Self introduction: what I did in my two postdoc periods

Kentaro Komori

Lab seminar 2022/06/10

Contents

≻My previous researches

≻Filter cavity experiments in LIGO MIT

LISA photo-receiver in JAXA

≻Future plans

My previous researches

≻Graduate students

- Optomechanical torsion pendulum
- Calculation of non-equilibrium thermal noise
- Classical back-action evasion
- KAGRA future

≻First postdoc in LIGO MIT

- Detuned filter cavity
- Amplitude filter cavity
- Optimization of filter cavity parameters
- Calculation of fundamental limit of feedback cooling
- Second postdoc in JAXA/ISAS
 - LISA photo-receiver
 - SILVIA and DECIGO

My previous researches

➢Graduate students

- Optomechanical torsion pendulum
- Calculation of non-equilibrium thermal noise
- Classical back-action evasion
- KAGRA future

≻First postdoc in LIGO MIT

- Detuned filter cavity
- Amplitude filter cavity
- Optimization of filter cavity parameters
- Calculation of fundamental limit of feedback cooling

Second postdoc in JAXA/ISAS

- LISA photo-receiver
- SILVIA and DECIGO

Quantum noise

≻Vacuum fluctuation coupling with laser light

Squeezing

≻Reducing the quantum noise by squeezing injection

LIGO sensitivity

- Three noises mainly limit the sensitivity below 100 Hz
 - Angular control noise
 - Mysterious noise
 - Coating thermal noise
- Shot noise is dominant above 100 Hz
 - The largest squeezing is already not the best
 - Increasing the power or the filter cavity is required

LLO logbook No.44041, typical LIGO sensitivity in O3a

Frequency-dependent squeezing

>Detuned filter cavity can prepare the optimum squeezed vacuum

 Phase squeezing to reduce the shot noise at low frequencies with amplitude squeezing to reduce the radiation pressure noise simultaneously

Experimental setup

Experimental setup

'27

Result

Squeezed angle rotates around the targeted frequency below 100 Hz

 ✓ Optical loss in the FC and the detuning fluctuation degrades the squeezing level at low frequencies

Interesting discussion

Scattered light also degrades the squeezing level

Multi-wave-length GW

- Evolution of astronomy and astrophysics with multi-wavelength GW observation
 - History of cosmic structure
 - Origin of super massive BHs
 - More precise test of GR

 \bigcup

GW from massive BHs at low frequencies

LISA

► Laser Interferometer Space Antenna

- 3 space crafts (SCs), 2.5 million km
- GW observation around mHz
- Plan to be launched in 2034

Success in LISA PathFinder

- Launched in 2016
- Sub-femto-g acceleration noise around mHz

4

21

Scientific targets

- ► BBH $10^4 \sim 10^7 M_{\odot}$ beyond the first star era
- Tracing the origin, growth, and merger history of massive BHs
- ≻White dwarf binaries in our galaxy

LISA proposal

How to measure GWs in LISA

- ≻Phase fluctuation of laser light
 - Caused by GWs between SCs
- ≻Heterodyne measurement
 - Doppler shift because of non-zero relative speed of SCs (100 m/s -> 10 MHz)
 - Measurement of the beat frequency of 5-25 MHz
 - Conversion of photo current to voltage signal
- ≻10-100 pW from other SCs
 - Diffraction loss through 2.5 Gm

Requirements on the photo receiver

- ≻High bandwidth
 - Constant gain at 5-25 MHz
- ≻Low noise
 - Below shot noise of 0.1 mW (5 pA/ \sqrt{Hz}) at 5-25 MHz : 2 pA/ \sqrt{Hz}
 - Junction capacitance ~ 10 pF with ϕ > 1 mm PD
- ≻Low power consumption
 - Suppressing thermal fluctuation of the optical bench

≻Compactness

• Size of the circuit board < 40 mm * 40 mm

Setup

Filter to suppress RF noise

Power consumption 12 mW/ch

R&S spectrum analyzer with the floor noise of ~1 nV/ $\sqrt{\text{Hz}}$ 8/27

Results

≻Measurement of 4 channels

Results

	Requirement	This work
Bandwidth (-3 dB)	25 MHz	30 MHz
Input equivalent noise	$< 2 \text{ pA}/\sqrt{\text{Hz}}$	1.9 pA/√Hz
PD size	> φ 1 mm	1.5 mm
Power consumption	< 50 mW/ch	12 mW/ch
Circuit board size	< 40 mm * 40 mm	36 mm * 36 mm

>Our photo receiver with space-based transistors satisfies all requirements

Future plans

Long signal recycling cavity

• Demonstration of the signal enhancement

≻Ground state cooling of a sub-mg pillar

• Resolved sideband regime (good cavity) with our familiar configuration

≻Optomechanical torsion pendulum

≻Test of CSL model using a violin mode of a thin wire

Summary

≻Filter cavity experiments

• Demonstration of the frequency-dependent squeezing

≻LISA photo-receiver

• Satisfying the requirements

≻Future