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Abstract

» Research plans
» Motivation

» Current status and future of the optomechanical torsion pendulum
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My research plans

»Optomechanical torsion pendulum
* Research plan I, today’s talk

»Sideband cooling of a macroscopic pillar to its ground state
* Research plan II, probably talking at my next tern

»Demonstration of the long signal recycling cavity and search for high-
frequency GWs
 After the next?

» Test of continuous spontaneous localization with a thin wire
* Future?
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Motivation

»Quantum state in the classical gravity field? Y S
* Neutrons keep the quantum state in the Earth’s gravity =3 N

Neutron shutter|

l

PRL 112, 071101 (2014)

» Should gravity be quantized?
* Theory of the quantum gravity has not been completed
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* Some experiments are proposed to test i1t (e.g. spin and

matter-wave interferometer) @ @A_,
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* Some counter theories “gravitational decoherence” are AN . NS SS—
also proposed (e.g. CSL, DP model) o AR A B
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Spin Correlation Measurements Certifying Enta{nglement
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PRL 119, 240401 (2017)
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Quantum and gravity

Nature

Science /,’ 22: N 591, 225
372, 622 mmmmmm 1S N (2021)
(2021)  Quantum Gravity
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Beyond standard quantum limit
Will be entangled soon Arxiv:2104.11648  PRL 122, 071101 2019) 5/19



Torsion pendulum

» Very sensitive to tiny force

e Ultra-small restoring torque: K « ¢*
* Suspension with an O(um) diameter wire leads to O(mHz) resonant frequency

o : T =
» Gravity measurement 1 '——=—=%

* Cavendish’s experiment (G measurement) et

. .. Philos. Trans. R. Soc. London (1798)
¢ Equlvalence pr1n01ple

e Inverse law e \ o CQG 29, 184002 (2012)

PRL 116, 131101 (2016)
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Optomechanical torsion pendulum

» Theoretical proposal d
* Quantum Cavendish (superposition of the torsion pendulum) . % e | .
o Test of gravity-induced entanglement o i y el VN
»Experiment
. GHz nano-rotor PRA 98, 043811 (2018)
* Um-pg-torque sensor -z

* Mm-mg-scale paddle
(b)

PRL 121, 033603 (2018) Nat. Comm. 7, 13165 (2016)
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My work

» 10-mg bar mirror suspended by a carbon fiber (6bum
diameter)

» Triangle cavities avoid the angular instability as similar to

Matsumoto-san’s triangle cavity

» Low suspension thermal noise because of the low resonant

frequency
2 .
- Resonant frequency: quadratic
Sth((,()) = 4kBTI

Qmw  Q-value: linear

» Subtracting two signals to measure rotational mode and
reduce noises from translational mode

torsion
pendulum
fixed input
mirror

AN

controlled

mirror «—— actuator
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Result

> Best sensitivity of 20 aNm/VHz in mg-scale torque sensors
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Improvement

»Removing the fixed mirror to eliminate the o
holder noise and reduce the vertical coupling [ﬁawd input ]
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Angular stability

»Demonstration of the angular stability even in the linear cavity

* Two curved mirrors
* The curvature smaller than the cavity length leads to the angular stability

* Larger power increases the resonant frequency of the rotational mode
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New back-action evasion

» Demonstration of reducing back-action (radiation pressure) noise

* Just measuring amplitude of reflected light from the cavity
: : : : o awp Wi
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Discussion on the noise

»Comparing the linear cavity
and the torsion pendulum
triangular cavity

 No mirror holder noise

* Much lower vertical seismic
noise

* Adjustment of the beam spot
will improve the noise more

e The dependence of f 4 is
mysterious
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Planned improvement

»New torsion pendulum: dumbbell type

* Spacer with two holes for the curved mirror
at each edge (Opto-science and NSC)

* Optical contact with the curved mirror and
the rectangular solid (Sigma-koki)

* Suspending at the center of mass to reduce
the pitch coupling

» Intensity stabilization
e Additional noise from the AOM driver

* Electrically noisy
* Replacing the AOM with the EOAM
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Design sensitivity

»Radiation pressure dominant
from 30 Hz to 300 Hz

» Vertical seismic noise will
limit at low frequencies

»Bending thermal noise will
limit at high frequencies
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Interesting note

» Giving analytical expressions of the radiation pressure noise in the

amplitude measurement of reﬂectlon spe = (2D (e 26 A7)
Srad Bth in s a(ic? ZZAZ)C,)
2 (w K Wopt) i
loss = w2+ Y
»Depending only on the optical loss at low frequencies s =&~ 2 - 2o cwo?

* Large T, (smaller finesse) leads to the soft optical spring and the test mass
moves more easily

* Larger finesse means the stiff spring, in the end, the displacement does not
change

* Tioss determines how over-coupled the cavity 1s, so that the slope of the cavity

resonance fringe changes linearly in the amplitude (quadratic in the power
spectrum)
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Measured spectrum

» Targeting frequency is around 100 Hz,
which 1s much smaller than the optical @
spring frequency ~ 1 kHz S j/% S

»Feedback only around the optical spring
and small openloop gain at 100 Hz (error
signal measurement)

14 62 + dkjkoys
14 62 — 4K Koys

» Slight increasing from the shot noise
without the cavity

* A factor of ~ 1.3 with x;,, = 0.9,6 = 1/4/3

Frequency
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Recent consideration

»Is the negative g-factor necessary?

> It is necessary for the simple pendulum cavity

»In the case of the torsion pendulum, the optical @
springs at the edges overwhelm the anti torque
spring

» Short cavity (positive g-factor) is still acceptable
so that the frequency noise can be reduced?

Short
cavity
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Summary

» My research plans including the optomechanical torsion pendulum
»Motivation of the macroscopic quantum state

» Current status and future plan toward observation of the quantum
radiation pressure fluctuation
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