Constructing Test Bench for Integration Tests of Components Developed for DECIGO and B-DECIGO

Koji Nagano,

Tomofumi Shimoda^A, Yuta Michimura^A, and Masaki Ando^A Institute for Cosmic Ray Research, University of Tokyo Department of Physics, University of Tokyo^A

Abstract

 DECIGO project and its precursor project B-DECIGO is under way for launch in a few tens of years.

Image of B-DECIGO. (made by S. Sato)

- For them, many R&Ds are on going.
- We are considering the interferometer configuration and initial locking scheme.
- To demonstrate them, it is planed to construct a test bench in Lab.
- With this test bench, an integration test of components developed independently will also be performed.

Outline

- 1. DECIGO Project
- Interferometer configuration of DECIGO and B-DECIGO
- 3. First locking of B-DECIGO
- 4. Test bench for ground based demonstration

3

Introduction

- So far, 6 gravitational wave (GW) events have been detected by ground-based detectors.
- For further expansion of the GW physics and astronomy, we have two choices.

Improve ground-based detectors' sensitivity (10 Hz-1 kHz)

Develop space detectors (0.1 mHz-10 Hz)

LISA (Credit: EADS Astrium)

Introduction

- So far, 6 gravitational wave (GW) events have been detected by ground-based detectors.
- For further expansion of the GW physics and astronomy, we have two choices.

Improve ground-based detectors' sensitivity (10 Hz-1 kHz)

Develop space detectors (0.1 mHz-10 Hz)

DECIGO Project

DECIGO Project

<u>Dec</u>ihertz
 <u>Interferometer</u>
 <u>Gravitational Wave</u>
 <u>Observatory = DECIGO</u>

Sensitivity comparison with DECIGO, LISA, and KAGRA.

- DECIGO and its precursor detector B-DECIGO are space GW observatory project which bridge the gap between LISA and ground based detectors.
- For DECIGO and B-DECIGO, development and/or simulation of many components are on going.

DECIGO schematic

DECIGO schematic

B-DECIGO schematic

Sensitivity and science

- Observe intermediatemass black holes
->Reveal mechanism of formulation of supermassive black holes

L_{2/1-z} lueus

- Verify inflation
- -> Direct observation of the beginning of the universe

Dark-matter(candidate) search [1]

Test gravity theories [2]

- Study neutron physics
- Measure accelerated universe directly [3]
 - -> Dark-energy search

DECIGO and B-DECIGO sensitivity. B-DECIGO was called Pre-DECIGO formerly. (S. Kawamura+, CQG, 2011)

- [1] R. Saito+, *PTP*, 2009
- [2] K. Yagi+, *PTP*, 2010
- [3] N. Seto+, PRL, 2001

Challenges for mission

- Low force noise requirement (<1x10⁻¹⁶ N/ rtHz)
 - LISA Path Finder result
 @0.01 Hz: 4x10⁻¹⁵ N/rtHz
- Low S/C displacement noise requirement (<1x10⁻¹⁹ m/rtHz @0.1 Hz)
 - Low noise, high dynamic range, continuously variable thrustor is required.
 - S/C alignment and drag-free control scheme (signal processing scheme) is necessary.
- First locking after initial S/C tracking.

- Interferometer configuration
 - Dual-path Fabry-Perot cavity is most promising though.
 - Configuration itself should be demonstrated.
 - In any choice, practical problem should be investigated.
- Integration test
 - Thruster, S/C tracking with Acousto-Optic Deflector (AOD), and so on.

Challenges for mission

- Low force noise requirement (<1x10⁻¹⁶ N/ rtHz)
 - LISA Path Finder result
 @0.01 Hz: 4x10⁻¹⁵ N/rtHz
- Low S/C displacement noise requirement (<1x10⁻¹⁹ m/rtHz @0.1 Hz)
 - Low noise, high dynamic range, continuously variable thrustor is required.
 - S/C alignment and drag-free control scheme (signal processing scheme) is necessary.
- First locking after initial S/C tracking.

- Interferometer configuration
 - Dual-path Fabry-Perot cavity is most promising though.
 - Configuration itself should be demonstrated.
 - In any choice, practical problem should be investigated.
- Integration test
 - Thruster, S/C tracking with Acousto-Optic Deflector (AOD), and so on.

Currently, we are considering these points theoretically and/or experimentally.

- How to realize interferometer operation?
 - -Control topology should be considered.

13

Several possibilities are considered.

Several possibilities are considered.

- Even if it works well theoretically, we cannot avoid practical problems.
 - Signal decoupling including drag-free control.
 - AODs scattering which is correlated with two arms and cannot be distinguished from GW signal.
- Before launch, all problems must be resolved experimentally.

Possible scattering problem due to AODs.

- First locking is one of the most serious problems of DECIGO/B-DECIGO.
- "First locking" can be divided into 3 steps.
 - 1. S/C tracking (~10 m, 100 urad)
 - 2. Optical S/C alignment (~10 cm, 0.1 urad)
 - 3. Cavity locking (~1 um)

- First his locking scheme should be
- "Firs demonstrated before launch.
 - 1. S/C tracking (~10 m, 100 urad)
 - 2. Optical S/C alignment (~10 cm, 0.1 urad)
 - 3. Cavity locking (~1 um)

- One thing which is need to be demonstrated is control topology changing according to operation phases.
- In locking phase, the mirrors are controlled to follow S/Cs.
- In observation phase, the S/Cs are controlled to follow mirrors.
 - = Drag free control

- In each phase, different techniques and schemes will be used.
- For example, AODs technique scanning optical path will be used.

Schematic of AOD tracking technique.

Test bench

- In space project, all used techniques must be demonstrated before launch.
- We plan to construct test bench will be constructed in Lab especially for demonstrating interferometer configuration, initial locking scheme, and their practical problems.

Test bench

- Test bench should have the following features.
 - Having the same topology of sensors/actuators and interferometer as the real detector.
 - Make DoFs soft as possible as we can in ground to mimic the free S/Cs.
- In addition, we plan to use this test bench for integration test for the components developed independently.

Test bench concept

Test bench suspension

Test bench suspension

Optical bench

Resonant frequency

Pitch/Roll: 0.086 Hz

Yaw: 0.012 Hz

Transverse: 1 Hz

Mirror

Resonant frequency

Pitch: 0.05 Hz

- Yaw: 0.1 Hz

- Transverse: 0.02 Hz

Summary

- For DECIGO and B-DECIGO, the interferometer configuration and first locking scheme was considered.
- Dual-path Fabry-Perot configuration with AODs is most promising.
- First locking scheme has several challenges such as control topology changing according to locking phases, and so on.
- These must be demonstrated with test bench in lab.
- It can also be used for integration test of developed components.

Appendix

Suspension for mirror in test bench

Figure 1. Simplified model of the two-stage torsion pendulum scheme.

System used for development of internal sensor of LISA. (Z B Zhou et al, CQG 27 (2010))

SWIM

Compact Gravitational Wave Detector: SWIMµV

- SWIMµv Torsion Antenna Module
 - Sensor module to demonstrate SpW communication
 - Observation of GWs (Design: $\sim 10^{-7} / Hz^{1/2}$)
 - Monitor the satellite environment as accelerometers

TAM: Torsion Antenna Module with free-falling test mass

Photo sensor

Reflective-type optical
displacement sensor
~900nm Infrared LED, 4PDs
Separation to mass ~1mm
Sensitivity ~ 10⁻⁹ m/Hz^{1/2}
6 PSs to monitor mass motion

Used for test-mass position control Max current ~100mA

Wataru Kokuyama et al., Amaldi8 Conference (June 24, 2009, Columbia University, New York)

SWIM

Compact Gravitational Wave Detector: SWIMµV

- Test Mass Position Control
 - Vertical ("Z") and rotational ("Yaw") degree of freedom: feedback-controlled
 - The rest four DoF: passively stabilized by magnetic potential
 - Feedback system with digital PID filter implemented on FPGA [11]

FPGA (Digital Filter) and SpaceWire I/F

DACs and Coil drivers

ADCs and Multiplexers

Two Torsion Antenna Modules assembled

Wataru Kokuyama et al., Amaldi8 Conference (June 24, 2009, Columbia University, New York)

Frequency shift

Double path AOM system [1].

[1] D. J. McCarron, "A Guide to Acousto-Optic Modulators"

Block diagram of interferometer control

Several possibilities are considered.

Several possibilities are considered.

Does a drag-free S/C consort with an optical cavity?

Made by S. Kawamura.

Does a drag-free S/C consort with an optical cavity?

Made by S. Kawamura.

Does a drag-free S/C consort with an optical cavity?

