gave the peaks with the same height.

The red curve in Fig. 4.8 is the spectrum of the rotational speed signal when

the turntable was not rotating. This gives the noise level of the frequency

to voltage (F/V) converter, which converts the raw encoder output to the

rotational speed signal. This F/V converter noise gets larger at the frequency

band from 0.1 Hz to 10 Hz, and this limits the measurement at the rotational

frequency. So, the actual rotational speed fluctuation could be smaller.

We have also done the rotational speed fluctuation measurement by plac-

ing a fiber optic gyroscope (Japan Aviation Electronics JG-201FA) on the

turntable. The measured fluctuation was approximately 4 × 10−5 rad/sec at

the rotational period, but this measurement was done when the turntable was
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Figure 4.9: Fractional frequency noise spectra of the Lorentz violation signal
during the cavity rotation and without cavity rotation. The blue curve is the
spectrum when the cavity is not rotated, and the red curve is the spectrum
when the cavity is rotated.

rotated at ωrot = 15◦/sec to avoid saturation of the gyroscope output. So, the

actual rotational speed fluctuation at ωrot = 30◦/sec could be larger.

From the above, we have concluded that the rotational speed fluctuation

of the turntable used for our experiment is

δωrot ≲ 1× 10−3 rad/sec/
√
Hz. (4.2)

This is smaller than the required value by more than three orders of magnitude.

4.3.3 Sensitivity during rotations

The typical spectrum of the Lorentz violation signal during the cavity rotation

is shown in Fig. 4.9. Compared with the spectrum taken when the turntable is
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4.3 Turntable

stationary, the noise level is higher by two orders of magnitude, but typically

below the required value. The reason for the higher noise is unidentified at

this point, but we think that this is because of the turntable vibration from

the rotation. Although the cavity length fluctuations caused by vibrations

are canceled out in the double-pass configuration, vibrations of the optics and

photodetectors outside the ring cavity are not canceled out, and they create

beam jitter into the photodetectors or jitter of the incident beam into the

cavity.

To calculate the spectrum during the rotations, we only used an interval

of 360◦ in the middle of each rotation where the rotational speed is constant,

since the ring cavity is rotated alternately in two directions. For each rotation,

we did Fourier transform of the Lorentz violation signal data and took average

over 78 rotations to plot the spectrum in Fig. 4.9. The spectrum plotted is a

typical spectrum and the noise level fluctuated over one year of the observation

run (see Section 4.5).

Also, even if the spectrum during the rotations meets the requirement, it

is important to mitigate the noise which is coherent to the rotational angle.

If there is a coherent noise, it will fake the Lorentz violation signal. For

example, we used transparent a vacuum enclosure made of acryl resin, and the

rotation of the turntable created luminosity change from the room light into

the photodetectors. So, we put a shield to the enclosure. Also, we originally

did not rotate the laser source and we hang down the optical fiber to put the

laser beam into the vacuum enclosure. However, this setup twists the optical

fiber and created the coherent noise in the rotational period mainly because of

the polarization change. The electrical cables also created the coherent noise,

so we changed the cables to thinner cables to reduce vibrations from the cables.

The static tilt of the table also created the coherent noise. The coupling

mechanism was not clear, but we think it is because the tilt of the turntable

gives the tilt of the rotational axis with respect to the gravity direction. The

tilt of the rotational axis creates the tilt fluctuation of the optics in the ro-

tational period. It could also create the rotational speed fluctuation in the

rotational period. We used an accelerometer (KISTLER 8302A2) to measure

the static tilt and aligned the rotational axis and the gravity direction within

approximately 0.01 mrad.
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It is important to note that the frequency resolution of the sensitivity

spectrum during rotations in Fig. 4.9 is the same as the rotational frequency

since the length of the data we used for each Fourier transform is the same as

the rotational period. This also worked against our noise hunting. Continuous

rotation could be done by using a slip ring to extract the signals from and

provide power to the apparatus. However, we did not use a slip ring since slip

rings create the noise which is coherent to the rotation.

4.4 Data acquisition system

Since we repeat positive and reverse rotations alternately during the Lorentz

violation search, taking the Lorentz violation data only is not sufficient for

data analysis. Here, we explain two other main signals we took, and the data

taking flow. We will also mention the remote controlling system we used for

the year long observation run.

4.4.1 Data taking

To perform a Lorentz violation search, we repeated positive and reverse rota-

tions alternately. When flipping the sign of the rotation, the rotational speed

changes and the turntable shakes. So, in order to take clean 360◦ data for each

rotation, we rotated 420◦ or −420◦ for each rotation. For data analysis, we

only used an interval of 360◦ in the middle of each rotation where the rotational

speed is constant.

In order to split the Lorentz violation signal data into every rotation, we

need a signal which tells us that the turntable rotated 360◦. As shown in

Fig. 4.7, we put a small plate which sticks out of the back surface of the

turntable, and made it pass through a transmission type photointerrupter

(OMRON EE-SX330) when the turntable rotated 360◦. The place of the pho-

tointerrupter acts as the origin of the rotation angle, and we called this signal

as home signal. Note that there exists a similar mechanism in the motor and

the rotation control by the driver is done by this built-in home signal. Our

home signal with the photointerrupter is an independent signal used only for

the data analysis.
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4.4 Data acquisition system

We also need the signal which tells us the signs of the rotations. We

recorded this rotational speed signal from the motor driver, as well as the

home signal and the Lorentz violation signal with a sampling frequency of

500 Hz, by a data logger (Yokogawa DL750). These three continuous signal

data were used for the data analysis.

The sampling frequency of 500 Hz was chosen in order to reduce the ADC

(analog-to-digital converter) noise, and to avoid the contamination of the alias-

ing of the 50 Hz line noise. The power spectrum of the ADC noise in voltage

can be written as [55]

PADC(f) = 2σADC
rms

2
Ts

(
sin (πfTs)

πfTs

)2

, (4.3)

where σADC
rms is the root mean square of the quantization error, and Ts is the

sampling time. So, higher sampling frequency gives lower ADC noise. For the

Lorentz violation signal channel, we also introduced 3rd-order Butterworth

lowpass filter for antialiasing.

Since the sampling frequency of 500 Hz is too high from the point of view

of the number of data points, we decimated the raw data into the sampling

frequency of 100 Hz. For decimation, we used a MATLAB function, decimate,

which uses 8th-order Chebyshev type I IIR lowpass filter.

Figure 4.10 is the actual raw data of the three signals acquired during the

observation run. 12-sec data taken from one pulse of the home signal to the

next pulse are the data for one rotation. The rotational speed signal was used

only for checking the signs of the rotations. One cycle of the positive and

reverse rotation was about 30 sec including the acceleration and deceleration

time.

4.4.2 Remote controlling system

For a long-term operation, we introduced devices and software for remote

controlling.

Data taking and the data logger control were done remotely by a PC based

software called Wirepuller. Because the data logger we used had small internal

storage, we had to stop and extract data every 20 hours. The size of the 20
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Figure 4.10: Example plot of the raw data of the Lorentz violation signal,
the rotational speed signal, and the home signal. The vertical axis is in 10−11

for the Lorentz violation signal, in the unit of 10 deg for the rotational speed
signal, and in arbitrary unit for the home signal.

hour data was about 720 MB, and downloading took about 15 minutes.

The Lorentz violation data were taken only during the laser frequency was

locked to the counterclockwise resonance of the ring cavity. However, the

lock was sometimes lost mainly because of the temperature drift. When the

feedback signal gets too large and exceed the frequency actuation range, the

lock losses. In order to re-lock the frequency again, we had to first turn off the

feedback and turn it on with gain boost filters at low frequency again. This

was done remotely by using a network based switching device (AVIOSYS IP

Power 9258) and relay circuits.

The turntable was monitored by a network camera (TENVIS JPT3185W),

and the motor was controlled by a PC based software VCII from Nikki Denso.
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4.5 Observational data

The data we used for the analysis were taken at the University of Tokyo for 393

days between July 25, 2012 to October 2, 2013. During the data acquisition,

the ring cavity was rotated approximately 1.7× 106 times.

The number of cavity rotations for each day and the accumulated total are

plotted in Fig. 4.11 (above). The intermittent data acquisition was started on

July 25, 2012, but the continuous long-term operation was started on October

21, 2012. The number of rotations per day when the laser frequency stayed

locked to the cavity resonance for a day was 5.7 × 103. Days with smaller

number of rotations were when the frequency lock was lost, the data acquisition

error occurred, or other technical issues happened.

Achieved duty cycle for the whole period was 53% and for the period start-

ing from October 21, 2012 was 64%. As we have seen in Section 4.4.1, maxi-

mum duty cycle we can archive with our setup is 80%, since there is 3 sec of

time loss per rotation for reversing the direction of the cavity rotation. This

means that approximately 20% of the time was lost because of the lock-loss or

the data acquisition error.

The main cause of lock-losses was the temperature drift, which causes a

cavity length drift and a frequency drift. The laser frequency servo keeps the

laser frequency to be locked to the cavity resonant frequency by changing the

laser cavity length with a piezoelectric actuator. However, if the difference

between the original laser frequency and the cavity resonant frequency drifts,

the feedback signal to the piezoelectric actuator drifts, and the lock will be

lost when the feedback signal exceeds the actuation range.

This issue can be solved by feeding back the signal also to the laser tem-

perature or the cavity temperature. The temperature control loop generally

has slower response compared with a piezoelectric actuator loop, but has a

larger tunable range. During the operation, we occasionally adjusted the laser

temperature manually to relieve the piezoelectric actuator loop, since we did

not have a temperature loop. The air-conditioning system in the laboratory

also helped to control the temperature of the cavity.

For the data analysis, the Lorentz violation signal is split into intervals

of the rotational period, and demodulated at the rotational frequency and
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the third harmonics of the rotational frequency. Modulation amplitude uncer-

tainty per rotation for each day is also plotted in Fig. 4.11 (below). Here, the

amplitude uncertainty was defined as

Σmr =
√
Nrot

(
(σ[CC

mr0])
2 + (σ[SC

mr0])
2
)
, (4.4)

where Nrot is the number of rotation in the day, and σ[CC
mr0] and σ[S

C
mr0] are

the standard uncertainties of CC
mr0 and SC

mr0 for the day, respectively. CC
mr0

and SC
mr0 are the modulation amplitudes defined in Eq. (5.23) and Eq. (5.24),

and
√

(CC
mr0)

2 + (SC
mr0)

2 gives the modulation amplitude at mr-th harmonics

of the rotational frequency.

Σ1 was typically 2.7 × 10−12 and Σ3 was typically 1.5 × 10−12. The noise

difference is supposed to be from the difference in the vibration level. The

vibration of the turntable is likely to be high at the rotational frequency.

The amplitude uncertainty differs randomly by days, but there are certain

periods of days when the amplitude uncertainty is relatively small. We are

not sure about the reason, but it might be related to the vacuum level of the

enclosure. During the observation run, we have evacuated the enclosure on

October 21, 2012, November 1, 2012, and May 24, 2013. As you can see from

Fig. 4.11, the amplitude uncertainty somewhat gets smaller after evacuation.

We have not done the detailed study about this effect at this point.
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4.6 Summary of this chapter

• Our experimental apparatus consists of the optical system including the

ring cavity, turntable, and data acquisition system.

• All the components were developed and assembled successfully. The

noise requirements to improve the current limits on the parity-odd Lorentz

violation were achieved.

• The current frequency noise was limited by the vibration of the turntable

during the rotations. The noise level is 2 orders of magnitude larger than

that taken when the ring cavity is not rotated.

• Search for the Lorentz violation is performed by rotating the ring cavity

in positive and reverse directions alternately.

• The Lorentz violation signal is split into intervals of a rotational period

using the home signal. Data analysis will be performed for each rotations.

• The Lorentz violation signal was taken for 393 days between July 2012

and October 2013. During the data acquisition, the ring cavity was

rotated approximately 1.7 million times.
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Chapter 5
Data Analysis

We have done the analysis of the year-long observational data taken from July

2012 to October 2103. In this chapter, we explain how to extract Lorentz

violation parameters from the year-long data. Then, we show the results of

our data analysis, and study the systematic uncertainties.

Here, we do the data analysis in the framework of the spherical harmonic

decomposition of the light speed anisotropy. However, we have also done the

analysis in the framework of the Standard Model Extension. We only show

the results here, and the details of the data analysis in the Standard Model

Extension will be described in Appendix A.

5.1 Method

The Lorentz violation signal in our experiment is the resonant frequency differ-

ence between the clockwise and the counterclockwise directions of the optical

ring cavity. If we only consider one dipole component of the anisotropy, the

expression of the Lorentz violation signal is given by Eq. (3.5), and it was

s(t) =
δν

ν
=

(n− 1)d

L+ (n− 1)d

1√
π
y¬0
1 cos θ. (5.1)

Here, θ represents the rotational angle of the cavity. Since the Earth moves

around the sun as it rotates on its own axis, we cannot simply replace θ to

be ωrott. In order to compare the limits on y¬m
l with various experiments, we

have to set a frame in which we can reasonably assume that y¬m
l are constant.

The frame most commonly used is SCCEF (sun-centered celestial equatorial

frame) [56]. This is because the velocity of SCCEF with respect to the CMB
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Figure 5.1: SCCEF and the laboratory frame.

rest frame is approximately constant (v = 369 km/s [8]). The CMB rest frame

is the leading preferred frame candidate, and we can reasonably assume that

the Lorentz violation parameters are constant in its inertial frames.

In this section, we first introduce SCCEF, and derive the full formula of

the Lorentz violation singal in SCCEF. We then describe how to extract the

Lorentz violation parameters y¬m
l from the measurement data.

5.1.1 Sun centered celestial equatorial frame

As illustrated in Fig. 5.1, the origin of the SCCEF is the sun. TheX-axis points

toward the Earth at the autumnal equinox, and the Z-axis points toward the

north of the axis of rotation of the Earth. The X-Y plane is the same as

the equatorial plane of the Earth, and is tilted by η = 23.4◦ with respect to

the plane of the revolution of the Earth. From the CMB observation, it is

known that the velocity of SCCEF with respect to the CMB rest frame is

approximately constant and the velocity is

v = v

 cosψ cosφ

sinψ cosφ

− sinψ

 , (5.2)

where v = 369 km/s, ψ = 168◦, and φ = −7.2◦ [8]. Here, ψ and φ is the right

ascension and the declination, respectively.
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If we set the x-axis of the laboratory frame to point south, and the z-axis

to point zenith, the spatial coordinate transformation matrix can be written

as [56]

R =

 cosχ cosω⊕T⊕ cosχ sinω⊕T⊕ − sinχ

− sinω⊕T⊕ cosω⊕T⊕ 0

sinχ cosω⊕T⊕ sinχ sinω⊕T⊕ cosχ

 . (5.3)

Here, χ is the colatitude of the laboratory frame, and since we did the ex-

periment in Tokyo (northern latitude of 35.7◦), χ = 54.3◦. ω⊕ is the angular

frequency of the Earth rotation, and T⊕ is the time from the vernal equinox

in 2000. T⊕ = 0 is set when the y-axis of the laboratory frame points the

same direction as the Y -axis of SCCEF in 2000, and it was 16:30 on March

20, 2000 [57].

5.1.2 Expression of the Lorentz violation signal

To derive the full formula of the Lorentz violation signal, we first consider the

expression of the speed of light propagating in the x-y plane of the laboratory

frame. If we set the angle between the x-axis and the unit vector along the

direction of the propagation of light to be α, the unit vector can be written as

êlab =

 cosα

sinα

0

 . (5.4)

Using the transformation matrix R in Eq. (5.3), this vector can be written as

êSCCEF ≡

 sin θ cosϕ

sin θ sinϕ

cos θ

 = R−1êlab. (5.5)
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Figure 5.2: Angles indicating the propagation direction of light in the SCCEF
and the laboratory frame.

in SCCEF (Fig. 5.2). Thus, the polar angle θ and the azimuthal angle ϕ

indicating the direction of the propagation of light are

cos θ = − sinχ cosα, (5.6)

cosϕ =
cosχ cosω⊕T⊕ cosα− sinω⊕T⊕ sinα√

cos2 χ cos2 α + sin2 α
, (5.7)

sinϕ =
cosχ sinω⊕T⊕ cosα + cosω⊕T⊕ sinα√

cos2 χ cos2 α + sin2 α
. (5.8)

By treating θ and ϕ as functions of α, the speed of light in the laboratory

frame can be expressed as

clab(α) = c(θ(α), ϕ(α)). (5.9)

In particular, the shift in the speed of light from the anisotropy component

indicated by l and m in the spherical harmonic decomposition is

δcml lab(α) = cml (θ(α), ϕ(α))− 1 (5.10)

= Re [(y¬m
l )

∗Y m
l (θ(α), ϕ(α))] . (5.11)

Remind that

δcml lab(α + π) = (−1)lδcml lab(α) (5.12)

follows from the characteristic of the spherical harmonics.
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Figure 5.3: Optical ring cavity on the laboratory frame x-y plane.

Now, let’s consider a ring cavity placed on the x-y plane as shown in

Fig. 5.3. The lengths of the each arm can be written as

LA = LA1 + LA2 =
2d

cos ζ
(5.13)

LB =
d

cos ξ
(5.14)

LC =
3d

cos ζ
(5.15)

LD = 5d tan ζ + d tan ξ (5.16)

Here, d = 20 mm and ζ = 9.5◦ in our ring cavity, and from Snell’s law,

ξ = arcsin
sin ζ

n
(5.17)

We can derive the shift in the resonant frequencies similarly to what we

have done in Section 3.1.1. The resonant condition for the counterclockwise

direction is

m

ν
=

LA

clab(ωrott− ξ + ζ)
+

nLB

clab(ωrott)

+
LC

clab(ωrott− ξ − ζ − π)
+

LD

clab(ωrott− ξ − π/2)
. (5.18)

Here, t = 0 is set when the optical path inside the silicon piece is aligned to
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the x-axis. The resonant condition when there is no Lorentz violation is

m

ν+
= Lopt, (5.19)

where Lopt ≡ LA + nLB + LC + LD is the round-trip optical path length. By

comparing these two equations, the shift in the resonance frequency for the

counterclockwise direction is

ν+ − ν

ν
=

LA

Lopt

δclab(ωrott− ξ + ζ) +
nLB

Lopt

clab(ωrott)

+
LC

Lopt

δclab(ωrott− ξ − ζ − π) +
LD

Lopt

δclab(ωrott− ξ − π/2).

(5.20)

The resonant frequency shift for the clockwise direction can be obtained by

reversing the direction of the beam in each arm. This is the same as adding

180◦ to each α angle. So, by using the symmetry of the spherical harmonics

shown in Eq. (5.12), the resonant frequency difference between both directions

can be written as

δν

ν
=
ν+ − ν−

ν
=

∞∑
l=0

l∑
m=0

(
1− (−1)l

) ν+ − ν

ν

∣∣∣∣m
l

, (5.21)

where
ν+ − ν

ν

∣∣∣∣m
l

is the shift from y¬m
l component of the anisotropy.

The equation above is the expression of our Lorentz violation signal. As

it is clear from the expression, the anisotropy components with even l’s do

not contribute to the signal. This is because of the odd-parity nature of the

apparatus and we can only measure y¬m
l with odd l’s.

5.1.3 Extraction of the spherical coefficients from the

signal

As we have seen in the previous section, the resonant frequency difference

between two counterpropagating directions varies at the frequencies ωmrm⊕ =

mrωrot+m⊕ω⊕ due to the turntable rotation and the rotation of the Earth. So,
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we could perform a direct search for the Lorentz violation by searching for vari-

ations at those frequencies. However, a demodulation method is appropriate

since ωrot ≫ ω⊕.

We first consider a decomposition of the resonant frequency difference into

harmonics of ωrot,

δν

ν
=
∑
mr>0

[Cmr cos (mrωrott) + Smr sin (mrωrott)] . (5.22)

A turntable rotation of 180◦ effectively interchanges the two counterpropagat-

ing solutions, reversing the sign of δν/ν. This implies that we can concentrate

our attention on odd values of mr.

The amplitudes Cmr and Smr slowly vary at harmonics of the sidereal fre-

quency ω⊕ and can be expanded as

Cmr =
∑
m⊕≥0

[
CC

mrm⊕ cos (m⊕ω⊕T⊕) + CS
mrm⊕ sin (m⊕ω⊕T⊕)

]
, (5.23)

Smr =
∑
m⊕≥0

[
SC
mrm⊕ cos (m⊕ω⊕T⊕) + SS

mrm⊕ sin (m⊕ω⊕T⊕)
]
. (5.24)

Any non-negative m⊕ can contribute, but the multipole structure of the spher-

ical harmonics predicts that as far as considering the anisotropy up to l = lmax,

we can limit our focus to 0 ≤ m⊕ ≤ lmax. In this thesis, we restrict ourselves

to lmax = 3 and consider combinations of mr = 1, 3 and m⊕ = 0, 1, 2, 3 only.

The relationship between the spherical coefficients y¬m
l and these modula-

tion amplitudes can be obtained by demodulating Eq. (5.21). The relation

is given in Table 5.1. By demodulating the Lorentz violation signal, we can

extract the Lorentz violation parameters.

Note that the silicon piece provides additional asymmetry that increases

the number of spherical coefficients that can be accessed by our experiment.

The calculation shows that without the silicon, we lose sensitivity to all l = 1

coefficients. It also reduces the number of l = 3 coefficients that can be

measured. The loss in the sensitivity comes from the fact that dipole effects

cancel around a closed path without matter.

Also, as we can see from Table 5.1, modulation amplitudes with m⊕ = 0
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Table 5.1: The relationship between the nonzero modulation amplitudes and
the spherical coefficients y¬m

l . The numbersmr andm⊕ represent the harmonics
of the turntable rotation frequency and sidereal frequency.

mr m⊕ CC
mrm⊕ CS

mrm⊕ SC
mrm⊕ SS

mrm⊕

1 0 −0.22 y¬0
1 - 0 -

+0.089 y¬0
3

1 1 0.11Re[y¬1
1] 0.11Im[y¬1

1] 0.19Im[y¬1
1] −0.19Re[y¬1

1]

+0.16Re[y¬1
3] +0.16Im[y¬1

3] −0.032Im[y¬1
3] +0.032Re[y¬1

3]

1 2 −0.0025Re[y¬2
3] −0.0025Im[y¬2

3] −0.14Im[y¬2
3] 0.14Re[y¬2

3]

1 3 −0.067Re[y¬3
3] −0.067Im[y¬3

3] −0.12Im[y¬3
3] 0.12Re[y¬3

3]

3 0 −0.17 y¬0
3 - 0.18 y¬0

3 -

3 1 0.10Re[y¬1
3] −0.19Re[y¬1

3] −0.11Re[y¬1
3] −0.18Re[y¬1

3]

+0.19Im[y¬1
3] +0.10Im[y¬1

3] 0.18Im[y¬1
3] −0.11Im[y¬1

3]

3 2 −0.19Re[y¬2
3] 0.17Re[y¬2

3] 0.20Re[y¬2
3] 0.16Re[y¬2

3]

−0.17Im[y¬2
3] −0.19Im[y¬2

3] −0.16Im[y¬2
3] 0.20Im[y¬2

3]

3 3 0.14Re[y¬3
3] −0.15Re[y¬3

3] −0.14Re[y¬3
3] −0.14Re[y¬3

3]

+0.15Im[y¬3
3] +0.14Im[y¬3

3] +0.14Im[y¬3
3] −0.14Im[y¬3

3]

give y¬m
l with m = 0. So, without the turntable rotation, we cannot access to

there coefficients. This is because of the symmetric structure of m = 0 com-

ponents around the Z-axis of the SCCEF. The effect from m = 0 anisotropy

will not be modulated by the Earth’s rotation, since the Z-axis is parallel to

the Earth’s rotational axis.

5.2 Results

The analysis starts by demodulating the data at frequencies ωrot and 3ωrot

to extract the amplitudes Cmr and Smr in Eq. (5.22) for each rotation. We

only used an interval of 360◦ in the middle of each 420◦ rotation where the

rotational speed is constant. The demodulation was done by least-squares fit
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to Eq. (5.22). For negative rotation, we used −ωrot and −3ωrot instead of ωrot

and 3ωrot to extract the amplitudes.

Time series data of Cmr and Smr are split into one-day intervals and fit to

Eq. (5.23) and Eq. (5.24) by the least squares method to extract the modulation

amplitudes CC
mrm⊕ , C

S
mrm⊕ , S

C
mrm⊕ , and SS

mrm⊕ for each day. The results are

shown in Fig. 5.4 and Fig. 5.5 as pairs of quadratic amplitudes.

Taking the weighted average over the 393 days gives our measured values

for the modulation amplitudes, which are listed in Table 5.2. The weight were

calculated using the standard uncertainties of the modulation amplitudes for

each day, which can be derived from the least squares method. We obtained

standard uncertainties of ∼ 1× 10−15 for mr = 1 amplitudes, and ∼ 6× 10−16

for mr = 3 amplitudes. No deviation from zero by more than 2σ was found.

Thus, we conclude that no significant evidence for anisotropy in the speed of

light in a sidereal frame can be claimed from our data.

Figure 5.6 and 5.7 show histograms for each modulation amplitude. Com-

pared with a normal distribution, each distribution has an excess tail. The

origin of this non-Gaussian component is unidentified yet, but we guess this

is from nonstationary or transient vibrations from the turntable or the cables.

The statistical uncertainties could be reduced by identifying and mitigating

this non-Gaussian noise.

The level of non-Gaussianity can be somewhat quantified by a kurtosis

parameter. Kurtosis (or excess kurtosis) is defined as

β2 =
µ4

σ4
− 3, (5.25)

where µ4 is the fourth moment about the mean and σ is the standard deviation.

When there is a large excess tail, β2 will be positive and large. β2 is zero for a

normal distribution, but the distributions of our modulation amplitudes give

a few tens of β2, as shown in Fig. 5.6 and Fig. 5.7.

To get constraints on the Lorentz violation parameters y¬m
l , we used the

relationship between the modulation amplitudes and y¬m
l , which is shown in

Table 5.1. The results are summarized in Table 5.3. We obtained standard

uncertainties of ∼ 6 × 10−15 for l = 1 coefficients, and ∼ 2 × 10−15 for l =

3 coefficients. Note that the coefficients y¬m
l with m ̸= 0 are complex, so
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we bounnd both the real and imaginary parts. The uncertainties on l = 1

coefficients are larger than those of l = 3 components. This stems from the

noise difference at the rotational frequency ωrot and at 3ωrot.
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Figure 5.4: Modulation amplitudes for mr = 1. For clarity, the error bars are

omitted except for one data point to indicate the typical standard uncertain-

ties. The mean values of all 393 points are shown as red dots.
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Figure 5.5: Modulation amplitudes for mr = 3. For clarity, the error bars are

omitted except for one data point to indicate the typical standard uncertain-

ties. The mean values of all 393 points are shown as red dots.
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Table 5.2: Constraints on the δν/ν modulation amplitudes for mr = 1, 3 and

m⊕ = 0, 1, 2, 3. All values are in units of 10−15.

mr m⊕ CC
mrm⊕ CS

mrm⊕ SC
mrm⊕ SS

mrm⊕

1 0 −0.1± 1.0 - 0.2± 1.0 -

1 1 −0.6± 1.4 −1.2± 1.4 −0.3± 1.4 1.0± 1.4

1 2 −0.9± 1.4 −0.2± 1.4 −0.1± 1.4 1.0± 1.4

1 3 −0.8± 1.4 0.2± 1.4 −0.5± 1.4 0.6± 1.4

3 0 0.12± 0.46 - 0.15± 0.46 -

3 1 −0.79± 0.64 −1.1± 0.65 −0.48± 0.64 −0.51± 0.65

3 2 −1.1± 0.65 0.57± 0.65 −0.46± 0.65 0.21± 0.65

3 3 0.40± 0.65 0.16± 0.65 −0.36± 0.64 0.75± 0.65

Table 5.3: Spherical coefficients with 1σ uncertainties determined from this

work. All values are in units of 10−15.

Coefficient Measurement

y¬0
1 0.4± 4.4

Re[y¬1
1] −5.7± 6.3

Im[y¬1
1] −3.2± 6.2

y¬0
3 0.1± 1.9

Re[y¬1
3] 2.9± 2.2

Im[y¬1
3] −3.2± 2.1

Re[y¬2
3] 2.1± 1.8

Im[y¬2
3] 1.5± 1.8

Re[y¬3
3] −0.2± 2.2

Im[y¬3
3] −0.7± 2.2
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In terms of δc/c, our upper limits are more than an order of magnitude

better than the previous best limit from a cavity experiment [33], and are

comparable with the previous best limit from a Compton scattering experiment

[35]. See Table 2.1 for comparison of limits from previous experiments.

Compared with the Compton scattering experiment, our experiment can

measure coefficients withm = 0, since we rotate the ring cavity. As discussed in

the previous section, the Compton scattering experiment only uses the Earth’s

rotation alone, and thus cannot access m = 0 coefficients. Also, since we did

the phase sensitive demodulation for the data analysis. Thus, we could put

bounds on all the parity-odd coefficients up to l = 3.

5.3 Results in the framework of the SME

We have also done the analysis in the framework of the SME. The method is

the same as the one we have used in the previous sections. The relationship

between the modulation amplitudes and the SME coefficients are summarized

in Table A.2, and the derivation is described in Appendix A. Here we restrict

ourselves to consider the camouflage coefficients of dimensions d = 6 and d = 8.

To get constraints on the SME coefficients, we consider each dimension

d = 6 and d = 8 separately and place constraints under the assumption that

only one of the two sets of coefficients is nonzero.

The results are summarized in Table 5.4. For d = 6, there is a total

of 3 parity-odd camouflage coefficients, and our experiment constrains the

entire coefficient space accessible to parity-odd cavity experiments. For d = 8,

we find that 10 combinations of coefficients contribute to the modulations of

the frequency difference δν/ν, and we got 10 bounds on those combinations.

There is a total of 13 parity-odd camouflage coefficients for d = 8, so 3 linear

combinations of coefficients remain untested. These may be accessed by future

ring cavity experiments with different configurations, yielding sensitivities to

different combinations of coefficients.

The results in Table 5.4 are the first bounds on parity-odd camouflage coef-

ficients for the Lorentz violation. The current best bounds on the parity-even

coefficients come from the microwave cavity experiment in Ref. [66]. While

this experiment and our experiment probe two independent sets of Lorentz
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Table 5.4: SME camouflage coefficients with 1σ uncertainties determined from
this work.

Dimension Coefficient Measurement

d = 6 (c¬(6)
F )

(0E)
110 (−0.1± 1.5)× 103 GeV−2

Re[(c¬(6)
F )

(0E)
111 ] (−0.8± 1.1)× 103 GeV−2

Im[(c¬(6)
F )

(0E)
111 ] (−0.6± 1.0)× 103 GeV−2

d = 8 −0.020(c¬(8)
F )

(0E)
110 + (c¬(8)

F )
(0E)
310 (−0.2± 1.9)× 1019 GeV−4

Re[−0.020(c¬(8)
F )

(0E)
111 + (c¬(8)

F )
(0E)
311 ] (1.4± 1.3)× 1019 GeV−4

Re[−0.020(c¬(8)
F )

(0E)
111 + (c¬(8)

F )
(0E)
311 ] (0.1± 1.3)× 1019 GeV−4

(c¬(8)
F )

(0E)
330 (−0.8± 3.3)× 1019 GeV−4

Re[(c¬(8)
F )

(0E)
331 ] (−0.3± 1.9)× 1019 GeV−4

Im[(c¬(8)
F )

(0E)
331 ] (−2.8± 1.9)× 1019 GeV−4

Re[(c¬(8)
F )

(0E)
332 ] (2.2± 1.3)× 1019 GeV−4

Im[(c¬(8)
F )

(0E)
332 ] (0.2± 1.3)× 1019 GeV−4

Re[(c¬(8)
F )

(0E)
333 ] (−0.1± 1.6)× 1019 GeV−4

Im[(c¬(8)
F )

(0E)
333 ] (−0.1± 1.6)× 1019 GeV−4

violations, the sensitivity was improved by closer to a factor of a million for

d = 6, and a factor of 1014 for d = 8 violations. See Table A.1 for comparison

of limits from the previous experiment.

The radical increase in the sensitivity results from higher frequencies. While

their experiment used a microwave with the frequency of 10 GHz, we used the

optical laser with the frequency of 200 THz. Naive estimates in Section A.1.2

suggest improvements of roughly 8 orders of magnitude for d = 6 and 16 orders

of magnitude for d = 8 may be possible. An achieved improvement factor was

a bit less because their sensitivity was at δc/c ≲ 10−16 level, whereas ours was

at 10−15 level.
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5.4 Systematic uncertainties

A number of systematic effects was studied. A major cause of the systematic

offset was the tilt of the base of the turntable. As we have discussed in Sec-

tion 3.3.5, the tilt does not couple into the Lorentz violation signal, but it did

in real when the tilt is large. The coupling mechanism was not clear, but the

tilt of the fiber collimator could create a slight change in the alignment of the

incident beam into the cavity. Also, the tilt of the photodetectors could create

the fake signal due to ununiformity of the quantum efficiency. If the tilt fluctu-

ates in 1/m⊕ of a sidereal period, it will give a systematic offset to the resulting

Lorentz violation coefficients. The measured tilt stayed within 0.2 mrad and

this effect was less than 10% of our statistical uncertainty. The effect was

estimated by intentionally tilting the table and measuring the coupling factor.

The tilt was measured with an accelerometer (KISTLER 8302A2). The

temperature was also recorded simultaneously with a temperature sensor (Texas

Instruments LM35). The tilt and the temperature both showed similar drift

in a sidereal period. Thus, we guess that the tilt change was induced by the

temperature change. The relation between the tilt and the temperature was

approximately 1 mrad/K.

The Sagnac effect also gives systematic offset to the modulation amplitudes

if the rotational speed of the turntable fluctuates in 1/m⊕ of a sidereal period.

However, the measured fluctuation was less than 1 mrad/sec, and this effect

was less than 2% of our statistical uncertainty. The rotational speed was

measured with a fiber optic gyro (Japan Aviation Electronics JG-201FA).

Another type of a systematic uncertainty is a calibration uncertainty, which

does not fake the Lorentz violation signal, but changes the magnitude of our

limits on the Lorentz violation. There was a slight drift in the calibration

factor for the Lorentz violation signal, which originated from slight detuning

in the laser frequency servo. This detuning was supposed to be introduced by

the polarization drift of the incident beam. This is because the change in the

polarization state of the incident beam changes the zero crossing point of the

error signal (see Appendix C). We have introduced a PBS to reduce this drift,

but slight rotations in waveplates could also create the polarization change.

The detuning can be monitored from the offset level of the acquired data and
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this calibration uncertainty was estimated to be 3%.

As we have seen in Section 4.2.3, the uncertainty in the measurement of

the openloop transfer function G and the frequency actuation efficiency of the

piezoelectric actuator A also gives calibration uncertainty. The uncertainty

was estimated to be 3% and 5% for the measurement of G and A, respectively

(see Appendix D).

Systematic uncertainties are summarized in Table 5.5. Other minor cal-

ibration uncertainties due to the uncertainties in the silicon refractive index

and optical path lengths are also shown. The calibration uncertainty was 7%

in total.

There were also uncertainties in the orientation of the cavity with respect

to the SCCEF. This is due to timing uncertainty in data acquisition, and un-

certainty in the orientation of the cavity with respect to the laboratory frame,

in which x-axis points south. The effect from the orientation uncertainty is

zero when the noise is purely Gaussian and quadratic modulation amplitudes

have equal standard deviation. However, due to slight ellipticity, orientation

uncertainty affects the statistical uncertainty on the Lorentz violation coeffi-

cients. Our calculation shows that the effect is negligibly small, as summarized

in Table 5.5.

5.5 Summary of this chapter

• By demodulating the Lorentz violation signal with the turntable rota-

tion frequency and the sidereal frequency, we obtained the modulation

amplitudes.

• We extracted the spherical coefficients y¬m
l from the modulation ampli-

tudes.

• No significant Lorentz violation was found at the δc/c ≲ 10−15 level, and

put limits on y¬m
l at ∼ 6× 10−15 level for l = 1, and at ∼ 2× 10−15 level

for l = 3 coefficients. These limits are more than an order of magnitude

better than the previous best limit from a cavity experiment, and are

comparable with a Compton scattering experiment.
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Table 5.5: Summary of systematic uncertainties. Contribution ratios with re-
spect to the statistical uncertainty are shown.

Cause Amount Ratio
Offset
Sagnac effect < 1 mrad/sec < 2%
Turntable tilt < 0.2 mrad < 10%

Calibration
Cavity detuning - 3%
Openloop measurement - 3%
Laser frequency actuation A = 1.29± 0.6 MHz/V 5%
efficiency measurement
Silicon refractive index n = 3.69± 0.01 0.4%
Length Lopt = 192± 1 mm 0.5%

Orientation
Timing < 1 min 2× 10−5%
Lab frame orientation < 10◦ 0.03%

• We have also done the analysis in the framework of the SME, and put the

first limits on 13 camouflage coefficients (c¬(d)
F )

(0E)
jlm at ∼ 1 × 103 GeV−2

level for dimension d = 6, and ∼ 2 × 1019 GeV−4 level for d = 8 coeffi-

cients. The sensitivity for d = 6 and d = 8 was improved by a factor of a

million and 14 orders of magnitude, respectively, over existiting parity-

even bounds.

• The estimated systematic offset was less than 10% of our statistical un-

certainty, and the calibration uncertainty was 7%. The most contributing

systematic uncertainty came from the tilt of the base of the turntable.
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Chapter 6
Conclusion

In this chapter, we will summarize our work and make a discussion about our

results. We will also give prospects for future parity-odd cavity tests of the

Lorentz violation, and conclude our research.

6.1 Summary

We have developed an apparatus to test the Lorentz invariance in electrody-

namics. The main component of the apparatus was an optical ring cavity, and

we searched for the resonant frequency difference between counterpropagating

directions. When there is any Lorentz violation, the constancy of the speed

of light is violated. In particular, parity-odd components of the light speed

anisotropy create the resonant frequency difference.

The propagation direction dependence of the speed of light c(θ, ϕ) can be

decomposed with the spherical harmonics Y m
l (θ, ϕ). The parity-odd anisotropies

are l =odd components, which come from parity-odd Lorentz violation. We

have introduced the spherical coefficients y¬m
l to represent the size of the

anisotropy for each mode.

The resonant frequency difference was measured with a double-pass con-

figuration. The beam from the laser source was fed into the ring cavity in the

counterclockwise direction and the laser frequency was locked to the counter-

clockwise resonant frequency. The transmitted beam from the ring cavity was

reflected back into the cavity again, but in the clockwise direction. From its

reflection, the error signal which is proportional to the resonant frequency dif-

ference was obtained. This double-pass configuration enabled a null measure-

ment of the resonant frequency difference. Also, the differential measurement
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enabled a rejection of the effects from the cavity length fluctuations, since they

are common to both directions.

We took the Lorentz violation signal for more than a year starting from

July 2012. During the observation run, the ring cavity was rotated in order to

modulate the Lorentz violation signal. The data were taken for 393 days, and

the ring cavity was rotated for approximately 1.7× 106 times.

The data analysis was done with a demodulation method. First, the signal

was demodulated at the harmonics of the turntable rotation frequency mrωrot

to get the modulation amplitudes for each rotation. One day data of these

modulation amplitudes were then demodulated at the harmonics of the sidereal

frequency m⊕ω⊕ to get the sidereal modulation amplitudes. To do the data

analysis up to l = 3, we restricted ourselves to mr = 1, 3 and m⊕ = 0, 1, 2, 3.

From the modulation amplitudes we have extracted, we concluded that no

significant evidence for the Lorentz violation was found at the δc/c ≲ 10−15

level. These modulation amplitudes are related to the spherical coefficients

y¬m
l , and we put limits on y¬m

l at ∼ 6× 10−15 level for l = 1, and at ∼ 2× 10−15

level for l = 3 coefficients. Our limits were more than an order of magnitude

better than previous best cavity limits. Also, our experiment was the first

experiment which could put limits on all the coefficients for l = 1 and l = 3.

In the framework of the Standard Model Extension, we have put the limits

on 13 camouflage coefficients (c¬(d)
F )

(0E)
jlm at ∼ 1×103 GeV−2 level for dimension

d = 6, and ∼ 2 × 1019 GeV−4 level for d = 8 coefficients, for the first time.

Over existing parity-even bounds from the microwave cavity experiment, the

sensitivity was improved by a factor of a million for d = 6, and by 14 orders

of magnitude for d = 8 coefficients. The improvement factors were large since

the effect of the Lorentz violation scales with νd−4, and the optical frequency

is higher than the microwave frequency.

6.2 Discussions

The previous best parity-odd cavity test was done by Baynes et al. [33], and

they tested the isotropy of the speed of light at δc/c ≲ 2 × 10−13 level. The

sensitivity improvement over their experiment by a factor of ∼ 30 is explained

in part by a longer observation time and a higher refractive index of the dielec-
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tric piece used. The observation time was a year instead of their 2 months. We

used silicon with a refractive index of n = 3.69, whereas they used optical glass

with n = 1.44. These two effects simply gave us factor of a ∼ 6 improvement.

The unexplained factor of ∼ 5 improvement could be from higher rota-

tional speed and/or less noise from the use of the double-pass configuration.

It is hard to compare with the Baynes experiment since we do not have their

noise spectrum. The common mode rejection ratio (CMRR) from the differen-

tial measurement of the resonant frequencies for counterpropagating directions

is also not measured yet at this point. The CMRR could be measured by mod-

ulating the cavity length with temperature, and measuring the feedback signal

for the laser frequency servo and the Lorentz violation signal at the same time.

There are virtually no quantitative predictions for the light speed anisotropy,

but we might expect the SME camouflage coefficients to involve some mass

scale M . The simplest possibility is that the coefficients scale like M4−d from

dimensional analysis. If we assume that new physics beyond the Standard

Model comes from the Planck-scale origin, it is natural to use the Planck

mass (Mpl = 1.2 × 1019 GeV) for M . However, it has been suggested that

the coefficients might involve a lower energy scale, possibly in conjunction

with the Planck scale. The lower energy scale could be electroweak scale

mw = 2.5 × 102 GeV, considering scenarios where the Lorentz breaking is

connected to the Higgs mechanism.

Our new limits on the camouflage coefficients at 103 GeV−2 level for di-

mension d = 6 suggest M2 to be larger than 10−3 GeV2 level. Therefore, we

can say that we put limit on the scale where the Lorentz violations arise at

M ≳ 0.03 GeV. Although this energy scale is relatively low, this is the first

limit from cavity experiments, to the best of our knowledge.

Also, there are theories where d = 6 violations might be quite large. For

example, noncommutative geometry gives d = 6 violations at approximately

1 GeV−2, considering noncommutative effects have a natural length scale of

10−15 m. This level is within the experimental reach, and we can also reach

this level by increasing the sensitivity by 5 orders of magnitude in terms of

δc/c. Also, using the laser with higher frequency, such as ultraviolet or X-ray,

would simply increase the sensitivity to such higher order Lorentz violations.
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6.3 Future prospects

The current noise level of our apparatus was dominated by the vibration of

the turntable. This was because we used a simple commercial motor for the

rotation, without any vibration isolation system. Most recent parity-even ex-

periments [23, 24] have achieved sensitivities at the 10−17 level with a dedi-

cated vibration isolation system. Also, the noise level of our apparatus when

the turntable is not rotating was less by 2 orders of magnitude. These naively

suggest the potential for a hundredfold improvement in future cavity tests of

parity-odd Lorentz violation.

It is important to note that the estimated thermal noise level is more than

5 orders of magnitude below our current sensitivity. This means that we do

not need to cool down the cavity to reduce thermal noise, until we reach the

sensitivity at the 10−20 level. However, cryogenic operation might be needed in

order to reduce thermal-optic coefficient of silicon. Effects from temperature

dependence of the refractive index can also simply be reduced by introducing

a temperature stabilization system.

Tilt fluctuations in a turntable rotational period would be an issue in future

parity-odd tests. In our experiment, we did not apply any tilt control, and the

tilt fluctuation stayed within 0.2 mrad. The estimated effect to the result

was at the 10−16 level even in the pessimistic case. Thus, in order to test the

Lorentz invariance at the 10−17 level, tilt fluctuation should be smaller than

2 µrad. This can be achieved by applying a similar tilt control system that

has been used for parity-even experiments.

Vibrations and tilt fluctuations could be reduced by suspending the appara-

tus from the motor with flexible joint. An example of such a rotation system

has been used for a modern Eötös experiment to test the weak equivalence

principle with rotating torsion balance [58].

Also, fixing all the optics monolithically on a single optical bench would

reduce the effects of vibration and tilt. This technique has been developed

for space-based interferometric gravitational wave detector projects, such as

LISA [59], DECIGO [60], and their pathfinders. These monolithic optical

benches can be constructed using hydroxide-catalysis bonding of optical com-

ponents to a baseplate made of materials with low thermal expansion [61].
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Space-based test of Lorentz invariance could also be taken into reality,

when monolithic optical benches are considered. Quiet environment in space

and continuous smooth spin of a satellite would allow the sensitivity to reach

into the 10−20 regime [62].

Continuous rotation can also be done in ground-based laboratories by us-

ing a slip ring to extract the signals from and provide power to the apparatus.

There are mainly three advantages for continuous rotation. From the stability

point of view, it will provide better rotational speed stability and longer dura-

tion of the laser frequency lock, since there will be no inversions of rotational

directions. Also, duty cycle will be increased. In our setup, about 20% of the

time was useless for the data analysis because of the dead time for inversions

of rotations.

Finally, continuous rotation has a merit from the data analysis point of

view. Since the cavity was rotated alternately, modulation amplitude extrac-

tion was done for each rotation. Demodulation will be more sensitive if we can

use data containing multiple rotations. This is also a merit for noise hunting.

The reason why we did not use a slip ring to realize continuous rotation

was because slip rings create the noise which is coherent to the rotation. This

noise could be subtracted by monitoring the noise with a different cable from

the cable for the Lorentz violation signal. This noise can also be fundamentally

avoided by extracting the data with wireless signal transmission technique.

6.4 Conclusion

We have performed a search for the Lorentz violation in electrodynamics using

an asymmetric optical ring cavity on a turntable. From the analysis of a year-

long observational data, we put limits on dipole and hexapole components

of anisotropy at the level of δc/c ≲ 10−15. Within the frame work of the

Standard Model Extension, we have put the first limits on parity-odd higher

order Lorentz violations. From this research, we have put the limit on the

energy scale where new physics arises. Significant sensitivity improvement

could be done in the future upgrade of the apparatus.
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Appendix A
Standard Model Extension

The Standard Model Extension (SME) [13] is the theoretical framework to

compare the precision of various experimental tests of Lorentz invariance and

CPT symmetry. Here, we will briefly describe the SME coefficients that can

be measured with our experiment. We will also show how to extract those

coefficients from the data.

Note that here we only show the minimum set of definitions and equations

that are used to analyze our data. For more comprehensive understanding of

the SME in arbitrary dimension, see Refs. [16, 63].

A.1 Overview of the SME electrodynamics

In this section, we will introduce the photonic Lagrangian density in the frame-

work of the SME, and describe the coefficients that can be measured with

cavity experiments. By adding the Lorentz violating terms in the Lagrangian

density, the light speed dependence on polarization, wavelength, and propa-

gation direction are introduced. Each of the effects are connected to different

types of the SME coefficients and they are called the birefringence coefficients,

the dispersion coefficients, and the camouflage coefficients, respectively.

The cavity experiments are sensitive to the camouflage coefficients, which

describe the anisotropy of the speed of light. We will also show the current

limits on the camouflage coefficients, as well as the birefringence and dispersion

coefficients.
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A.1.1 Camouflage coefficients

The general Lagrangian density in the framework of the SME for photons can

be written as [16]

Lphoton = −1

4
FµνF

µν +
1

2
ϵκλµνAλ(k̂AF )κFµν −

1

4
Fκλ(k̂F )

κλµνFµν , (A.1)

where Aκ is the electromagnetic four-potential, and Fµν is the electromagnetic

tensor defined by Fµν ≡ ∂µAν − ∂νAµ. The differential operators k̂AF and k̂F

can be expanded with the mass dimension of the tensor operator d as

(k̂AF )κ =
∑
d=odd

(k
(d)
AF )κ, (A.2)

(k̂F )
κλµν =

∑
d=even

(k
(d)
F )κλµν , (A.3)

where the sums range over values d ≥ 3.

The terms with d = odd violates the CPT symmetry as well as Lorentz

invariance. So, here we restrict ourselves only to k̂F terms, which involve CPT-

even violations. Also, by neglecting the leading order birefringent terms, the

Lagrangian density reduces to

Lphoton = −1

4
FµνF

µν − 1

2
Fκρ(ĉF )

µνF ρ
ν . (A.4)

Here, (ĉF )
µν is the derivative of the scalar potential Φ̂F

(ĉF )
µν = ∂µ∂νΦ̂F , (A.5)

and the relationship between ĉF and k̂F is shown in Ref. [16].

It is safe to neglect some operators result in vacuum birefringence here,

since there are tight constraints on birefringent coefficients. Constraints were

obtained from polarization measurements of light from cosmologically distant

sources, such as gamma ray bursts [16, 64].

By expanding the scalar potential Φ̂F in spherical harmonics,

Φ̂F =
∑
djlm

ωd−2−jpj0Y
m
l (p̂)(c

(d)
F )

(0E)
jlm , (A.6)
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we get the minimal set (c
(d)
F )

(0E)
jlm of nonbirefringent spherical coefficients for

Lorentz violation. Here, ω and p = pp̂ are the angular frequency and the

three-momentum of photons.

The last step is to consider dispersive effects. We can also set the disper-

sion coefficients to be zero since there are tight constraints from dispersion

measurement of light from gamma ray bursts [65]. No vacuum dispersion is

ensured if Φ̂F can be written in the form Φ̂F = p2Φ̃F . We can define the set

of coefficients

Φ̃F =
∑
djlm

ωd−4−jpj0Y
m
l (p̂)(c¬(d)

F )
(0E)
jlm . (A.7)

This result leads to the simple relation

(c
(d)
F )

(0E)
jlm = (c¬(d)

F )
(0E)
jlm − (c¬(d)

F )
(0E)
(j−2)lm (A.8)

when there is no leading order birefringence or vacuum dispersion.

Thus, the set of (c¬(d)
F )

(0E)
jlm is the anisotropy coefficients in the SME, and they

are called the camouflage coefficients. For each even dimension d ≥ 6, there

are (d − 1)(d − 2)(d − 3)/6 independent components, including (d − 2)(d −
4)(2d − 3)/24 parity-odd components. Dimensional analysis shows that the

dimension of the camouflage coefficients is 4−d. By convention, measurements

of coefficients are reported in units of GeV4−d.

A.1.2 Current limits

Current constraints on the birefringence coefficients for d = 6 are at 10−32 to

10−31 GeV−2 level, and for d = 6 are at 10−25 to 10−24 GeV−4 level [64]. Con-

straints on vacuum dispersion coefficients for d = 6 are at 10−21 to 10−19 GeV−2

level [65], and for d = 8 are at 10−25 GeV−4 level [65]. These limits are obtained

from astrophysical observations of the light from gamma ray bursts.

Constraints on the camouflage coefficients are obtained by cavity exper-

iments. The first constraints are reported by Parker et al. [66] using the

data described in [67]. They used rotating microwave sapphire resonators

that are orthogonally aligned inside the cryostat. By using the data taken for

14 months, they put limits on the even-parity components of the anisotropy to

the |δc/c| ≲ 10−16 level. Their constraints on the camouflage coefficients for
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Table A.1: Summary of current limits on SME camouflage coefficients.

dimension Parker et al. [66] This work
d = 6 dipole no access first limit

quadrupole 108 to 1011 GeV−2 no access
d = 8 dipole no access first limit

quadrupole 1036 to 1038 GeV−4 no access
hexapole no access first limit
octupole 1033 to 1034 GeV−4 no access

d = 4 were at 10−14 to 10−17 level, for d = 6 were at 108 to 1011 GeV−2 level,

and for d = 8 were at 1033 to 1038 GeV−4 level.

As implied by Eq. (A.7), the effects of Lorentz violation typically grow with

frequency by a factor of ωd−4. This gives optical cavities an inherent advantage

over microwave cavities. We naively expect an increase in sensitivity by a factor

of ∼ 104(d−4) compared with Ref. [66]. The frequency of the laser we used is

200 THz and their frequency was 10 GHz.

Table A.1 summarizes current limits on SME camouflage coefficients, and

which coefficients we can explore with our apparatus. We search for dipole and

hexapole anisotropy components to measure parity-odd camouflage coefficients

for the first time.

We note here that limit on vacuum dispersion from gamma ray bursts are

also put within the framework other than the SME. For example, the Fermi

LAT (Large Area Telescope) Collaboration put limit on vacuum dispersion

arising from quantum gravity effects [68].

A.2 Data analysis in the SME

In this section, we will show the expression of our Lorentz violation signal

in the framework of the SME. Then, we show the relationship between the

modulation amplitudes described in Section 5.1.3 and the SME camouflage

coefficients (c¬(d)
F )

(0E)
jlm . The detailed calculation is described in Ref. [63].
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A.2.1 Expression of the Lorentz violation signal

The resonant frequency difference between the counterclockwise and clockwise

directions due to the SME camouflage terms takes the form [63]

δν

ν
=

∑
djlmrm⊕

Amrm⊕e
imrωrott+im⊕ω⊕T⊕ (A.9)

where

Amrm⊕ = ∆M(d) lab

(c¬F )jlmr

d(l)mrm⊕(−χ)(c¬
(d)
F )

(0E)
jlm⊕

. (A.10)

Here, ∆M(d) lab

(c¬F )jlm
is the M(d) lab

(c¬F )jlm
matrix difference between the counterclock-

wise and clockwise directions, and the M(d) lab

(c¬F )jlm
matrices are experiment de-

pendent factors that determine the sensitivity of the cavity to the camouflage

coefficients. χ is the colatitude of the laboratory, and the d
(l)
mrm⊕ are little

Wigner matrices defined by

d(l)mrm⊕(β) =
∑
k

(−1)mr−m⊕+k
√

(l +mr)!(l −mr)!(l +m⊕)!(l −m⊕)!

(l −mr − k)!(mr −m⊕ + k)!(l +m⊕ − k)!k!

·
(
cos

β

2

)2l−mr+m⊕−2k (
sin

β

2

)mr−m⊕+2k

, (A.11)

where sum over k is over such values that the factorials are nonnegative, i.e.

max(m⊕ −mr, 0) ≤ k ≤ min(l−mr, l+m⊕). Also, when |mr| > l or |m⊕| > l,

d
(l)
mrm⊕(β) = 0.

We first consider M(d) lab
(cF )jlm

matrix with dispersion coefficients to get the

M(d) lab

(c¬F )jlm
matrix. From Eq. (A.8), they are related with

M(d) lab

(c¬F )jlm
= M(d) lab

(cF )jlm
−M(d) lab

(cF )(l+2)lm
. (A.12)

We need the M(d) lab
(cF )jlm

matrix elements for each arm of the cavity to get the
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M(d) lab
(cF )jlm

matrix. They depend on the arm frame factors

U (d)
jl = −ω

d−4nj−2

2ϵ

√
2l + 1

4π

[(
j − l(l + 1)

2

)
(n2 − 1)

+(d− 2− j)(d− 3− 3j)n2 + j(j − 1)n2

]
(A.13)

V(d)
jl =

ωd−4nj−2(n2 − 1)

8ϵ

√
2l + 1

4π

(l + 2)!

(l − 2)!
(A.14)

Here, ϵ and n are the permittivity and the refractive index of the arm, respec-

tively. Since we are not using magnetic elements, here we can set ϵ = n2. The

M(d)
(cF )jlm

matrix for the arm in the arm frame is given by

M(d) arm
(cF )jlm

= U (d)
jl δm,0 + V(d)

jl δ|m|,2 (A.15)

By rotating this to the laboratory frame (see Fig. 5.3) using Wigner matrices,

we get

M(d) lab
(cF )jlm

=
∑
m′

M(d) lab
(cF )jlm′

eim
′γeimαd

(l)
m′m

(
−π
2

)
(A.16)

=

[
U (d)
jl d

(l)
0m

(
−π
2

)
+ V(d)

jl e
i2γd

(l)
2m

(
−π
2

)
+V(d)

jl e
−i2γd

(l)
(−2)m

(
−π
2

)]
eimα. (A.17)

Here, π/2 rotates the beam into the horizontal plane, α is the angle between

the beam and the laboratory x-axis at t = 0, and γ is the angle between the

polarization and the horizontal plane.

Since p-polarized light resonates in the cavity in our setup, γ = 0. α for

each arm in the counterclockwise mode is

α =


−ξ + ζ for the arm A

0 for the arm B

−ξ − ζ − π for the arm C

−ξ − π/2 for the arm D
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The label of each arm are the same as the one defined in Fig. 5.3. Also, the

index of refraction n = 1 for all the arms except for B. Note that V(d)
jl = 0

when n = 1, so it only contributes to the arm B. From these values, we can

calculate M(d) lab
(cF )jlm

for each arm.

Next, we combine the results for the individual arms to get the M(d) lab
(cF )jlm

matrix for the counterclockwise mode,

M(d) lab
(cF )jlm

=
LA

Lopt

M(d) A
(cF )jlm

+
nLB

Lopt

M(d) B
(cF )jlm

+
LC

Lopt

M(d) C
(cF )jlm

+
LD

Lopt

M(d) D
(cF )jlm

, (A.18)

which is the optical path length weighted average (Lopt ≡ LA+nLB+LC+LD).

Comparison of this equation with Eq. (5.20) gives the rough relation between

δc and M(d) lab
(cF )jlm

.

The M(d) lab
(cF )jlm

matrix for the clockwise mode is found to be reversing the

direction of the beam in each arm. This is equivalent to adding π to each

α angle, and this gives an extra factor of eimπ = (−1)m. So, the difference

between the counterclockwise mode and clockwise mode is given by

∆M(d) lab
(cF )jlm

= (1− (−1)m)M(d) lab
(cF )jlm

. (A.19)

A.2.2 Extraction of the camouflage coefficients from the

signal

The relationship between the camouflage coefficients (c¬(d)
F )

(0E)
jlm and the modu-

lation amplitudes defined in Eq. (5.22), Eq. (5.23) and Eq. (5.24) can be derived

by comparing these equations with Eq. (A.9). The modulation amplitudes are

given by

CC
mrm⊕ = 2ηmrηm⊕Re[Amrm⊕ + Amr(−m⊕)], (A.20)

CS
mrm⊕ = −2ηmrIm[Amrm⊕ − Amr(−m⊕)], (A.21)

SC
mrm⊕ = −2ηm⊕Im[Amrm⊕ + Amr(−m⊕)], (A.22)

SS
mrm⊕ = −2Re[Amrm⊕ − Amr(−m⊕)], (A.23)
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where η0 = 1/2, and ηm = 1 when m ̸= 0.

In this thesis, we restricted ourselves to extract modulation amplitudes

for mr and m⊕ up to 3. Since the camouflage coefficients for d = 6 introduce

monopole, dipole and quadrupole structures of the anisotropy, while d = 8 also

give hexapole and octupole structures, we can restrict ourselves to consider up

to d = 8 coefficients. Our experiment is only sensitive to parity-odd dipole

and hexapole anisotropies.

The relationship between the camouflage coefficients of d = 6 and d = 8

and the modulation amplitudes for our optical ring cavity is summarized in

Table A.2. Comparison of this table with Table 5.1 gives naive picture of the

multipole structure of the SME camouflage coefficients. As predicted by the

multipole structure, only m⊕ = 0, 1 contribute for d = 6 and m⊕ = 0, 1, 2, 3

contribute for d = 8.
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Appendix B
Feedback Control

Here we briefly summarize the basics of the feedback control needed for reading

this thesis. For more comprehensive understanding, see, for example, Ref. [69].

B.1 Openloop transfer function

In a feedback control, we measure fluctuation of the output of the system and

try to regulate the output by applying a force in an opposite direction to the

system input. Typical feedback control loop in a block diagram is shown in

Fig. B.1. First, some external disturbance x0 is converted into an error signal

ver with a sensor transfer function H. From this error signal, the amount of

feedback vfb is determined with a servo filter F , and an actuator A puts the

feedback into the input of the sensor. By this feedback, original fluctuation x0

is regulated to xst.

Here, the residual fluctuation xst can be written with transfer functions of

the sensor, the filter, and the actuator as

xst = x0 − AFHxst. (B.1)

Thus, by defining G ≡ AFH,

xst =
1

1 +G
x0 (B.2)

follows. As you can see from this equation, the fluctuation can be reduced by

making the gain |G| high. This G is called the openloop transfer function.

However, G is generally a function of Fourier frequency, and it is not possi-
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filter

sensor

actuator

Figure B.1: Block diagram showing principle of a typical feedback control.

ble to make |G| high at all the frequency bands. Generally, |G| is low at higher

frequency, and the frequency band which is |G| > 1 is called a control band.

The frequency where |G| = 1 is called a unity gain frequency (UGF).

As you can guess from Eq. (B.2) that xst diverges when G = −1, UGF is

important for determining the stability of a servo. There is a number of ways

for the determination, but the Nyquist stability criterion is often used for the

determination of the stability of the system with relatively simple transfer

functions. If the phase margin of G, such as arg(G) + 180◦ is larger than

∼ 30◦, we can say that feedback control is stable.

A real part and an imaginary part of a transfer function has the Kramers-

Kronig relation, and it is not possible to manage both a high gain and a large

phase margin. We have to design a transfer function of a servo filer circuit F ,

so that a high gain is achieved at the frequency band we need, and also realize

a stable feedback control loop.

B.2 Feedback control and noise

In ideal cases we considered in the previous section, making loop gain G high

sufficiently suppresses the fluctuation. However, in real cases, contamination

of noises in the servo loop limits the achievable residual fluctuation.

In this section, we consider about the sensor noise nS and the noise from

the filter circuit nF as shown in Fig. B.2. We discuss about how to estimate

the residual fluctuation in the presence of noises, and about how to estimate

the original external disturbances.
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Figure B.2: Block diagram of a feedback control with noise injections and a
monitor signal.

B.2.1 In-loop and out-of-loop

Feedback control loop try to control the error signal to be 0, but since the

error signal includes sensor noises, the error signal in the servo loop (in-loop

error signal) does not tell you the actual residual fluctuation.

For example, the error signal in the feedback system in Fig. B.2 is

ver = H[x0 − A(Fver + nF)] + nS, (B.3)

so,

ver =
H

1 +G
x0 −

HA

1 +G
nF +

1

1 +G
nS. (B.4)

Thus, the estimated residual fluctuation from the error signal is

x
(er)
st =

ver
H

=
1

1 +G
x0 −

A

1 +G
nF +

1

1 +G

1

H
nS. (B.5)

When |G| ≫ 1, x
(er)
st ∼ 0.

However, actually,

xst =
ver − nS

H
=

1

1 +G
x0 −

A

1 +G
nF − G

1 +G

1

H
nS, (B.6)

and even if |G| ≫ 1, xst ∼ nS/H and not xst ∼ 0. Therefore, by using the
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in-loop error signal alone, we underestimate the residual fluctuation.

In order to estimate the residual fluctuation, we need the monitor signal

vmn which is out-of-loop, as shown in Fig. B.2. vmn can be written as

vmn = H ′xst + nS′ , (B.7)

and the estimated residual fluctuation from this monitor signal is

x
(mn)
st =

vmn

H ′ =
1

1 +G
x0 −

A

1 +G
nF − G

1 +G

1

H
nS +

1

H ′nS′ . (B.8)

When |G| ≫ 1, x
(mn)
st ∼ nS/H + nS′/H

′ and it will be a better estimation of

the residual fluctuation.

B.2.2 Estimating external disturbance

Feedback control is also used when the sensor only has a high sensitivity at

limited range. By regulating the fluctuation, we can operate the sensor with a

high sensitivity and a linear response. The estimation of the external distur-

bance can be done by using the feedback signal which the control loop added

in order to suppress the fluctuation.

The feedback signal vfb can be calculated by the similar control loop cal-

culation we have done above, and it is

vfb =
FH

1 +G
x0 +

F

1 +G
nS +

1

1 +G
nF. (B.9)

Thus, the estimated external disturbance is

x
(fb)
0 =

1 +G

FH
vfb = x0 +

1

H
nS +

A

G
nF. (B.10)

Estimation of the external disturbance from the feedback signal is good

especially where the frequency region with |G| > 1, since the effect of nF

is small. Outside the control band, however, nF term become large and the

estimation is not so accurate.

So, outside the control band, it is better to use the error signal for esti-

mating the external disturbance. From Eq. (B.4), the external disturbance
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estimated from the error signal is

x
(er)
0 =

1 +G

H
ver = x0 +

1

H
nS + AnF. (B.11)
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Appendix C
Optical Cavities and

Hansch-Couillaud Method

We used the Hänsch-Couillaud (HC) method [70, 71] for extracting the error

signal for locking the laser frequency to the cavity resonant frequency. Here,

we briefly discuss about properties of optical cavities. Then, we explain the

mechanism of waveplates which changes the polarization state of the beam, and

show the principle of the HC method. Lastly, we discuss about advantages of

the use of the HC method in our experiment.

C.1 Optical cavities

Optical cavities are made from multiple mirrors that are put against each

other, so that the beam circulates inside many times. Especially, a cavity

which consist from two parallel mirrors is called a Fabry-Perot cavity, and a

cavity which consist from more than three mirrors is called a ring cavity. In a

Fabry-Perot cavity, standing waves are formed inside the cavity, and in a ring

cavity, travelling waves are formed.

Optical cavities has resonant frequencies, and only the beam with those

laser frequencies resonates inside the cavity. Here, we summarize about this

feature.

C.1.1 Reflectivity and transmissivity

Consider an optical cavity which consist from three mirrors M1, M2, and

M3, as shown in Fig. C.1. The round-trip length of this cavity is L, and
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M2

M1 M3

Figure C.1: Three mirror optical cavity.

amplitude reflectivities and amplitude transmissivities of each mirror are ri

and ti, respectively.

If we set the electrical field amplitude of the incident laser beam to M1 to

be Ei, the amplitude of the reflected light can be calculated by considering the

propagation of the beam as

Er = Ei(−r1) + Eit
2
1r3r2e

−iϕ + Eit
2
1r

2
3r

2
2r1e

−2iϕ + Eit
2
1r

3
3r

3
2r

2
1e

−3iϕ + · · ·

= Ei(−r1) + Eit
2
1r3r2e

−iϕ

∞∑
n=0

(
r3r2r1e

−iϕ
)n

= Ei

(
−r1 +

t21r2r3e
−iϕ

1− r1r2r3e−iϕ

)
. (C.1)

Here, ϕ is the phase change accumulated when the beam makes a round-trip

inside the cavity. Using the angular frequency of the laser beam, ϕ can be

written as

ϕ ≡ Lω

c
. (C.2)

Similarly, the amplitude of the transmitted beam fromM3 can be calculated

as

Et = Eit1t3e
−iϕ2 + Eit1r3r2r1t3e

−i(ϕ+ϕ2) + Eit1(r3r2r1)
2t3e

−i(2ϕ+ϕ2) + · · ·

= Eit1t3e
−iϕ2

∞∑
n=0

(
r3r2r1e

−iϕ
)n

= Ei
t1t3e

−iϕ2

1− r1r2r3e−iϕ
. (C.3)
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Here, ϕ2 ≡ l2ω/c is the phase change of the beam accumulated between M1

and M3.

Thus, the amplitude reflectivity rcav and the amplitude transmissivity tcav

of this ring cavity are

rcav(ϕ) = −r1 +
t21r2r3e

−iϕ

1− r1r2r3e−iϕ
, (C.4)

tcav(ϕ) =
t1t3e

−iϕ2

1− r1r2r3e−iϕ
. (C.5)

Now, from Eq. (C.1) and Eq. (C.3), intensities of the reflected light and

transmitted light are

Pr = |Er|2

=
(r2r3 − r1)

2 + 4r1r2r3 sin
2 (ϕ/2)

(1− r1r2r3)2 + 4r1r2r3 sin
2 (ϕ/2)

|Ei|2, (C.6)

Pt = |Et|2

=
(t1t3)

2

(1− r1r2r3)2 + 4r1r2r3 sin
2 (ϕ/2)

|Ei|2. (C.7)

Here, we assumed r21 + t21 = 1.

When the intensity of the transmitted light is at the maximum, the inten-

sity of the beam inside the cavity (intra-cavity power) is at the maximum, and

we say that the incident laser beam resonates in the cavity. The resonance

condition is

ϕ = 2πm, (C.8)

where m is a natural number. Therefore, from Eq. (C.2), the resonant fre-

quencies of this cavity are

ν =
mc

L
. (C.9)

Fig. C.2 shows absolute value and phase of an amplitude reflectivity of

an optical cavity near resonance. As we can clearly see from this plot, small

change in ϕ drastically change the phase of the reflected light. This is because

the change in ϕ is amplified when the beam circulates inside the cavity many

times. Because of this feature, we can use optical cavities as interferometers

to measure the frequency of the incident beam ν.
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Figure C.2: Absolute value and phase of an amplitude reflectivity of an optical
cavity.

However, as we can see from Eq. (C.2), we cannot distinguish if the change

in ϕ is from the laser frequency change or the cavity round-trip length change.

So, the fluctuation in the cavity length change is generally a noise source for

frequency measurements.

C.1.2 Free spectral range and finesse

Fig. C.3 is a plot made from Eq. (C.7), and shows the change in the intensity of

the transmitted light from an optical cavity, with respect to the laser frequency

change. If we fix the cavity length L and change the laser frequency, the

intensity of the transmitted light changes periodically. This period is called a

free spectral range (FSR), and from Eq. (C.9), it is written as

νFSR =
c

L
. (C.10)
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Figure C.3: Intensity of transmitted light from an optical cavity. Calculated
under the conditions r1 = r3, r2 = 1, and F = 10.

Also, the full width at half maximum (FWHM) of the transmitted power

peak can be obtained from Eq. (C.7), by solving

1

1 +
4r1r2r3

(1− r1r2r3)2
sin2

(
πLνFWHM

2c

) =
1

2
. (C.11)

Here, if we assume
πLνFWHM

2c
=
πνFWHM

2νFSR
≪ 1, we can Taylor expand sin

term and

νFWHM ≡ c(1− r1r2r3)

πL
√
r1r2r3

(C.12)

can be obtained.

The ratio between νFSR and νFWHM shows the sharpness of the resonance,
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C Optical Cavities and Hansch-Couillaud Method

and the ratio is called a finesse. The expression of the finesse is

F =
νFSR
νFWHM

=
π
√
r1r2r3

1− r1r2r3
. (C.13)

The finesse is larger, and the resonance is sharper when the reflectivities of

the mirrors are close to 1. Since we usually make the finesse of the cavity

sufficiently larger than 1, the assumption we made above is appropriate.

C.2 Waveplates

Waveplates are optics which transforms polarization states of laser beams by

putting phase difference between two orthogonal optical axes with birefringent

crystal. Half-wave plates put the phase difference of π, which corresponds to

half of a wavelength. Quarter-wave plates put the phase difference of π/2,

which corresponds to quarter of a wavelength. Two optical axes are called fast

axis and slow axis, and a waveplate put a certain amount of phase delay to

the slow axis with respect to the fast axis.

To show the behavior of waveplates, here we use Jones Calculus which Jones

invented in 1941 [72]. In this method we set the amplitude of the incident

electrical field to the waveplate to be

Ein =

(
Es

Ep

)
, (C.14)

where Es and Ep is the s-polarized and the p-polarized component, respec-

tively. We calculate how this vector is transformed by waveplates.

If the slow axis of the waveplate is rotated by θ compared with the s-

polarization axis, the transformation matrix R(θ) from the s/p-polarization

basis and fast/slow basis is(
Efast

Eslow

)
= R(θ)

(
Es

Ep

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Es

Ep

)
. (C.15)

Half waveplates give the phase difference between fast and slow axes by π,

so the transformation matrix for half waveplates in s/p-polarization basis can
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Figure C.4: Transformation of polarization state with waveplates.

be written as

WH(θH) = R−1(θH)

(
1 0

0 e−iπ

)
R(θH)

=

(
cos 2θH sin 2θH

sin 2θH − cos 2θH

)
. (C.16)

Thus, as shown in Fig. C.4(a), linearly polarized light will be transformed to

line symmetric linearly polarized light where the symmetrical axis is the fast

axis. Since we can rotate the fast axis freely, we can shift the polarization

direction of the linearly polarized light.

Similarly, quarter waveplates give the phase difference between fast and

slow axes by π/2, so the transformation matrix is,

WQ(θQ) = R−1(θQ)

(
1 0

0 e−iπ/2

)
R(θQ)

=

(
cos2 θQ − i sin2 θQ sin θQ cos θQ(1 + i)

sin θQ cos θQ(1 + i) sin2 θQ − i cos2 θQ

)
. (C.17)

Although it is not obvious from the equation, as shown in Fig. C.4(b), linearly

polarized light injected to a quarter-wave plate will be transformed to an el-
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liptically polarized light. The two axes of the ellipse are the fast and slow axes

components of the incident light.

C.3 The Hansch-Couillaud method

In order to lock the frequency of the laser to a cavity resonance, we need an

error signal which is proportional to the laser frequency change and is zero

at the cavity resonance. For example, the phase of the cavity reflected light

as we saw in Fig. C.2 can be considered as one of candidates for this kind of

signal, but photo detectors cannot directly measure the phase of the light. So,

by mixing a component which is not resonant to the cavity, and by making a

interference of that with the cavity reflection of the resonant light component.

The cavity reflection of the resonant component has the phase information

accumulated when making a round-trip inside the cavity, and we compare the

phase with anti-resonant component by interference.

For the anti-resonant component, several candidates can be considered,

but the HC method uses the orthogonally polarized component with respect

to the resonant polarized component. This method can be used for polarization

selective cavities, such as ring cavities with odd number of mirrors.

In this section, we will describe the principle of the HC method in the

single-pass and double-pass configurations. We will also discuss about the

advantages of the HC method over other methods.

C.3.1 Principle

In the HC method, there are several configurations for placing waveplates,

but here we consider the configuration used in our experiment, as shown in

Fig. C.5. The incident beam to the ring cavity is linearly polarized and the

polarization direction is adjusted with the half-wave plate as

Ei =

(
Es

i

Ep
i

)
=

(
cos θ

sin θ

)
E0 (C.18)

Using the amplitude reflectivity and transmissivity for s-polarized and p-

polarized beam of the three mirrors, rσi , and tσi (i = 1, 2, 3, σ = s, p), from
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Figure C.5: Single-pass optical configuration of the Hänsch-Couillaud method.

Eq. (C.4), the amplitude reflectivities of the ring cavity are

rscav(ϕ) = −rs1 +
(ts1)

2rs2r
s
3e

−iϕ

1− rs1r
s
2r

s
3e

−iϕ
(C.19)

rpcav(ϕ) = rp1 +
(tp1)

2rp2r
p
3e

−iϕ

1 + rp1r
p
2r

p
3e

−iϕ
. (C.20)

Here, ϕ is the phase change accumulated when the beam makes a round-trip

inside the cavity, and is given by Eq. (C.2). Some terms in the equations have

different signs because sings of the mirror reflectivities are different between

polarizations. From this reason, if the laser frequency is at the cavity resonance

for s-polarized light, and thus e−iϕ ≃ 1, the reflectivity for p-polarized light is

rpcav ≃ rp1 +
(tp1)

2rp2r
p
3

1 + rp1r
p
2r

p
3

= 1− (1− rp1)(1− rp2r
p
3)

1 + rp1r
p
2r

p
3

≃ 1. (C.21)

This means that the cavity is anti-resonant for p-polarized light.

Therefore, from this polarization selectivity, cavity reflectivity near reso-

nance can be written as

Er =

(
Es

r

Ep
r

)
=

(
rscav(ϕ) cos θ

rpcav(ϕ) sin θ

)
E0 ≃

(
rscav(ϕ) cos θ

sin θ

)
E0. (C.22)
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If we split this beam with a polarizing beam splitter (PBS), resonant s-

polarized component and anti-resonant p-polarized component do not interfere,

but if we put a rotated quarter-wave plate in front of the PBS, they interfere.

When the slow axis of the quarter-wave plate is tilted by θQ with respect to

the s-polarization axis, the transmitted light from the quarter-wave plate is

E′
r = WQ(θQ)

(
Es

r

Ep
r

)
. (C.23)

For simplicity, here we set θQ to be at the optimal point 45◦. The equation

above will be

E′
r = WQ(π/4)

(
Es

r

Ep
r

)

=
1

2

(
(1− i)(Es

r + iEp
r )

(1 + i)(Es
r − iEp

r )

)
. (C.24)

Thus, if we split this beam by a PBS and detect the s-polarization and the

p-polarization components by different photo detectors, the intensity of the

beam injection onto each photo diode can be written as

PPDs =

(
1

2
|1− i||Es

r + iEp
r |
)2

= PDC +Re(Es
r (iE

p
r )

∗), (C.25)

PPDp =

(
1

2
|1 + i||Es

r − iEp
r |
)2

= PDC − Re(Es
r (iE

p
r )

∗). (C.26)

Here, PDC is the DC component, and by defining |E0|2 ≡ P0, this can be

written as

PDC =
1

2
(|Es

r |2 + |Ep
r |2)

=
1

2
P0

[
(rs2r

s
3 − rs1)

2 + 4rs1r
s
2r

s
3 sin

2 (ϕ/2)

(1− rs1r
s
2r

s
3)

2 + 4rs1r
s
2r

s
3 sin

2 (ϕ/2)
cos2 θ + sin2 θ

]
.(C.27)
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This DC component is not zero at at the cavity resonance ϕ = 2πm, and is

PDC|ϕ=2πm =
1

2
P0

[
(rs2r

s
3 − rs1)

2

(1− rs1r
s
2r

s
3)

2
cos2 θ + sin2 θ

]
. (C.28)

On the other hand, Re(Es
r (iE

p
r )

∗) is zero at the cavity resonance, and thus

we can get the error signal which is zero at the cavity resonance by taking a

differential signal of each photo detector output. This differential signal can

be written down as

Pdiff ≡ PPDs − PPDp

= 2Re(Es
r (iE

p
r )

∗)

= −2P0 cos θ sin θ
(ts1)

2rs2r
s
3 sinϕ

1 + (rs1r
s
2r

s
3)

2 − 2rs1r
s
2r

s
3 cosϕ

. (C.29)

Since it is always Pdiff = 0 when the laser frequency is prefectly locked to the

cavity resonant frequency, this error signal has immunity to the laser intensity

noise in principle. Also, the slope of this error signal near cavity resonance is

∂Pdiff

∂ϕ

∣∣∣∣
ϕ=2πm

= −2P0 cos θ sin θ
(ts1)

2rs2r
s
3

(1− rs1r
s
2r

s
3)

2
. (C.30)

So, this error signal is linear to ϕ, and is suitable for the laser frequency lock.

This is the principle of the HC method.

Fig. C.6 shows the actual error signal Pdiff and the cavity transmitted beam

intensity. The shape of the error signal looks like a differential of transmitted

beam intensity, and we can see that the error signal is linear to ϕ near cavity

resonance. We have also plotted the error signal when the angle of the quarter-

wave plate θQ is not 45◦ in Fig. C.6. If θQ is not 45◦, the error signal will not

be zero at the cavity resonance. This is because the DC component of the

incident beam is not canceled out by taking the differential signal of two photo

detectors, and the error signal will lose its immunity to the laser intensity

noise.

Also, as we can see from Eq. (C.30), the amplitude of the error signal can be

changed by adjusting the polarization direction θ of the cavity incident beam

with the half-wave plate. The slope of the error signal is at its maximum when
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Figure C.6: Cavity transmitted beam intensity and the error signal of the
Hänsch-Couillaud method.

θ = 45◦, which gives cos θ sin θ = 1/2. However, transmitted light intensity is

at its maximum and reflected beam intensity is at its minimum when θ = 0,

and generally, signal to noise ratio is larger when θ is slightly off from zero.

Equations we show above can be used for general triangular cavities, but

if we set θ = 45◦, and set rs2 = 1 and rs1 = rs3, as in our experiment, Eq. (C.28)

and Eq. (C.30) can be simplified to

PDC|ϕ=2πm =
1

4
P0 (C.31)

∂Pdiff

∂ϕ

∣∣∣∣
ϕ=2πm

=
1

π
P0F (C.32)

Here, F is the finesse for the s-polarized light and is

F =
π
√
rs1r

s
2r

s
3

1− rs1r
s
2r

s
3

=
πrs1
(ts1)

2
. (C.33)
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Figure C.7: Double-pass optical configuration of the Hänsch-Couillaud
method.

C.3.2 Use in double-pass configuration

As we can see by comparing Eq. (C.16) and Eq. (C.17), passing through the

same quarter-wave plate twice is equivalent to a half-wave plate. Thus, when

applying the HC method in the double-pass configuration, placing wavelates

as shown in Fig. C.7 works. From the polarization selectivity of the cavity,

transmitted light is linearly polarized, but the quarter-wave plate placed in

between the cavity and the reflection mirror makes anti-resonant polarization

component.

C.3.3 Advantages

To acquire the error signal which is proportional to the difference between

the incident laser frequency and the cavity resonant frequency, one of the

most popular method is the Pound-Drever-Hall (PDH) method [73]. In the

PDH method, we give phase modulation to the incident light, and use phase

modulation sidebands generated for anti-resonant component. By acquiring

the beat signal between this sidebands and the carrier which is resonant, the

error signal can be obtained.

For PDH method, the frequencies of the sidebands should be set sufficiently

away from the resonance. The cavity we used has short cavity length, and has

the full width at half maximum of the resonant peak is large (12 MHz). So,

the phase modulation frequency needed is as high as roughly 100 MHz, and
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the PDH method is not handy for our experiment. The PDH method needs a

phase modulator, a fast photo detector, and high speed op-amps, but the HC

method does not.

We also used the HC method for acquiring the Lorentz violation signal

with the double-pass configuration. In the double-pass configuration, we use

the cavity transmitted beam which has less higher order modes for the error

signal acquisition. As compared with the PDH method which deforms the

spatial mode when giving a phase modulation, the HC method is especially

suitable for use in double-pass configurations [39].

Note that here we use a term mode to say a spatial mode of a laser beam.

Intensity distribution of an electrical field of a laser beam from a source is

ideally Gaussian distribution in a plane perpendicular to the optical axis. This

mode is called a fundamental mode, but actual laser beams are not perfectly

in a fundamental mode, and has higher order modes. Optical cavities have

mode selectivity when radius of curvatures of consisting mirrors and distances

between mirrors are appropriately designed, since only fundamental modes

resonates in those cavities. For more detailed discussion, see, for example,

Refs. [53, 54].
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Appendix D
Laser Frequency Actuation

Efficiency Measurement

In the laser source we used in our experiment, there is a laser cavity made of a

fiber, and the cavity length can be modulated with a piezoelectric transducer.

In this way, we can modulate the laser frequency of the output beam. We

locked the frequency of the laser to the counterclockwise resonant frequency

of the ring cavity using this laser frequency actuation mechanism.

The efficiency of this laser frequency actuation, such as the change in the

laser frequency per voltage put on the piezoelectric transducer can be measured

with an asymmetric Michelson interferometer. Here, we present the principle

of this measurement and the actual measurement result.

D.1 Asymmetric Michelson interferometer

In a Michelson interferometer, the beam from the laser source is split into two

arms by a beamsplitter, and each of those is reflected by an end mirror to-

ward the beamsplitter. Two beams are combined there and makes interference

fringes depending on the phase difference.

Let’s consider a Michelson interferometer shown in Fig. D.1. Using the

angular frequency of the laser ω, an electric field of the incident beam can be

written as

Ein = E0e
iωt. (D.1)

If we set the phase change accumulated when making a round trip between the

beamsplitter and the mirror MX, MY, as ϕx, ϕy, respectively, the recombined
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Figure D.1: Michelson interferometer.

beam onto the photo diode can be expressed as

EPD =
1

2
E0e

i(ωt−ϕx) − 1

2
E0e

i(ωt−ϕy). (D.2)

Here, we assumed ideal case in which the beamsplitter splits beam exactly in

half, and the reflectivity of the mirrors MX and MY are 1.

The laser power on the photo diode can then be written as

PPD = |EPD|2 =
1

2
Pin(1− cosϕ−). (D.3)

Here, ϕ− ≡ ϕx − ϕy and

ϕ− =
2l−ω

c
=

4πl−ν

c
, (D.4)

where l− is the length difference between two arms and ν is the laser frequency.

When the length difference between two arms changes by δl−, and the laser

frequency changes by δν, this phase difference changes by

δϕ− = ϕ− − 4π(l− + δl−)(ν + δν)

c
≃ 4πδl−ν

c
+

4πl−δν

c
. (D.5)

Therefore, the change in δl− gives PPD change. This property can be used for

the precise measurement of change in distances, so Michelson interferometers

are used for devices such as gravitational wave detectors.

In gravitational wave detectors, we make the length difference between two
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Figure D.2: The setup for measuring the actuation efficiency of the laser fre-
quency. SG: signal generator, FRM: faraday rotator mirror.

arms to be l− ≃ 0, so that the laser frequency fluctuation δν does not change

PPD and affect the length measurement. However, if we intentionally make

l− to be large, PPD changes with the laser frequency change. We used this

asymmetric Michelson interferometer to measure the actuation efficiency of

the laser frequency.

D.2 Measurement result

Fig. D.2 is the schematic of the setup for measuring the actuation efficiency

of the laser frequency. We measured the power change in the output of the

fiber made asymmetric Michelson interferometer, with respect to the voltage

applied on the piezoelectric transducer in the laser source.

Assume the voltage applied on the piezoelectric transducer to be ∆V and

this created the laser frequency change of ∆ν. From Eq. (D.5), the change in

the phase difference between two arms ∆ν can be written as

∆ϕ− =
4πnl−∆ν

c
, (D.6)

where n is the refractive index of the fiber. One period change in PPD cor-

respond to the change in the phase difference of ∆ϕ− = 2π. So, the laser

frequency actuation efficiency A can be written with ∆V needed to change

PPD for one period,

A =
∆ν

∆V
=

c

2nl−

1

∆V
. (D.7)

By inserting the refractive index of the fiber n = 1.47, arm asymmetry intro-
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duced l− = 1 m, and the measured value of ∆V ,

A = 12.9 MHz/V (D.8)

was obtained. This is the actuation efficiency of the laser frequency by the

piezoelectric transducer in the fiber laser source we used for our experiment.

The total uncertainty in this measurement is estimated to be 5% .
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Appendix E
Photos of the Apparatus

Here are some photos of our experimental apparatus.

Figure E.1: The entire appearance of the apparatus. The vacuum enclosure on

the turntable covered with black sheet is the main optical component, and the

laser source is placed on top. Some electrical circuits and web camera are also

put on the optical table. The rack on the left has the PZT driver and the data

logger we used for the data acquisition. The rack on the right has the motor

driver and the PC for controlling the motor for the turntable.
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Figure E.2: Optics inside the vacuum enclosure. The fiber collimator is

mounted on the left. The ring cavity with pentagonal spacer is mounted on the

middle. The black box on the bottom has the photo detectors for extracting

the error signals. The silver box on the top left has the photo detectors for

monitoring the laser intensity. All the optics are fixed on a single aluminum

plate.
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Figure E.3: The spacer and the ring cavity. The spacer made of Super Invar

has holes for the optical path and for placing the silicon piece. The mirrors

are fixed on the spacer with aluminum plates. The silicon piece is also fixed

with a rubber and a aluminum plate on top.

Figure E.4: The silicon piece. The edge surfaces look purple when viewed

from an inclined direction because of the anti-reflection coating. Its size is

5× 10× 20 mm, and was fabricated by Okamoto Optics.
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Figure E.5: The laser source, vacuum enclosure, and the turntable. The

turntable was made of an aluminum plate and the motor, and it is fixed on the

optical table. The vacuum enclosure with the optical setup inside is covered

with a black sheet for light shielding. The laser source is placed on top of the

vacuum enclosure, and the beam is fed into the enclosure with a fiber. The

cables for extracting the signals and providing power are hang from the top.

The little box beneath the turntable has the photo interrupter for obtaining

the home signal. There is also a sensor on the optical table for monitoring the

temperature.
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Figure E.6: The motor driver and the PC for controlling the motor. The box

on the top left with a print ”VCB” is the motor driver. The silver box on the

right is the switching circuit for power. Application for controlling the motor

and monitoring the motor signals are opened in the PC.
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[16] V. A. Kostelecký and M. Mewes, Phys. Rev. D 80, 015020 (2009).

Electrodynamics with Lorentz-violating operators of arbitrary dimension

[17] M. Hakayawa, Phys. Lett. B 478, 394 (2000).

Perturbative analysis on infrared and ultraviolet aspects of noncommuta-

tive QED on R4

[18] S. M. Carroll, J. A. Harvey, V. A. Kostelecký, C. D. Lane, and T.
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