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Abstract
Control scheme for a Fabry–Pérot type

interferometric space gravitational wave antenna
by Koji Nagano

Supervisor: Takashi Uchiyama

A gravitational wave is a ripple of space time. The existence of gravitational
wave was predicted by Albert Einstein, who developed general relativity. The
first observation of gravitational waves from a black-hole binary with Advanced
Laser Interferometer Gravitational-Wave Observatory (aLIGO) started a new
era of gravitational wave physics, astronomy, and cosmology.
The observation frequency of the current ground-based gravitational wave ob-

servatory, such as aLIGO, is limited between ∼ 10 Hz and a few kHz. The lower
frequency limit is mainly determined by the seismic motion. Even below 10 Hz,
some observational targets are predicted. One target is the coalescence of the
intermediate-mass black holes with masses in the range between ∼ 103 M⊙ and
∼ 106 M⊙. The intermediate-mass black holes typically emit the gravitational
waves in the frequency range between ∼ 10−3 Hz and ∼ 1 Hz. The coalescence
of the intermediate-mass black holes is considered to be a candidate of the origin
of the super massive black hole that has been discovered at the galactic center.
Another target is the early Universe. The quantum fluctuation is considered to
cause the gravitational waves in the wide frequency range, for example, between
∼ 10−17 Hz and ∼ 104 Hz. The observations of the gravitational waves from the
coalescence of the intermediate-mass black holes and the early Universe provide
new physical and astronomical information. Therefore, some space gravitational
wave observatories are proposed to avoid the seismic motion.
In order to observe the gravitational waves in the frequency range between

∼ 0.1 Hz and ∼ 10 Hz, DECi-hertz Interferometer Gravitational Wave Obser-
vatory (DECIGO) and its precursor mission, B-DECIGO, have been proposed.
The final goal of DECIGO is the observation of the gravitational waves from the
early Universe. DECIGO and B-DECIGO are Fabry–Pérot type space gravita-
tional wave antennas. Their sensitivities are enhanced by a Fabry–Pérot cavity
while it requires sub-µm precision ranging for interferometer operation. This
requirement level is significantly more stringent than that for other type of the
space antennas such as Laser Interferometer Space Antenna (LISA). LISA uti-
lizes an optical transponder configuration and the requirement for the ranging
precision is about 10 m. Therefore, in order to operate Fabry–Pérot type space
gravitational wave antennas, new advanced control scheme for precise ranging is
necessary. Specifically, control topology and a longitudinal sensing scheme have
to be considered.
The control topology of the Fabry–Pérot type space gravitational wave anten-

nas should be addressed for the following reasons: First, the drag-free control
of satellites to suppress the effect of dragging force is necessary. It was not
clear whether the drag-free control can be engaged with all degrees-of-freedom
control of the cavity. The second reason is a lack of natural reference for the
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control while, in ground-based detectors, the ground is a stable reference. Third,
a feedback system introduces additional noises through the feedback loop. Thus,
the control system has to be carefully designed, especially in the observation
frequency band.
In addition, for the gravitational wave observation, a sensing method, i.e. an

interferometer configuration, is also important. DECIGO and B-DECIGO utilize
dual-pass Fabry–Pérot cavities to form a triangular shaped interferometer to
obtain the redundancy with minimum number of the test masses. In the dual-
pass Fabry–Pérot cavity, laser light is injected from both sides of one Fabry–
Pérot cavity and the relative frequency of the two lasers cannot be controlled
independently. This is a new interferometer configuration for DECIGO and B-
DECIGO. In this interferometer configuration, since the Fabry–Pérot cavities
are coupled with each other, a new scheme to obtain the longitudinal signal of
all the interferometers is necessary. Therefore, the operation of the dual-pass
Fabry–Pérot cavity has to be demonstrated for DECIGO and B-DECIGO.
In this thesis, the control scheme of the Fabry–Pérot type space gravitational

wave antenna is studied. First, the control topology is considered with the nu-
merical model of the Fabry–Pérot type antenna including a mechanical and opto-
mechanical response, a sensing and actuation scheme, external disturbances, and
sensing noises. The new model is named a full DECIGO interferometer model.
This new model reveals that the interferometer control and drag-free control can
be engaged at the same time by separating the controlled degrees of freedom
with each control, and the mirror position can be used as a reference of the con-
trol. Using the model, a solution of DECIGO parameters with interferometer
control achieving the target strain sensitivity of 10−23 /

√
Hz is also found. In

addition, more than one-day stability is also achieved. With the sensitivity of
10−23 /

√
Hz, for example, the model of the phase transition at the electroweak

scale in the early Universe can be tested. Second, the dual-pass differential
Fabry–Pérot interferometer is formulated and is constructed in a ground labo-
ratory with the 55-cm-long Fabry–Pérot cavity. The operation of the dual-pass
differential Fabry–Pérot interferometer is demonstrated for the first time. More-
over, it is confirmed that cavity detuning can be reduced by the cavity length
adjustment as predicted by the formulation. The cavity detuning reduction is
essential to minimize a laser intensity noise, which would be a major noise source
in DECIGO. These results indicate that the dual-pass differential Fabry–Pérot
interferometer is correctly understood with the new formulation.
This work helps conduct the detailed design of DECIGO and B-DECIGO

and is an essential basis for opening the window of gravitational wave physics
and astronomy in the decihertz band, especially for the observation of the early
Universe.
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要旨
Fabry–Pérot型宇宙重力波望遠鏡の制御手法に関する研究

長野　晃士
指導教員: 内山　隆

重力波とは、時空の歪みが波となって伝わる現象である。重力波の存在は、一
般相対性理論を考案した Albert Einstein によって指摘された。Advanced Laser
Interferometer Gravitational-Wave Observatory (aLIGO) による、ブラックホー
ル連星合体からの重力波の初検出により、重力波物理学、天文学、そして宇宙論の新
しい時代が始まった。
現在の aLIGOなどの地上重力波望遠鏡の観測帯域は、重力波の周波数で約 10 Hz

から数 kHzに限られている。この低周波帯域は、主に地面振動に起因する雑音で決
まっている。しかし、より低い周波数帯域でも、いくつかの観測目標が予言されて
いる。一つの観測目標が、太陽質量の約 103-6 倍の質量を持ち、中間質量ブラック
ホールの合体である。中間質量ブラックホール合体は、典型的に約 10−3 Hzから 1
Hzの重力波を放出する。この中間質量ブラックホール合体は、銀河中心の超巨大ブ
ラックホールを形成過程の候補であると考えられている。また、初期宇宙も観測目
標の一つである。初期宇宙の量子ゆらぎは、約 10−17 Hzから 104 Hzの幅広い重力
波を生成すると考えられている。これらの中間質量ブラックホール合体や、初期宇
宙由来の重力波観測により、新しい物理的・天文学的知見を得ることができる。した
がって、地面振動の影響を避け、より低い周波数の重力波を観測するための宇宙重力
波望遠鏡が提案されている。
約 0.1-10 Hzの間の重力波を観測することを目指して、DECi-hertz Interferometer

Gravitational Wave Observatory（DECIGO）プロジェクトが提案されている。ま
た、DECIGO の前哨ミッションとして、B-DECIGO プロジェクトも計画されて
いる。DECIGO の最終的な科学目標は、宇宙誕生直後の姿の直接観測である。
DECIGO と B-DECIGO は、Fabry–Pérot 型宇宙重力波望遠鏡である。これらの
望遠鏡では、Fabry–Pérot共振器により最高感度は向上するが、干渉計の動作のた
めにサブ µmの精度の測距が要求される。この要求精度は、他の方式の宇宙重力波
望遠鏡より遥かに厳しく、例えば、光トランスポンダ方式を採用している、Laser
Interferometer Space Antennaでの干渉計動作に必要な測距の精度は 10 m程度で
ある。したがって、Fabry–Pérot 型宇宙重力波望遠鏡のためには、測距・測角のた
めの新しい精密制御手法を開発する必要がある。特に、制御トポロジーと精密測距
手法を検討する必要がある。

Fabry–Pérot型宇宙重力波望遠鏡の制御トポロジーの開発は、以下の 3つの理由
のために必要である。1つ目の理由は、レーザー干渉計制御と、外力雑音の影響を低
減するための衛星のドラッグ・フリー制御が共存可能かどうかを確認する必要があ
るからである。ドラッグ・フリー制御と、Fabry–Pérot共振器の全自由度制御が、同
居できるかは確認する必要があった。2つ目の理由は、制御のための自明な基準点が
ないためである。DECIGOのような宇宙重力波望遠鏡では、地上重力波望遠鏡のよ
うに地面を基準として制御を行うことはできない。3つ目の理由は、制御による雑音
の混入である。DECIGOの感度を落とさないような制御が設計可能かどうかを確認
する必要がある。
また、重力波観測のためには、測定手法も、つまり干渉計方式も重要である。特

に、DECIGOと B-DECIGOでは、双方向 Fabry–Pérot共振器と呼ばれる干渉計方
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式を用いて、三角形型の干渉計を構成する予定である。双方向 Fabry–Pérot共振器
を用いると、最少数の鏡で冗長性を持つことができる。双方向 Fabry–Pérot共振器
では、一つの Fabry–Pérot共振器に両側からレーザー光を入射させる。そのため、2
つのレーザー光の周波数を独立に制御する事ができない。この双方向 Fabry–Pérot
共振器は、DECIGOと B-DECIGOのための新しい干渉計方式である。この方式で
は、複数の Fabry–Pérot共振器が互いに影響を与え合うため、すべての干渉計の信号
を同時に得るための新しい手法が必要である。そのため、DECIGOと B-DECIGO
のためには、双方向 Fabry–Pérot共振器の動作を確認する必要がある。
本論文では、Fabry–Pérot型宇宙重力波望遠鏡の制御に関する研究を行った。ま

ず、Fabry–Pérot型宇宙重力波望遠鏡の、機械的および光学機械的応答、センサー
とアクチュエーター、外力雑音、そしてセンサー雑音を含む新しい数値的モデルを構
築し、制御トポロジーを検討した。このモデル化により、干渉計制御とドラッグ・フ
リー制御は、制御自由度を分けることにより、共存可能であることが示された。ま
た、宇宙重力波望遠鏡の制御においては、試験質量の位置を基準にすることで制御
が可能であることも示された。また、構築されたモデルと制御トポロジーを用いて、
DECIGOにおける現実的な外乱や測定の雑音を考慮しても、目標感度である 10−23

1/
√
Hzというひずみ感度と 1日以上の安定性を持つ、DECIGOの干渉計制御の成

立解を確立した。この感度が達成されれば、初期宇宙の電弱相転移モデルの検証な
どが可能になる。次に、双方向差動 Fabry–Pérot干渉計を定式化するとともに、実
際に地上の実験室に 55 cmの基線長を持つセットアップを構築し、その動作を世界
で初めて実証した。さらに、DECIGOの主要な雑音源となりうるレーザー強度雑音
の原因となる、共振器の共振点からのずれが、共振器長さを調整することで低減され
ることを確認した。これらの結果は、今回新たに行った定式化により、双方向差動
Fabry–Pérot干渉計の挙動を正しく理解できることを示している。
この研究は、DECIGOと B-DECIGOの詳細な設計に資するものであり、将来の

0.1 Hz帯での重力波観測、特に宇宙誕生直後の姿の直接観測にむけた重要な基礎と
なるものである。
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Chapter 1

Introduction

Gravitational wave is a ripple of spacetime. The existence of the gravitational
wave was predicted in 1916 by Albert Einstein [1], who pointed out that gravity is
a curvature of spacetime in general relativity. General relativity predicts several
new gravitational phenomena, such as apsidal precession [2], gravitational lens-
ing [3–5], black holes [6, 7], and gravitational waves [1]. The gravitational wave
is one of the most important predictions. Therefore, many studies for detecting
gravitational waves have been performed after the Einstein’s predication [8–10].
Especially, astronomical objects are main targets of the study.
The observation of gravitational waves is motivated by two major scientific

objectives. The first motivation is the test of general relativity [11, 12]. Since
general relativity is the most reliable theory of gravity so far, most of the physi-
cal studies on the Universe are based on general relativity. Thus, testing general
relativity leads to improving our knowledge about the Universe. The second mo-
tivation is astronomical one [13, 14]. To gravitational waves, almost everything
is highly transparent. Although electro-magnetic waves are used in conventional
astronomy, they can be absorbed and/or scattered by normal matter and much
information is lost. Accordingly, gravitational waves provide essentially new
astronomical information, such as mechanism of gamma ray bursts [15] and su-
pernovae [16,17]. With the gravitational observation, the mass and the dynamics
of the astronomical event can be observed.
The first but indirect evidence of the gravitational wave was found by Russell

Alan Hulse and Joseph Hooton Taylor, Jr., who observed an orbital period of
the binary pulsar, PSR B1913+16 [18]. They found that the orbital period of
the binary pulsar was getting short and it was consistent with the predication
of general relativity. This result indicates that the binary pulsar loses a part of
its energy with gravitational wave emissions as predicted by general relativity
and the existence of the gravitational wave. However, the dynamics of strain
of space-time cannot be observed in the binary pulsar observation since, in the
observation of the orbital period, just the energy of the binary system can be
measured.
For the direct observation of strain of space-time, laser interferometric gravi-

tational wave detectors are widely used. The laser interferometric gravitational
wave detecters are based on a Michelson interferometer [19]. The Michelson
interferometer transduces the phase difference of two splitted laser lights into
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the laser intensity variation. Therefore, by using the Michelson interferometer,
the optical path length fluctuation due to the gravitational waves can be ob-
served. In addition, a Fabry–Pérot cavity is implemented in the base-line of the
Michelson interferometer to enhance the gravitational wave signal [20, 21]. For
now, several km-class ground-based laser interferometric gravitational wave de-
tectors are in operation all over the world, such as Advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO) in US [22], Advanced Virgo (AdVirgo)
in Italy [23], GEO600 in Germany [24–26], and KAGRA in Japan [27, 28]. The
observation frequency of these observatory is from ∼ 10 Hz to a few kHz. The
lower limit of the frequency is determined by the seismic motion.
In 2015, aLIGO observed the first gravitational wave event, which is called

GW150914 [29]. GW150914 is the gravitational wave from binary black holes of
which masses are 36 M⊙ and 29 M⊙ (M⊙ is the solar mass) at redshift z = 0.09.
After GW150914, more than 10 black hole binaries including GW150914 were
detected [30]. By using these events (and a neutron star binary event explained
later), general relativity was tested while no inconsistency with general relativity
was found [31,32].
In addition to the black hole binaries, the neutron star binary has been ob-

served with aLIGO and AdVirgo in 2017. The neutron star binary event is
called GW170817 [33]. In GW170817, besides the gravitational wave observa-
tion, electro-magnetic follow-up observations were also performed [34]. Espe-
cially, there was coincidence between the gravitational wave event and the short
gamma-ray burst event GRB 170817A [35]. This multi-observation strongly in-
dicates that the short gamma-ray burst is caused by the neutron star binary
coalescence. According to these black hole and neutron star events, it can be
said that a new era of the gravitational wave and multi-messenger physics and
astronomy has started.
Although the observational frequency range of the ground-based laser inter-

ferometric gravitational wave observatory is from ∼ 10 Hz to ∼ 1000 Hz, some
observational targets outside the range of the frequency band are predicted. One
target is the coalescence of the intermediate-mass black holes, i.e. the black holes
with masses in the range between ∼ 103 M⊙ and ∼ 106 M⊙, which typically emit
the gravitational waves in the frequency range between ∼ 10−3 Hz and ∼ 1 Hz.
The coalescence of the intermediate-mass black holes is considered to be a can-
didate of the origin of the super massive black hole that has been discovered at
the galactic center [36, 37]. Another target is the early Universe [38, 39]. The
quantum fluctuation is considered to cause the gravitational waves in the wide
frequency range, for example, between ∼ 10−17 Hz and ∼ 104 Hz [40]. The
observations of the gravitational waves from the coalescence of the intermediate-
mass black holes and the early Universe provide new physical and astronomical
information.

Therefore, for further expansion of gravitational wave physics and astronomy,
it is important to expand the observation frequency range. The observation of
lower frequency gravitational waves (< 10 Hz) than those have been observed
allows us to study various sciences, such as distinction of the formation scenario of
super-massive black holes in galactic centers [36, 37, 41], study on the evolution
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of the compact binary stars, such as white dwarf binaries [42], precise test of
the modified gravity theories [43, 44] and so on. Especially in 0.1-Hz range,
there is a possibility to observe the gravitational waves generated in the early
Universe [38,39] and to verify the inflation theory [40,45,46].
So far, two types of the next generation laser interferometric gravitational wave

detectors are proposed for further expansion of the gravitational wave science: 10-
km-class ground-based detectors and space detector with 100-km to 2.5-Gm scale
interferometer. Examples of the former type detectors are Einstein Telescope [47]
and Cosmic Explorer [48]. They are aimed to observe relatively high frequency
gravitational waves in between 5 Hz and∼ kHz. For example, gravitational waves
in that frequency range are caused by stellar mass compact binaries. Examples
of the latter type detectors are Laser Interferometer Space Antenna (LISA) [49],
Big Bang Observer (BBO) [50], TianQin [51], Taiji [52], TianGO [53], DECi-
hertz Interferometer Gravitational Wave Observatory (DECIGO) [54], and B-
DECIGO are proposed. Since the low frequency sensitivity of the ground based
detectors are limited by ground motion [55,56], space detectors are necessary for
low frequency gravitational wave observation.
Space gravitational wave detectors are classified into mainly two types: optical

transponder type (LISA, BBO, TianQin, and Taiji) and Fabry–Pérot type de-
tectors (DECIGO and B-DECIGO). By using the Fabry–Pérot cavity, the laser
beam is circulated in the cavity. In other words, the time for the interaction of
the laser interferometer and the gravitational waves is enhanced with the cavity.
As a result, the highest sensitivity of the laser interferometer can be improved.
Consequently, DECIGO can be so sensitive that it has a possibility to observe
the gravitational wave background generated in the inflation era of the early
Universe [38,39].
The Fabry–Pérot type space gravitational wave detectors, however, need pre-

cise control system since the Fabry–Pérot cavity has small linear range shorter
than the laser wavelength. In gravitational wave detectors, laser with a wave-
length of ∼ µm is used*1 so that sub-µm level control is necessary. Although
the precise control of ∼ 10−11 m has been achieved in the current ground-based
gravitational wave detectors, new control scheme is necessary for space detectors
since they have a number of challenges that are not in the ground-based detec-
tors. One of the challenges is lack of natural reference for the control while, in
ground-based detectors, the ground is a stable reference. Another challenge is
the necessity of drag-free control that is not used in the ground-base detectors.
The drag-free control is the control of a satellite to follow a test mass. The test
mass floats in the satellite and is isolated from the dragging force, such as solar
radiation pressure, applied to the satellite [57]. It was not clear whether the
drag-free control can be engaged simultaneously with all the degrees-of-freedom
control of the Fabry–Pérot cavity. Moreover, a feedback system for precise con-
trol introduces additional noises through feedback loops. The additional noise
could disturb the gravitational wave observation. Therefore, the control system
has to be carefully designed especially in the observation frequency band [58,59].

*1 This wavelength is used for the gravitational wave observatory due to the technical reason.
There is a stable and powerful laser with a wavelength of ∼ 1 µm, for example 1.064 µm.
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In addition, for gravitational wave observation, a sensing method to measure
the length of cavity, i.e. an interferometer configuration, is also important. DE-
CIGO and B-DECIGO (and most of the other space detectors) adopt a triangular
shaped interferometer geometry for improving calibration precision, false alarm
ratio, and sensitivity to polarizations of gravitational waves [60, 61]. These fea-
tures are important to improve the accuracy of the parameter estimation of the
gravitational wave sources from the observation and the reliability of the gravita-
tional wave detection. DECIGO and B-DECIGO utilize a dual-pass Fabry–Pérot
cavity to form the triangular shaped interferometer. One advantage of this con-
figuration is that the redundancy can be obtained with minimum number of the
test masses. This is a new interferometer configuration. In the dual-pass Fabry–
Pérot cavity, laser light is injected from both sides of one Fabry–Pérot cavity
and the relative frequency of the two lasers cannot be controlled independently.
In this interferometer configuration, since the Fabry–Pérot cavities are coupled
with each other, we need a new scheme to obtain the longitudinal signal of all the
interferometers while the Fabry–Pérot cavity is widely used in optics field, e.g.
spectroscopy, optical quantum computing, laser telecommunications. Therefore,
the operation of the dual-pass Fabry–Pérot cavity should be demonstrated for
DECIGO and B-DECIGO.
In this thesis, in order to realize the Fabry–Pérot type space gravitational

wave detectors, such as DECIGO and B-DECIGO, and expand the gravitational
wave physics and astronomy, the control scheme of the Fabry–Pérot type space
gravitational wave detectors is addressed. Specifically, we investigate the control
topology of the Fabry–Pérot type space gravitational wave detectors and experi-
mentally construct the dual-pass Fabry–Pérot interferometer for demonstration.
This thesis is organized as follows: Chapter 1 is this chapter. Chapter 2 in-

troduces features of the gravitational wave from general relativity, sources of
the gravitational wave, and scientific cases with the observation of the gravita-
tional waves. Chapter 3 shows a review of the laser interferometric gravitational
wave detectors and comparison among the ground-based detectors and space
detectors (LISA, the optical transponder type; DECIGO, Fabry–Pérot type).
Chapter 4 explains the scientific objectives and overall concept of DECIGO and
B-DECIGO. Chapter 5 describes the study of control scheme of DECIGO and
B-DECIGO. The result of the study includes the confirmation of the control sta-
bility and noise performance of feedback control. Chapter 6 provides the result
of the experimental demonstration of the dual-pass Fabry–Pérot cavity. Chap-
ter 7 concludes the study of the control scheme of the Fabry–Pérot type space
gravitational wave detectors.
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Chapter 2

Gravitational wave

Gravitational waves are ripples in space-time. They were predicted in general
relativity by Einstein [1]. Hulse and Taylor proved the existence of the gravita-
tional wave indirectly via a reduction in the revolution cycle of the binary pulsar,
PSR B1913+16 [18]. Their observation indicated that reduction in the energy
of the binary pulsar was able to be explained with general relativity. In other
words, the ripple in space-time was not detected in Hulse and Taylor observation.
Afterward, research toward the direct observation of the gravitational wave

was conducted. Subsequently, aLIGO detected the gravitational wave from a
binary black hole on Sep. 14, 2015 (UTC) for the first time [29]. This event
is called GW150914. After GW150914, more than 10 gravitational wave events
have been detected. Among them, a neutron star binary event, GW170817, was
also detected [33]. In GW170817, many electro-magnetic observatories detected
afterglow of the neutron binary coalescence [34]. These gravitational wave events
led to many scientific results, such as the test of general relativity [31, 32], and
opening the gravitational wave physics and astronomy era.
In this chapter, we linearize Einstein equation for understanding the gravita-

tional waves. From the linearized Einstein equation, the gravitational wave is
derived. Then, we introduce a number of gravitational wave sources that can
be or is expected to be detected. Finally, expected sciences with gravitational
waves are reviewed.

2.1 Linearized Einstein Equation
In general relativity, time and space are represented in four dimensions (one time
coordinate and three space coordinates). In the four-dimensional space-time,
two very near events, xµ *1 and xµ + dxµ, have a gap, ds, which is expressed in
quadratic form as

ds2 = gµνdx
µdxν , (2.1)

where gµν is a metric tensor, which is often abbreviated simply as a metric [62].*2

Equation (2.1) shows that, in general relativity, nature of space-time is repre-

*1 In this thesis, x0, and (x1, x2, x3) indicate time coordinate (ct) and space coordinate,
respectively. Also, Greek indices (Roman indexes) take the value of 0, 1, 2, 3 (1, 2, 3).

*2 In this thesis, we follow Einstein summation convention.
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sented by the metric tensor. In addition, equation (2.1) indicates that gµν is a
symmetric tensor.
When matter exists, the metric tensors follow the Einstein equation,

Rµν − 1

2
gµνR =

8πG

c4
Tµν , (2.2)

where Rµν is a Ricci tensor, R is scalar curvature, G is the gravitational constant,
c is the speed of light, Tµν is an energy-momentum tensor. *3 The left and right
hand side of Einstein equation (2.2) correspond to space-time and matter field,
respectively. In other words, Einstein equation indicates that matter makes
curvature of space-time, i.e. gravitational field. In addition, Einstein equation
shows that moving matter varies the gravitational field.
In the range well far from the source of the gravitational field, we can under-

stand the nature of the space-time considering the perturbation from the flat
space-time. When a Minkowski metric, ηµν , is expanded with small perturba-
tion, hµν , and we drop the second order term of |hµν |, the metric, gµν , under the
existence of matter is represented as

gµν = ηµν + hµν , (2.3)

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , |hµν | ≪ 1. (2.4)

This kind of treatment is known as the linearized theory.
From here, we drives Einstein equation in linearized theory. First, we define

h ≡ ηµνhµν , (2.5)

h̄µν ≡ hµν − 1

2
ηµνh. (2.6)

When we inversely define h̄ ≡ ηµν h̄µν = h − 2h = −h, the metric can be
represented as,

hµν = h̄µν − 1

2
ηµν h̄. (2.7)

*3 In this thesis, Christoffel symbol, Γρ
µν , Riemann tensor, Rµ

νδσ , Ricci tensor, Rµν , scalar
curvature, R, are defined as follows [63]

Γρ
µν =

1

2
gρσ(∂µgσν + ∂νgσµ − ∂σgµν)

(
∂µ ≡

∂

∂xµ

)
,

Rµ
νδσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ,

Rµν = Rα
µαν ,

R = gµνRµν .
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Ricci tensor, Rµν , and scaler curvature, R, is denoted as,

Rµν = −1

2
(□h̄µν − ∂ρ∂µh̄ρν − ∂ρ∂ν h̄ρµ − 1

2
ηµν□h̄), (2.8)

R = −1

2
(−□h̄− 2∂ρ∂µh̄ρµ), (2.9)

where □ ≡ ηµν∂
µ∂ν = ∂µ∂

µ. Consequently, Einstein equation (equation (2.2))
is expressed as,

1

2

(
□h̄µν + ηµν∂

ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ

)
= −8πG

c4
Tµν . (2.10)

Finally, when we apply Lorenz gauge,

∂ν h̄µν = 0, (2.11)

equation (2.10) is denoted as

□h̄µν = −16πG

c4
Tµν . (2.12)

This equation is the linearized Einstein equation. The linearized equation can
be used to understand gravitational field in linearized theory.
With equation (2.11), 10 degrees of freedom of symmetry tensor, hµν , is re-

duced to 6. In addition, with equations (2.11) and (2.12), the energy-momentum
tensor is represented as

∂νTµν = 0. (2.13)

This equation corresponds to the law of conservation of the energy and momen-
tum.
As the end of this section, we show that Lorenz gauge can be applied anytime.

First, let’s consider coordinate transformation, xµ → x′µ = xµ + ξµ(x), where
|∂µξν | is the same order of magnitude as |hµν |. Then, h̄µν and its derivatives are
transformed as

h̄µν(x) → h̄′
µν(x

′) = h̄µν(x)− ∂µξν(x)− ∂νξµ(x) + ηµν∂ρξ
ρ(x). (2.14)

∂ν h̄µν(x) → (∂ν h̄µν)
′(x′) = ∂ν h̄µν(x)−□ξµ(x) (2.15)

Thus, if ξµ meeting the equation

□ξµ(x) = ∂ν h̄µν(x) (2.16)

exists anytime, Lorenz gauge can be applied anytime. Since we can denote
∂ν h̄µν(x) = fµ(x) using a function fµ(x), equation (2.16) is expressed as

□ξµ(x) = fµ(x). (2.17)

Then, the answer of equation (2.17) can be denoted with Green function G(x)
meeting

□G(x− y) = δ4(x− y), (2.18)
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as

ξµ(x) =

∫
d4y G(x− y)fµ(y). (2.19)

Since ξµ(x) in the left hand side of equation (2.19) formally exists always, there
is an answer of equation (2.16) anytime. It means that Lorenz gauge can be
applied anytime.

2.2 Derivation of gravitational waves and their nature
In vacuum, that is the region where Tµν = 0, equation (2.12) is denoted as

□h̄µν = 0. (2.20)

This is a wave equation for h̄µν and shows that h̄µν , which is perturbation from
the Minkowski metric, is propagated at the speed of light. This h̄µν is a gravi-
tational wave.
From here, we investigate the nature of the gravitational wave. In the range far

enough from the gravitational wave source, Einstein equation can be represented
in a simple form using Lorenz gauge, equation (2.11). However, Lorenz gauge
does not decide the gauge form completely. In other words, even with Lorenz
gauge, we can still perform coordinate transformation. In fact, according to
equation (2.15), when we transform the coordinate, xµ, meeting Lorenz gauge
as

xµ → x′µ = xµ + ξµ, (2.21)

□ξµ = 0, (2.22)

Lorenz gauge is invariant. When □ξµ = 0, □ξµν = 0, where

ξµν ≡ ∂µξν + ∂νξµ − ηµν∂ρξ
ρ, (2.23)

is also valid since □ and ∂µ can be commutated. Equation (2.14) indicates
that, under the coordinate transformation as equation (2.21), equation (2.20) is
invariant. Therefore, by using equation (2.22), degrees of freedom of h̄µν can be
reduced by four. As a result, according to this symmetry and Lorenz gauge, the
degree of freedoms of h̄µν is two.
To denote h̄µν with two degrees of freedom, we deform equations (2.11) and

(2.22). First, ξ0 is chosen to make trace zero, that is h̄ = 0. Notice that, when
h̄ = 0, h̄µν = hµν . Second ξi(x) is chosen to make h0i(x) = 0. Then, since
h̄µν = hµν , from Lorenz gauge, equation (2.11), with µ = 0,

∂0h00 + ∂ih0i = 0, (2.24)

and h0i = 0, ∂0h00 is denoted as

∂0h00 = 0. (2.25)
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This indicates that h00 is temporally constant. From physical point of view, the
time independent term, h00, represents static gravitational field, i.e. Newtonian
potential of the gravitational wave source. Since gravitational waves are time
dependent, ∂0h00 = 0 means h00 = 0 when we consider gravitational waves.
Consequently, h0i(x) = 0. Therefore, only spacial components, hij , which meet
Lorenz gauge (∂jhij = 0) and traceless condition (hi

i = 0) are left. In summary,
hµν is donated as,

h0µ = 0, hi
i = 0, ∂jhij = 0, (2.26)

which are called a transverse-traceless gauge (TT gauge). Since equation (2.26)
is composed of eight formulas, 10 degrees of freedom of hµν are reduced to be
two. Hereafter, the metric in TT gauge is written as hTT

ij .

Note that TT gauge is not valid in gravitational wave sources since □h̄µν ̸= 0.
In the gravitational wave sources, once Lorenz gauge is applied, the degree of
freedom of □ξµ = 0, i.e. □ξµν = 0, remains. However, we cannot make the
components of h̄µν to meet □h̄µν ̸= 0, zero even by subtracting ξµν meeting
□ξµν = 0.
Equation (2.20) has a plane wave solution, hTT

ij (x) = eij(k)e
ikx, where kx =

kµxµ, k
µ = (ωGW/c,k), ωGW/c = |k|, eij(k) is a polarization tensor, and ωGW

is angular frequency of the gravitational wave. When a monochromatic plane
wave that is denoted with a wave-number vector, k, equation (2.26) indicates
that non-zero components of hTT

ij is orthogonal to the propagation direction
vector of the gravitational wave, n̂ = k/|k|. This is because in the plane wave,
∂jhij = 0 means njhij = 0, i.e. the transverse wave. When n̂ is chosen along z
axis, because of equation (2.26) and the symmetry analysis of hTT

ij , the metric is
written as,

hTT
ij (t, z) =

 h+ h× 0
h× −h+ 0
0 0 0


ij

cos[ωGW(t− z/c)], (2.27)

or simply,

hTT
ab (t, z) =

(
h+(t) h×(t)
h×(t) −h+(t)

)
ab

, (2.28)

where h+(t) ≡ h+ cos[ωGW(t − z/c)], h×(t) ≡ h× cos[ωGW(t − z/c)], and a, b =
1, 2. h+(t) and h×(t) are called plus mode (+ mode) and cross mode (× mode),
respectively. By using them, a square of the infinitesimal world line, ds2 is
denoted as

ds2 =− c2dt2 + dz2 + [1 + h+(t)]dx
2 + [1− h+(t)]dy

2 + 2h×(t)dxdy. (2.29)

Figure 2.1 shows time variation of the free particle swarm motion caused by plus-
and cross-mode gravitational waves.
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Figure 2.1: Time variation of the free particle swarm’s motion caused by plus-
and cross-mode gravitational waves. Here, gravitational waves are assumed to
propagate along z-axis.

2.3 Generation of gravitational waves and their sources

2.3.1 Generation of gravitational waves

Using the linearized Einstein equation (equation (2.12)), generation of the grav-
itational wave can be understood. When the source, i.e. the energy-momentum
tensor, generating gravitational waves is locally distributed, the solution of equa-
tion (2.12) is denoted as

h̄µν(t,x) =
4G

c4

∫
Tµν(t− |x− x′|/c,x′)

|x− x′|
d3x′. (2.30)

Moreover, if the size of the gravitational wave source is much smaller than the
wave length of the gravitational wave generated by the source and an observer
is in far from the source, equation (2.30) is written as

h̄ij(t,x) =
2G

c4ro
Q̈ij(t− ro/c), (2.31)

where ro is a distance between the gravitational wave source and the observer,
and Qij is a quadrupole momentum of the source, which is defined as

Qij(t− ro/c) ≡
∫

ρ(t− ro/c,x
′)

(
x′
ix

′
j −

1

3
δijx

′ix′j
)
d3x′. (2.32)

Equation (2.31) indicates that the lowest degree of the gravitational wave gen-
eration is quadrupole. Using equation (2.31), the amount of the gravitational
wave generated by its source is evaluated.
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2.3.2 Sources of the gravitational wave

Compact-binary coalescence

All gravitational waves detected by ground-based detectors by the end of 2017
are generated by compact-binary coalescences, known as CBC, [30]: binary
black holes, and binary neutron stars. Other compact-binary-coalescence can-
didates that have not been detected directly are a neutron-star-black-hole bi-
nary [64, 65],*4 a binary white dwarf [66], a white-dwarf-neutron-star [67] and
white-dwarf-black-hole binary [68], and so on. Strain equivalent amplitude,
hCBC(t), of gravitational waves from equal-mass compact-binary coalescences
during inspiral, i.e. the evolution phase of the compact binary of which orbital
radius decreases gradually before the merging, is written as [63], in the detector
frame,

hCBC(t) ≃
4

dL

(
GMCBC

21/5c3

)5/3(
πfGW(τ)

c

)2/3

cos(2πfGW(τ)t+ ϕ0), (2.33)

fGW(τ) =
1

π

(
5

256

1

τ

)3/8(
GMCBC

21/5c3

)−5/8

(τ ≡ tcoal − t), (2.34)

where MCBC is the mass of the source object, dL is the luminosity distance,
fGW is the frequency of the gravitational wave, ϕ0 is a phase factor, and tcaol
is the time at coalescence. Equation (2.34) indicates that the frequency of the
gravitational wave is gradually increasing during the inspiral and is the largest
at coalescence. This characteristic signal of the gravitational wave is called a
chirp signal. Strain equivalent amplitude in frequency space, hCBC(f) [1/Hz], is
written as [63], in detector frame,

hCBC(f) ≃
1

π2/3

(
5

24

)1/2
c

dL

(
GMCBC

21/5c3

)5/6

f−7/6. (2.35)

The inspiral is finished at the innermost stable circular orbit. The gravitational
wave frequency at the innermost stable circular orbit is given by

fISCO =
1

6
√
6(2π)

c3

GMCBC
. (2.36)

Let us consider the amplitude of the gravitational wave during inspiral
from compact-binary coalescences, especially black-hole binaries. From

*4 There is a probable neutron-star-black-hole-binary event in Observational Run 3 of
aLIGO and AdVirgo, so called S190814bv, which is publicly alerted in GraceDB
(https://gracedb.ligo.org) while detailed parameters have not been published yet.
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equations (2.35) and (2.36),

hCBC(f) ≃ 4× 10−21

(
M

104 M⊙

)5/6(
100 Gpc

dL

)(
f

fISCO

)−7/6

, (2.37)

fISCO ≃ 0.2

(
104 M⊙

M

)
[Hz]. (2.38)

Supernova

It is possible to detect gravitational waves from core collapse of supernovae if
there is a mass asymmetry in the core collapse [17]. By using numerical simu-
lation, amplitude and frequency of gravitational waves from supernova is esti-
mated. Typically the amplitude is h ∼ 10−22 − 10−21 and the frequency is ∼ 1
kHz in 10 kpc far from the supernova [69].

Isolated pulsar

A pulsar is an astronomical object emitting periodic electromagnetic pulse in
gamma ray, X-ray, radio wave, and visible light [70]. The pulsar is considered to
be spinning magnetized neutron star that is a supernova remnant [70]. If these
pulsars have a slight mountain or valley because of the deformation or the fluid
oscillation, they can generate continuous gravitational wave [71]. For example,
mili-second pulsars that have 1 ms or a few 10 ms duration emit gravitational
waves in the frequency range between 10 Hz and 1000 Hz. The amplitude of the
gravitational waves from the isolated pulsar is given by [63]

hpulsar ≃
16π2Gf

3/2
rot

c4dL
ϵI, (2.39)

where frot is the rotation frequency of the pulsar, ϵ is the ellipticity of the pulsar,
and I is the momentum inertial along the rotation axis of the pulsar. If the Crab
Pulsar (PSR J0534+2200), which is 2 kpc away from the Earth, has ellipticity ϵ ∼
10−5, the gravitational wave of which amplitude is estimated to be h ∼ 10−26 at
the Earth is considered to be generated [63]. Although this amplitude is relatively
small compared with the amplitude of the gravitational waves from compact-
binary coalescences, the gravitational waves from the pulsars can be amplified
by integrating the signal for long time since they are continuous. Therefore,
the pulsar is one of the promising astronomical objects generating detectable
gravitational waves.

Early Universe

During inflation in the early Universe, the quantum fluctuation of the space-
time, i.e. the tensor metric, can generate stochastic gravitational waves called
stochastic gravitational wave background [38, 39]. Since the quantum fluctu-
ation is considered to be scale invariant, the generated gravitational wave is
also scale invariant. In other words, the power of the generated gravitational
wave is frequency independent. In addition to the space-time fluctuation, cosmic
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strings [72,73], domain walls [74, 75], and preheating of the Universe after infla-
tion [76] in the early Universe are considered to be the sources of the stochastic
gravitational wave background. The stochastic gravitational wave background is
characterized with its energy per unit logarithmic interval of frequency, Ωgw(f),
and its power spectral density is written as

SSGWB(f) =
3H2

0

4π2f3
Ωgw(f), (2.40)

where H0 is the Hubble constant [63] (the definition of the power spectral density
is shown in Appendix B).

2.4 Gravitational wave physics and astronomy
So far, aLIGO and AdVirgo have been operated for two Observational Runs
and 10 black hole binaries and one neutron star binary have been detected [30].
Here, we review the scientific results of the two Observational Runs. Notice
that although the third Observational Run started from April, 2019, and many
gravitational waves were detected, the results are not explained here since the
detailed parameters of the events have not been published yet. In addition to the
current result, future prospect of the gravitational wave physics and astronomy
are shown, too.

2.4.1 Test of general relativity

One of the most important objectives of the gravitational wave physics is testing
general relativity [31,32]. The simplest way to do the test is comparing the wave-
form predicted from general relativity to that observed with the real detectors.
This method is called parameterized test [77, 78]. Another way is comparing
the parameters of the gravitational wave source estimated from two durations,
for example, inspiral and ringdown modes [79]. Since gravity in the ringdown
modes is much stronger than that in the inspiral, the gravitational effect beyond
general relativity is considered to be visible in the ringdown modes. Although
contradiction of general relativity has not been found yet, many modified gravi-
tational theories are proposed [80–82]. One of the major predictions of modified
theories is gravitational wave of vector and/or scalar mode in addition to the
conventional tensor mode [83]. The additional mode affects the waveform of
the gravitational waves or the result of the parameter estimation. The number
of gravitational wave modes that can be tested is in principle equal to or less
than the effective number of the detectors. Thus, further observation with more
detectors is necessary [84,85].

2.4.2 Source of the gamma-ray burst

In the neutron star binary observation, GW170817, not only gravitational
wave but also electro-magnetic signals were observed [86]. Especially, the
short gamma-ray burst, GRB 170817A, is coincident to the gravitational wave
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event [35]. Although the gamma-ray burst is discovered in 1960s [87], its source
and mechanism are not fully concluded [88]. Joint observation of gravitational
wave and gamma-ray burst was considered to be promising method to address
the mechanism of the gamma-ray burst [89]. The observations of GW170817
and GRB 170817A indicate that the neutron star binary can be the source
of the short gamma-ray burst. However, there is an unresolved point in this
event: the observed gamma-ray bust is much weaker and closer than the typical
event. The observed luminosity distance and the flux of GW170817 and GRB
170817A is 42.9 Mpc and 2 × 1047 erg, respectively, while the nearest and
weakest gamma-ray burst except for GRB 170817A is about 400 Mpc away
from the Earth and 2 × 1049 erg [35]. Thus, it has not been concluded if GRB
170817A is the same type of gamma-ray burst as the other events or not and
further observations are still necessary for the final conclusion.

2.4.3 Synthesis of heavy nuclei

Multi-messenger astronomy related with GW170817 provided important infor-
mation about the synthesis of heavy nuclei. In the follow-up electro-magnetic
observation, a kilonova was found [86]. The spectra of the kilonova afterglow
observed by various observatories with electro-magnetic waves, such as infra red,
visible, ultra violet, and X-rays, indicate that the r-process occurred in the neu-
tron star binary merger and heavy nuclei were generated [90]. However, it has
not been qualitatively concluded that the amount of heavy nuclei is enough to
explain the current amount of that in the Universe. If more events are observed,
we can investigate the synthesis of heavy nuclei in more quantitative way.

2.4.4 Verifying inflation

If the gravitational wave from the early Universe is observed, its nature, for ex-
ample, inflation mechanism [91, 92], can be directly investigated. Gravitational
waves from the early Universe is expanded by the inflation. Since spectra of the
stochastic gravitational wave background is frequency invariant, there are wide
frequency range observation and measurement. In very low frequency (10−18-
10−16 Hz), manifold microwave telescopes are trying to detect B mode of cosmic
microwave background that is characteristic signal generated by the stochastic
gravitational wave background [93,94]. Observations in the frequency range be-
tween 10−9 Hz and 10−3 Hz were performed pulsar timing array [95–97] and
doppler tracking using Cassini [98]. Between 1 Hz and 103 Hz, the ground-based
interferometric gravitational wave detectors provided the upper limits [99–101].
The gravitational waves at very high frequency (100 MHz-1 GHz) were searched
for with a special laser interferometer, called synchronous recycling interferome-
ter [102,103], and magnon detectors [104]. Although no observation has detected
stochastic gravitational wave background, cosmic microwave background obser-
vation gave the most strict upper limit to Ωgw(0.2 Hz) of ∼ 10−16 [105].
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2.5 Multi-band gravitational wave physics and astronomy
It is worth noting that there are advantages of the multi-band gravitational wave
physics and astronomy.

2.5.1 Precise Characterization of the compact binary

As shown in equations (2.33) and (2.34), the frequency of the gravitational wave
increases with time. If the gravitational wave is observed from the low fre-
quency, we can observe the gravitational wave event from the early phase. Thus,
the multi-frequency band observation of the compact binaries leads to the long
observation duration. For example, the 30-30 M⊙ binary black hole can be ob-
served for ∼ 2 years if the observation band is between 0.01 and 1000 Hz. Such a
long observation provides the high signal-to-noise ratio observation. As a result,
the compact binary can be precisely characterized. Consequently, early alerts
before the coalescence for the electromagnetic observatories and the precise test
of general relativity can be conducted [106–108]. For example, if there is an

observatory with the strain sensitivity of ∼ 10−22 /
√
Hz between 0.1 Hz and 10

Hz (this corresponds to the B-DECIGO sensitivity explained later), the coales-
cence time can be estimated with statistic error with in 5 s in six days before
the coalescence [108].

2.5.2 Mass distribution of the black hole

One of the astrophysically important questions is the way the super-massive
black hole (∼ 108 M⊙) in the galactic center is formed. There are a number of
scenarios proposed to the formation mechanism. One scenario is so-called hierar-
chical scenario [36]. In this scenario, a lot of seed black holes of which masses are
∼ 103 M⊙ merge and form relatively heavy black holes (∼ 106 M⊙). These black
holes having masses between ∼ 103 M⊙ and ∼ 106 M⊙ are called intermediate-
mass black holes. Subsequently, the coalescences of the intermediate-mass black
holes produce the super-massive black hole. This formation scenario predicts the
existence of the black holes with wide mass range. In order to distinguish the
formation scenario, we need to investigate the mass distribution of the black hole
in the Universe. As shown in equation (2.36), the frequency of the gravitational
wave from the black hole binary varies depending on the black hole mass. There-
fore, the multi-band observation is necessary to obtain the mass distribution of
the black hole.

2.5.3 Observing the structure of the stochastic gravitational wave

background

Another important target of the multi-band gravitational wave observation is
the examination of the stochastic gravitational wave background. It is a main
target of multi-band gravitational wave observation since the energy of stochastic
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gravitational wave background from the inflation is considered to be frequency
independent as explained in Subsection 2.3.2. Actually, the multi-band obser-
vation of the stochastic gravitational wave background is important even more
as described below. In addition to the energy of stochastic gravitational wave
background, its spectrum shape is used to probe the evolution of the early Uni-
verse [109]. For example, after the inflation, the Universe was considered to be
reheated [110]. The reheating makes a cut-off frequency in the spectrum of the
stochastic gravitational wave background depending on the duration of reheat-
ing. This is because the expansion law of the Universe during the reheating is
the same as that during the matter-dominant phase where Ωgw(f) is reduced.
The observation of cut-off frequency provides a direct evidence of the reheat-
ing [111, 112]. Moreover, there are other proposed models predicting different
spectra of the stochastic gravitational wave background [113, 114]. Therefore,
by observing the stochastic gravitational wave background in the wide frequency
range, the proposed models can be tested.
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Chapter 3

Interferometric gravitational wave

detector

In this chapter, we summarize the feature of laser interferometers: a Michel-
son interferometer and a Fabry–Pérot cavity. Then the designed sensitivity of
ground-based and space gravitational wave detectors are shown. In the end, two
space gravitational wave detectors, LISA and DECIGO, are compared.

3.1 Overview of interferometric gravitational wave

detectors
For direct detection of gravitational waves, it is necessary to measure the strain
between two free masses, at least, of h ∼ 10−21 caused by gravitational waves.
This tiny space-time ripple was detected with aLIGO for the first time. aLIGO is
a laser interferometric gravitational wave detector [22]. Most of the gravitational
wave detectors that are under operation, such as AdVirgo [23], KAGRA [27,28],
and GEO600 [24–26] are also laser interferometers. Moreover, future space grav-
itational wave detectors, such as DECIGO [54], LISA [49], BBO [50], Tian-
Qin [51], Taiji [52], and TianGO [53] are interferometric detectors.
Laser interferometric gravitational wave detectors are based on a Michelson

interferometer [19]. The Michelson interferometer converts the variation of two
arms length, i.e. phase variation, to the variation of intensity. Since a wavelength
of laser light (∼ 1 µm) is used as a reference of the arm length, length change
can be measured precisely. However, if we use a simple Michelson interferome-
ter, optimal arm length of the response to the gravitational waves at 100 Hz (0.1
Hz) is 750 km (750 Mm). Such long interferometer cannot be constructed on
the Earth. Therefore, the Fabry–Pérot cavity is used as a base-line of the inter-
ferometer to obtain an effective long arm by circulating the laser in the cavity
as shown in figure 3.1 [21]. Another way to obtain long arm interferometer is
constructing the interferometer in space. For example, LISA will have 2.5× 109-
m arms without cavities to detect 1-mHz gravitational waves [49]. DECIGO
will have 1000-km-long Fabry–Pérot cavity with finesse, i.e. the number of the
roundtrips of laser in the cavity (defined in equation (3.35) later), of 10 to detect
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gravitational waves in 0.1-10 Hz [54].
Laser interferometers are prevented from detecting gravitational waves by var-

ious noise sources, such as quantum noise caused by the quantum mechanics of
laser [115, 116], thermal noise due to the brownian motion of the mirror and
suspension systems [117–122], a noise caused by seismic motion [123,124], New-
tonian force applied to the mirror [55,125,126], and so on. We need to reduce the
effect of all noise sources below that of the gravitational waves to detect them.

Figure 3.1: Schematic of the Michelson interferometer with the Fabry–Pérot
arm cavity, called a Fabry–Pérot Michelson interferometer. BS is beam splitter,
ITMX(Y) and ETMX(Y) are input and end test masses, and PD is a photode-
tector.

3.2 Michelson interferometer

3.2.1 Electric field response of Michelson interferometer

Schematic view of a Michelson interferometer is shown in figure 3.2. Laser light
is emitted from the source and the electric field injected to the beam splitter,
Einc, is expressed as [127]

Einc = E0e
iωlt, (3.1)

where E0 is amplitude of the electric field, and ωl is angular frequency of the
laser light. When amplitude reflectivity and transmissivity of the beam splitter
is 1√

2
, and that of the two end mirrors is unity, the electric field of the laser light

received by the photodetector, EPD, is written as

EPD =
1

2
E0e

iωlt
(
e−2iϕX − e−2iϕY

)
, (3.2)
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where 2ϕX and 2ϕY are phase shifts due to the round trip in arm along x- and
y-axis, respectively.*1

Laser power, P (x), at x can be expressed by the following relation:

P (x) = α|E(x)|2, α ≡ ϵ0Ac, (3.3)

where E(x) is the electric field at that place, ϵ0 is vacuum permittivity, and A is
an effective cross section of the laser light along its propagation direction. Thus,
laser power received by the photodetector, PPD, is

PPD ≡ α|EPD|2 =
1

2
Pinc(1− cos 2ϕ−), (3.4)

where ϕ− ≡ ϕX − ϕY , and Pinc

(
≡ α|Einc|2 = α|E0|2

)
is a laser power injected

to the beam splitter. Equation (3.4) indicates that the Michelson interferometer
transforms the phase difference between the two arms to the laser power on the
photodetector.

3.2.2 Michelson interferometer response to gravitational waves

To understand the response of the Michelson interferometer shown in figure 3.2,
let’s consider a plus-mode gravitational wave comes from z-axis (z > 0), i.e.
gravitational wave expressed in equation (2.29) with h+(t) = h(t) and h×(t) =
0. In this condition, the response of photon in the Michelson interferometer is
considered [128]. The square of the infinitesimal world line ds2 meets

ds2 = −c2dt2 + [1 + h(t)]dx2 = 0. (3.5)

If |h(t)| ≪ 1 and dx
dt > 0, it is denoted as[

1− 1

2
h(t)

]
c dt = dx. (3.6)

When we integrate both sides of equation (3.6) with time from t−∆tX to t,

∆tX =
2ξX
c

+
1

2

∫ t

t−∆tX

h(t′)dt′ (3.7)

where ∆tX is the time for round trip of photon between the beamsplitter and
the end test mass, and ξX is a length of the x-arm. By recursively substituting
equation (3.7) for the ∆tX in the right-hand side of equation (3.7), we obtain
the following equation:

∆tX =
2ξX
c

+
1

2

∫ t

t−2ξX/c

h(t′)dt′. (3.8)

*1 There is a phase shift occurring during traveling from the beamsplitter to the photode-
tector and the factor should be in the right-hand side of equation (3.2). However, we can
set the factor to be unity without losing generality.
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Figure 3.2: Schematic of a Michelson interferometer. Base lines along x-axis and
y-axis are called x-arm and y-arm, respectively. TMX and TMY are end test
masses (mirrors). In the panel on top right, transformation of the electric field,
E, when it is reflected and transmitted by the beamsplitter, is shown. Note that
the phase of the electric field is flipped when it is injected from the substrate
side of the beamsplitter.

Therefore, the phase shift of that photon receives during round trip in the x-arm,
2ϕX(t), is expressed as

2ϕX(t) = ωl∆tX (3.9)

=
2ξXωl

c
+

ωl

2

∫ t

t−2ξX/c

h(t′)dt′. (3.10)

In the same manner, we obtained the formula about the phase shift of which
photon receives during round trip in the y-arm, 2ϕY (t), as

2ϕY (t) =
2ξY ωl

c
− ωl

2

∫ t

t−2ξY /c

h(t′)dt′, (3.11)

where ξY is a length of the y-arm. When both arms are almost the same but
have a bit different length, i.e. ξX ≃ ξY ≃ l and l− ≡ ξX −ξY ̸= 0, the difference
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of the phase shift that occurs in both arms, 2ϕ−(t), is written as,

2ϕ−(t) =
2l−ωl

c
+ ωl

∫ t

t−2l/c

h(t′)dt′ (3.12)

≡ 2l−ωl

c
+ δϕGW(t). (3.13)

The first and second terms of equation (3.13) indicate the static phase shift just
due to the length difference between the beamsplitter and two end mirrors and
the dynamical phase variation due to the gravitational waves, respectively.
From here, we consider the frequency response of the Michelson interferometer.

When we perform Fourier transform of h(t),

h(t) =

∫ ∞

−∞
h(ω)eiωtdω, (3.14)

from equation (3.13), δϕGW(t) is written as

δϕGW(t) = ωl

∫ t

t−2l/c

h(t′)dt′

=

∫ ∞

−∞
HMI(ω)h(ω)e

iωtdω, (3.15)

where we define

HMI(ω) ≡
2ωl

ω
sin

(
ωl

c

)
e−iωl

c . (3.16)

On the other hand, Fourier transform of δϕGW(t) is

δϕGW(t) =

∫ ∞

−∞
δϕGW(ω)eiωtdω. (3.17)

By comparing equations (3.15) and (3.17), we obtain the following relationship:

δϕGW(ω) = HMI(ω)h(ω). (3.18)

This equation indicates that HMI(ω) is the (angular) frequency response of the
Michelson interferometer to the gravitational wave at angular frequency of ω.
The gain of the frequency response of the Michelson interferometer, |HMI(ω)|,

is maximized at
ω =

π

2

c

l
. (3.19)

This means that the sensitivity of the Michelson interferometer cannot be im-
proved by making long arm length at high frequency region. This is because
the phase variation caused by gravitational waves is cancelled while the photon
travels in the arm of the Michelson interferometer. For example, the optimal
arm length for the gravitational wave at 100 Hz (0.1 Hz) is 750 km (750 Mm).
Such long interferometers cannot be constructed on the Earth. In space, very
long arm interferometers are planned, such as LISA, which has 2.5× 109-m-long
arms to detect gravitational wave below 0.01 Hz [49].
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3.3 Fabry–Pérot cavity
As explained in the previous section, the response of the simple Michelson in-
terferometer on the Earth to gravitational waves at 0.1 Hz or 100 Hz is not
optimized for its length limit. To solve this problem, the Fabry–Pérot cavity as
shown in figure 3.3 is used to obtain an effective long arm interferometer, i.e.
large response to the gravitational waves [21]. The current ground-based obser-
vatories have a few kilometer-long cavities that make effectively about 1000 km
arms.*2 Also, Fabry–Pérot type space gravitational wave antennas are planned,
such as DECIGO and B-DECIGO. The detail of these detector is explained later.
In this section, the feature of the Fabry–Pérot cavity is reviewed.

Figure 3.3: Schematic of the Fabry–Pérot cavity. OC is an optical circulator,
ITM and ETM are input and end test masses (mirrors), respectively. When
the light coming from the substrate side is reflected by the mirror, the phase of
electric field is sign flipped.

3.3.1 Electric field response of the Fabry–Pérot cavity

Schematic of the Fabry–Pérot cavity is shown in figure 3.3. From here, we discuss
electric fields in the cavity, Ea and Eb, incident electric field, Einc, reflected and
transmitted electric fields, Er and Et. Without losing generality, the incident
electric field is written as

Einc = E0e
iωlt. (3.20)

The amplitude reflectivity and transmissivity of ITM (ETM) are defined as ri
and ti (re and te), respectively. We assume that there is no optical loss in the
cavity, unless otherwise stated. The intracavity electric field is expressed as

Ea = Eincti

∞∑
n=0

(rire)
ne−2iϕn, (3.21)

Eb = teEae
−2iϕ, (3.22)

*2 GEO600 utilizes a folded Michelson configuration.
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where 2ϕ is the phase shift that photon receives during one round trip. By taking
summation, these equations are denoted as

Ea = E0e
iωlt

ti
1− riree−2iϕ

, (3.23)

Eb = E0e
iωlt

tiree
−2iϕ

1− riree−2iϕ
. (3.24)

Consequently, the reflected and transmitted electric fields are written as

Er = E0e
iωlt

−ri + (ri
2 + ti

2)ree
−2iϕ

1− riree−2iϕ
, (3.25)

Et = E0e
iωlt

titee
−iϕ

1− riree−2iϕ
. (3.26)

Using equations (3.23), (3.25), and (3.26), the intracavity power, Pa, reflected
power, Pr, and transmitted power, Pt, are written as,

Pa ≡ α|Ea|2 =
ti
2

1 + (rire)2 − 2rire cos 2ϕ
Pinc, (3.27)

Pr ≡ α|Er|2 =
ri

2 + [(ri
2 + ti

2)re]
2 − 2(ri

2 + ti
2)rire cos 2ϕ

1 + (rire)2 − 2rire cos 2ϕ
Pinc, (3.28)

Pt ≡ α|Et|2 =
(tite)

2

1 + (rire)2 − 2rire cos 2ϕ
Pinc. (3.29)

The example of the transmitted power, Pt, is illustrated in figure 3.4.
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Figure 3.4: Example of the transmitted power of the Fabry–Pérot cavity. In this
figure, the case of the cavity with finesse, F , of 15 is shown.

The intracavity power is maximized at 2ϕ = 2πn (n ∈ N, N is a set of natural
numbers). This condition is called resonance. The resonance condition is denoted
as

2Lωl

c
= 2πn, (3.30)
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where L is the cavity length. The resonance frequency, i.e. resonance condition
in terms of frequency, is written as

νres = n
c

2L
≡ nνFSR, (3.31)

where νFSR is called the free spectral range.
When the cavity is composed of high reflectivity (≳ 0.9) mirrors, the cav-

ity has the peak of the intracavity power around resonance frequency. Using
equation (3.27), the full width at half maximum of the peak, 2ϕ1/2, meets

cos 2ϕ1/2 =
−1 + 4rire − (rire)

2

2rire
. (3.32)

If
∣∣∣ϕ1/2

π

∣∣∣≪ 1, 2ϕ1/2 is denoted as

ϕ1/2 =
1− rire
2
√
rire

. (3.33)

The half width at half maximum is also written in terms of frequency as

ν1/2 =
1− rire
2
√
rire

c

2πL
. (3.34)

ν1/2 is called the cavity pole frequency. Here, the ratio of the free spectral range
(νFSR) to the full width at half maximum of the peak (2ν1/2) is finesse, which
represents the sharpness of the resonance peak. Specifically, the finesse, F , is
written as

F ≡ νFSR
2ν1/2

=
π
√
rire

1− rire
. (3.35)

With equation (3.25), the complex reflectivity of the Fabry–Pérot cavity, rFP,
is denoted as

rFP =
−ri + (ri

2 + ti
2)ree

−2iϕ

1− riree−2iϕ
. (3.36)

Figure 3.5 shows that absolute value and phase of rFP.

3.3.2 Response of the Fabry–Pérot cavity to the mirror motion

We will consider the response of the Fabry–Pérot cavity to the mirror mo-
tion [128]. The time for laser to make n-times round trips, which is ∆tn, is
denoted as,

∆tn ≃ 2L

c
n+

2

c

n∑
m=1

δL(t− (2m− 1)L/c), (3.37)

where δL(t) (|δL(t)| ≪ L) is the cavity length variation, i.e. mirror motion. By
performing Fourier transformation of δL(t),

δL(t) =

∫ ∞

−∞
δL(ω)eiωtdω, (3.38)
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Figure 3.5: Complex reflectivity of the Fabry–Pérot cavity. Here, we adopt
ri = 0.998, ti = 0.063, and re = 0.999995.

∆tn is written as

∆tn ≃ 2L

c
n+

2

c

∫ ∞

−∞
δL(ω)

1− e−2iγ(ω)n

eiγ(ω) − e−iγ(ω)
eiωtdω, (3.39)

where γ(ω) ≡ Lω
c .

In the same way as equation (3.21), when the cavity length is fluctuating, the

intracavity electric field of the cavity, E
(L)
a , is written as

E(L)
a = Eincti

∞∑
n=1

(rire)
n−1e−2i∆tnωl . (3.40)

By substituting equation (3.39) for equation (3.40) and using |δL| ≪ L, we
obtain the intracavity electric field as,

E
(L)
a

Einc
=

ti
1− riree−2iϕ

− i
ti

1− riree−2iϕ

∫ ∞

−∞

2ωl

c

e−iγ(ω)

1− riree−2i(ϕ+γ(ω))
δL(ω)eiωtdω

(3.41)

≡ ti
1− riree−2iϕ

− i
ti

1− riree−2iϕ

∫ ∞

−∞
H

(L)
FP (ϕ, ω)δL(ω)eiωtdω, (3.42)

wehre

H
(L)
FP (ϕ, ω) ≡ 2ωl

c

e−iγ(ω)

1− riree−2i(ϕ+γ(ω))
. (3.43)

This H
(L)
FP (ϕ, ω) is the response of the Fabry–Pérot cavity to the mirror mo-

tion. When ω/(2π) ≪ νFSR and 2ϕ = 2πn, the response can be approximately
presented as

H
(L)
FP (ω) =

2ωl

c

2F
π

1

1 + iω/(2πν1/2)
. (3.44)
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In the same manner as the intracavity case, the formula of the reflected electric

field, E
(L)
r , is obtained as

E(L)
r = −riEinc + tireE

(L)
a e−2iϕ. (3.45)

As a result, the response of the reflected electric field is denoted as

E
(L)
r

Einc
=

−ri + ree
−2iϕ

1− riree−2iϕ
− i

ti
2ree

−2iϕ

1− riree−2iϕ

∫ ∞

−∞
H

(L)
FP (ϕ, ω)δL(ω)eiωtdω. (3.46)

Equations (3.42) and (3.46) indicate that, in addition to the electric field
at angular frequency of ωl, the electric field at angular frequency of ωl ± ω is
generated by the mirror motion at angular frequency of ω. The electric field at
angular frequency of ωl and ωl ± ω are called a carrier and a side-band light,
respectively.
In the end, we consider the amplification of the phase variation with the Fabry–

Pérot cavity. Here, we assume ri ≪ re to compare the response of the cavity
with that of just the end mirror (ri = 0). Note that the Fabry–Pérot cavity
is usually used on a condition that the end mirror is more reflective than the
input mirror (ri ≪ re, over-coupled cavity) or the end mirror is as reflective as
the input mirror (ri = re, critically-coupled cavity). The response of the cavity
is different from when it is in resonance condition or anti-resonance condition.
Anti-resonance condition is given by

2ϕ = 2π

(
n+

1

2

)
. (3.47)

At anti resonance, the intracavity power is the weakest. When we consider the
frequency range meeting |γ(ω)| ≪ 1 or |δL(ω)| ≪ 1, the reflected electric fields
at resonance and anti resonance are written as

E
(L,reso)
r

Einc
= 1− 2i

∫ ∞

−∞

(
2

π
F
)

2ωl

c
δL(ω)eiωtdω (resonance), (3.48)

E
(L,anti)
r

Einc
= −1 + 2i

∫ ∞

−∞

(
π

2

1

F

)
2ωl

c
δL(ω)eiωtdω (anti resonance). (3.49)

The electric filed just reflected by the end mirror without the input mirror is
expressed as

E
(L,NC)
r

Einc
= 1− 2i

∫ ∞

−∞

2ωl

c
δL(ω)eiωtdω (no cavity). (3.50)

Here, we compare the phase quadrature, i.e. imaginary part, of each case. They
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are denoted as

Im

[
E

(L,reso)
r

Einc

]
= −2

∫ ∞

−∞

(
2

π
F
)

2ωl

c
δL(ω)eiωtdω (resonance), (3.51)

Im

[
E

(L,anti)
r

Einc

]
= 2

∫ ∞

−∞

(
π

2

1

F

)
2ωl

c
δL(ω)eiωtdω (anti resonance), (3.52)

Im

[
E

(L,NC)
r

Einc

]
= −2

∫ ∞

−∞

2ωl

c
δL(ω)eiωtdω (no cavity). (3.53)

These equations show the phase variation of the electric field reflected by the
cavity is 2F/π times larger at resonance than that of just the end mirror, while
2F/π times smaller at anti resonance. In other words, the photons in the Fabry–
Pérot cavity make 2F/π-times round trips on average in the resonance condition.
Therefore, to obtain the effective long interferometer, we need to keep the Fabry–
Pérot cavity at the resonance. For this purpose, Pound–Drever–Hall technique
is often used [129]. Notice that the right hand side of equations (3.51) and (3.52)
for the critically-coupled cavity is obtained by modifying 4

πF → 1
πF .

3.3.3 Response of the Fabry–Pérot cavity to the gravitational waves

We consider the response of the Fabry–Pérot cavity to the gravitational
wave [128]. Here, gravitational wave, h(t), making space fluctuation along the

cavity axis. The time for laser to make n-times round trips is ∆t
(h)
n , which is

denoted as,

∆t(h)n ≃ 2L

c
n+

∫ t

t−2Ln/c

h(t′)dt′. (3.54)

By performing Fourier transformation of h(t) (equation (3.14)),

∆t(h)n ≃ 2L

c
n+

1

2

∫ t

t−2Ln/c

1− e2iγ(ω)

iω
h(ω)dω. (3.55)

In the same manner as consideration of the response to the mirror motion, the
intracavity and reflected electric fields are written as

E
(h)
a

Einc
=

ti
1− riree−2iϕ

− i
ti

1− riree−2iϕ

∫ ∞

−∞
H

(h)
FP (ϕ, ω)h(ω)e

iωtdω, (3.56)

E
(h)
r

Einc
=

−ri + ree
−2iϕ

1− riree−2iϕ
− i

ti
2ree

−2iϕ

1− riree−2iϕ

∫ ∞

−∞
H

(h)
FP (ϕ, ω)h(ω)e

iωtdω, (3.57)

where

H
(h)
FP (ϕ, ω) ≡

ωl

ω

sin[γ(ω)]e−iγ(ω)

1− riree−2i(ϕ+γ(ω))
. (3.58)

This H
(h)
FP (ϕ, ω) corresponds to the frequency response of the Fabry–Pérot cavity

to the gravitational wave.
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When H
(h)
FP (ϕ, ω) is compared with H

(L)
FP (ϕ, ω), we obtain the relation, in the

frequency range of ω ≪ 1, as

H
(h)
FP (ϕ, ω) =

c sin[γ(ω)]

2ω
H

(L)
FP (ϕ, ω) (3.59)

≃ L

2
H

(L)
FP (ϕ, ω). (3.60)

Thus, the cavity response to the gravitational wave with amplitude of h is equiv-
alent to the response to the length fluctuation of Lh/2.

3.3.4 Pound–Drever–Hall technique

Here, Pound–Drever–Hall technique is reviewed [129]. Pound–Drever–Hall tech-
nique is used to obtain the phase fluctuation signal of the cavity by modulating
the phase of the incident laser as follows:

EPDH
inc = E0e

i(ωlt+β sinωst) (3.61)

≃ E0e
iωlt +

β

2
E0e

i(ωl+ωs)t − β

2
E0e

i(ωl−ωs)t, (3.62)

where ωs is the modulation frequency that is typically a few tens MHz and β is
the modulation index that is typically ∼ 0.1. In the second equality of the above
equation, we assumed |β| ≪ 1. Normally, ωs is chosen for the second and third
terms of equation (3.62) to be off the resonance, i.e. to be just reflected by the
input mirror. Consequently, from equation (3.25), the reflected electric field is
written as

EPDH
r =

−ri + ree
−2iϕ

1− riree−2iϕ
E0e

iωlt − β

2
E0e

i(ωl+ωs)t +
β

2
E0e

i(ωl−ωs)t (3.63)

≃ E0e
iωlt

[
re − ri
1− rire

− i

(
1− ri
1− rire

2F
π

2∆ϕ+ β sinωst

)]
. (3.64)

Here, we assume 2ϕ = 2πn + 2∆ϕ and |∆ϕ| ≪ 1. The power of the reflected
electric field at angular frequency of ωs is

PPDH
r (ωs) = 2α

∣∣E0e
iωlt
∣∣2 1− ri

1− rire

2F
π

(2∆ϕ)β sinωst (3.65)

= 2Pinc
1− ri
1− rire

2F
π

(2∆ϕ)β sinωst. (3.66)

By demodulating this signal at the angular frequency of ωs and applying a low
pass filter to the demodulated signal, we obtain the linear signal to ∆ϕ as

PPDH
r,demod ∝ 2Pinc

1− ri
1− rire

2F
π

(2∆ϕ). (3.67)

This can be used to measure the cavity phase signal and to keep resonance of
the cavity.
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3.3.5 Effect of the frequency and intensity fluctuation of the incident

beam to the Fabry–Pérot cavity

In the measurement with the Fabry–Pérot cavity, the frequency and intensity
fluctuation of the injected beams are noise sources.
First, how the frequency fluctuation of the incident laser affects the obtained

demodulated signal of the Pound–Drever–Hall technique is considered. The
phase variation, ∆ϕ, is decomposed to the cavity length and frequency fluc-
tuation into two terms,

2∆ϕ =
2Lωl

c

(
∆L

L
+

∆ωl

ωl

)
. (3.68)

This equation indicates that, with the Pound–Drever–Hall technique, the differ-
ence of the normalized cavity length from the normalized laser frequency cannot
be distinguished. In other words, when we measure the cavity length, the fre-
quency fluctuation behaves as noise,

∆L(freq) = L
∆ωl

ωl
. (3.69)

and vice versa for frequency measurement.
Second, we will consider the effect of the laser power fluctuation, ∆P . Here,

we assume that there is some detuning of the cavity, i.e. ∆ϕ → ϕ0+∆ϕ. In this
case, the demodulated signal of the Pound–Drever–Hall technique is denoted as

PPDH
r, demod ∝ (Pinc +∆P )(ϕ0 +∆ϕ) = Pincϕ0 + Pinc∆ϕ+ (∆P )ϕ0. (3.70)

In the second equality, the second order term, |∆P∆ϕ|, is ignored. In the right
hand side, the first term corresponds to the DC term that does not affect fluc-
tuation measurement, the second term is the signal term, and the third term is
the noise term due to the power fluctuation. This means that the noise due to
the power fluctuation increases depending on the detuning ϕ0.

3.3.6 Alignment sensing with the Fabry–Pérot cavity

With the Fabry–Pérot cavity, not only the length (or frequency) fluctuation but
also alignment signal, e.g. the difference of the cavity axis from the injected axis
of laser, or miscentering from the center of mass of the mirrors, can be mea-
sured. The spatial translation or tilt of laser axis is expressed with higher-order
Hermite–Gauss mode expansion as explained in Appendix F. If the translation
(tilt) of the laser axis is small, it is written with 10/01-modes of Hermite–Gauss
mode [130]. The cavity axis can be expressed in the same way as the laser axis
since the laser light in the cavity passes the centers of the curvature of the mir-
rors. Therefore, by measuring the 10/01-modes, we can perform the alignment
sensing and control of the cavity. For example, a number of methods of align-
ment sensing have been proposed, such as dither technique [131], transmission
beam monitoring [132], and wave front sensing method [133,134].
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Table 3.1: Summary of detector configuration and parameters. FPC, Fabry–
Pérot cavity; MI, Michelson interferometer.

Detector DECIGO LISA Advanced LIGO

Interferometer FPC MI
(Transponder)

FPC + MI

Location Space Space Ground
Flying
scheme

Formation
flying

Constellation
flying

N/A

Baseline 1000 km 2.5× 106 km 4 km
Frequency 10−1-101 Hz 10−4-10−1 Hz 101-103 Hz

Major noise
sources

• Quatnum
(10−1-101 Hz)

• Force
(< 10−3 Hz)

• Quantum
(> 10−3 Hz)

• Seismic
(< 101 Hz)

• Thermal
(101-102 Hz)

• Quantum
(> 102 Hz)

Displacement
noise
requirement

∼ 10−18 m/
√
Hz ∼ 10−11 m/

√
Hz ∼ 10−20 m/

√
Hz

Force noise
requirement

∼ 10−16 N/
√
Hz ∼ 10−14 N/

√
Hz ∼ 10−13 N/

√
Hz

3.4 Sensitivity of various detectors
The interferometric gravitational wave detector can be understood by the com-
bination of the Michelson interferometer and the Fabry–Pérot cavity. Here, the
configurations of various detectors and their principal noises are summarized,
especially for DECIGO and LISA as examples of space detectors and aLIGO
as an example of the ground-based detector. Table 3.1 shows the summary
of the detectors. aLIGO (and most of the other ground-based detectors) has
a combined interferometer of Michelson interferometer and Fabry–Péort cav-
ity [21, 135]. Similarly, DECIGO uses the Fabry–Pérot cavity to enhance the
response to the gravitational waves. The configuration of LISA is a kind of
Michelson interferometer. The arm length of LISA is so long that diffraction
loss is large and just reflecting the laser by the mirror producing too much signal
loss. Thus, LISA measures the phase of the transmitted laser once and transmits
the laser with the same phase after amplifying the signal. This configuration is
called optical transponder configuration.
The designed sensitivity of DECIGO, LISA, and aLIGO is shown in figure 3.6

(the detailed explanation of noise source is presented in Appendix C). The lower
frequency limit of aLIGO (and other ground-based detectors) is ∼ 10 Hz due to
the seismic motion and Newtonian force noise. As explained in Section 2.3.2, in
order to observe heavier mass black holes, we have to go to lower frequency band
that can be achieved with space detectors.
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Figure 3.6: Sensitivity cases of interferometric gravitational wave detectors (solid
curves): DECIGO [54], LISA [136], and aLIGO [137]. Dashed lines indicate
inspiral signals from neutron star binary (1.4-1.4 M⊙) and black hole binaries
(30-30M⊙, 10

3-103 M⊙, and 105-105 M⊙) at redshift z = 1. The upper frequency
of the inspiral signal is set at the innermost stable circular orbit frequency, fISCO.

3.5 Comparison of space gravitational wave antennas
For now, most of the interferometric space gravitational wave antenna are clas-
sified into two types: a Fabry–Pérot type and an optical transponder type*3.
Fabry–Pérot type is represented by DECIGO and B-DECIGO, whereas optical
transponder type is represented by LISA, BBO, Taiji, and TianQin. Here, we
compare the two type configurations by taking DECIGO and LISA as examples.
DECIGO and LISA have satellites that include two test masses. The relative

position and angle of the satellite to the test mass are controlled with thrusters
of the satellite. This control is called a drag-free control [138,139]. The drag-free
control is an essential technique for space detectors for reducing noise introduced
by the satellite motion [140] that is caused by the thruster noise [141–143] or solar
radiation pressure fluctuation [142,144].
One of the major differences between DECIGO and LISA is the base-line

*3 TianGO [53] adopts a Michelson type configuration.

31



length. DECIGO has 1000-km-long arms while LISA has 2.5×106-km-long arms.
The arm length corresponds to the observational frequency band. Although
longer arm makes the response to the gravitational wave better, the diffraction
loss becomes larger and signal becomes smaller. As a result, by changing the arm
length, we can change the frequency band depending on the scientific objectives
as shown in figure 3.6. The arm length also varies the noise requirement as shown
in table 3.1.
With the short arm length, i.e. the small diffraction loss, the Fabry–Pérot

cavity can be applied to enhance the highest sensitivity by enlarging the response
to the gravitational waves. DECIGO utilizes Fabry–Pérot type interferometer
configuration that is another difference from LISA. LISA uses optical transponder
configuration because of its large diffraction loss. This difference leads to the
difference of the highest strain sensitivity as shown in figure 3.6.
One challenge with Fabry–Pérot type space gravitational wave antenna is ne-

cessity of the precise control. Specifically, the combined control of the laser
interferometer and the satellite including drag-free control and formation fly-
ing of the satellite is necessary. This is because the Fabry–Pérot cavity has a
small linear range that is shorter than the wavelength of the laser as explained
in Section 3.3.2. LISA does not require the formation flying and LISA style is
constellation flying, i.e. a kind of the flying with rough formation. Therefore,
for the Fabry–Pérot type space gravitational wave antenna, we need to develop
precise control scheme including sensing scheme and feedback topology.
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Chapter 4

Space gravitational wave antenna:

DECIGO and B-DECIGO

DECIGO is a proposed space gravitational wave antenna using the Fabry–Pérot
arm cavities as shown in figure 4.1 [54]. B-DECIGO, which is a proposed pre-
cursor mission to DECIGO, is a relatively small detector while it has almost the
same system as DECIGO. B-DECIGO aims to observe the gravitational wave
in the same frequency band, i.e. 0.1-10 Hz, as DECIGO. Compared with the
other pursued space antennas, LISA, TianQin, Taiji, and TianGO, DECIGO
and B-DECIGO have better sensitivity in relatively high frequency range thanks
to the Fabry–Pérot arm cavity. BBO has somewhat similar design sensitivity to
DECIGO by increasing laser power and telescope size without the Fabry–Pérot
cavity. The arm cavity requires precise formation flight. Therefore, we need to
develop a new control scheme as explained in Chapter 5.
In this chapter, we review the science targets of DECIGO and B-DECIGO

first. Then, their designs are described.

4.1 Scientific objectives
The target sensitivity of DECIGO and B-DECIGO is shown in figure 4.2 (the
detailed parameters to obtain the sensitivity is explained later). Once this sen-
sitivity is achieved, fruitful scientific insights are obtained.

4.1.1 Verifying and charactering inflation and thermal history after the

inflation

When DECIGO has a sensitivity of 10−23 /
√
Hz at 0.1 Hz, the stochastic grav-

itational wave background equivalent to ΩGW ∼ 1 × 10−16 can be observed by
taking the correlation of the two clusters (see Section 4.3.4) with 3-year obser-
vation [63]. ΩGW ∼ 1 × 10−16 is comparable to the current limit of the slow
roll model inflation [105]. A number of inflation models that predict this power
level of the stochastic gravitational wave background can be verified with the
observation with DECIGO [40,45,46]. Moreover, in certain parameters, the cut-
off frequency due to reheating of the Universe after inflation could be around
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Figure 4.1: Pre-conceptual concept of DECIGO and B-DECIGO.

0.1 Hz. If DECIGO observes the frequency structure of the gravitational wave
background spectrum, the thermal history of the Universe is characterized [145].
For the observation of the stochastic gravitational wave background, the com-

pact binary coalescences that cannot be resolved as a single event make the
stochastic gravitational wave foreground noise [146, 147]. Especially, galactic
white dwarfs [66] and extra-galactic white dwarfs [148] are considered to be
the sources of the foreground noise. Since their effect is expected to be small
above 0.1 Hz [148], the lower frequency band of DECIGO is 0.1 Hz although the
stochastic gravitational wave signal is larger in the lower frequency. One of the
objectives of B-DECIGO is characterization of the number of the white dwarf
to understand the feature of the foreground noise for the future DECIGO obser-
vation for the gravitational wave background. By understanding the foreground
noise, we can develop the technique to reduce the effect of the foreground noise.

4.1.2 Early alert to other electromagnetic and gravitational wave ob-

servatories

One of the most important abilities of B-DECIGO (and DECIGO) is to alert
other electromagnetic and gravitational wave observatories about the astrophys-
ical event well in advance. For example, B-DECIGO can typically detect the
neutron star binary at z = 0.1 in signal-to-noise ratio of ∼ 30 about one week
before the merger [108]. Approximately, this leads to the sky localization of
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Figure 4.2: Sensitivity of DECIGO and B-DECIGO and their observational tar-
gets. Solid lines are B-DECIGO and DECIGO sensitivities. The blue dot-dashed
line is DECIGO sensitivity for stochastic gravitational wave with 3-year correla-
tion of two clusters. The dashed lines indicate inspiral signals from the neutron
star binary (1.4-1.4 M⊙) and black hole binaries (30-30 M⊙, 10

3-103 M⊙, and
104-104 M⊙) at redshift z = 1. The upper end of the frequency of the inspiral
signal is set at the innermost stable circular orbit frequency, fISCO. The black
dot-dashed line is spectrum of the stochastic gravitational wave background with
ΩGW = 1.5× 10−16.

∼ 1 deg2 and coalescence time prediction of ∼ 10 s. Using these estimations,
B-DECIGO raises an alert. If the moment of the astrophysical transient is ob-
served, totally new information, such as the mechanism of the gamma-ray burst,
can be provided [149].

4.1.3 Hubble constant measurement

When the sensitivity shown in figure 4.2 is achieved, DECIGO and B-DECIGO
can observe inspiral of neutron star binaries in signal-to-noise ratio of ∼ 300 and
∼ 30 at redshift, z = 0.1, respectively [108]. As a result, the luminosity distance
of the source is estimated precisely. In addition, the source can be localized so
precisely that the host galaxies can be identified for many gravitational wave
events. Such a precise parameter estimation with the gravitational-wave ob-
servation provides enough information for the electro-magnetic observatories to
measure the redshift. Since the luminosity distance can be estimated from gen-
eral relativity and the redshift can be measured from the electro-magnetic wave
spectrum and its Doppler shift, the Hubble constant is expected to be mea-
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sured with small systematic error that will be determined by the instrumental
systematic error [150].
DECIGO has an ability to measure the Hubble constant in another way only

with the gravitational wave observation [151]. DECIGO can observe the neu-
tron star inspiral for several years if the inspiral is observed from 0.1 Hz to 10
Hz. During the observation, the phase of the inspiral signal is gradually shifted
from the waveform predicted without Universe expansion. The waveform of the
neutron star binary inspiral can be given by general relativity and the redshift
of the neutron star can be determined by investigating the discrepancy from
the predicted waveform. Thus, the Hubble constant can be measured from the
luminosity distance and the redshift measured with the gravitational wave obser-
vation. The precision of the waveform prediction is determined by the statistical
error of the parameter estimation of the observed neutron star binary. The pre-
cision is expected to be around the inverse of the signal-to-noise ratio of the
neutron star binary observation. The Hubble constant is expected to be mea-
sured in this precision. This measurement provides totally new information of
the Hubble constant even without conventional electro-magnetic observation.

4.1.4 Dark matter search

Primordial black holes are candidates of the cold dark matters. The primordial
black holes with masses of MPBH are generated in the very early Universe via
gravitational collapse if the quantum density fluctuation is larger than ∼ MPBH

(cH−1)3 ,

where cH−1 is the horizon scale [152]. Since the quantum fluctuation is consid-
ered to have a white spectrum, the primordial black hole masses can be widely
distributed between 10−38 M⊙ and 103 M⊙. When DECIGO and B-DECIGO
have the sensitivity shown in figure 4.2, the primordial black holes with masses
in the range between 10−13 M⊙ and 10−7 M⊙ can be observed [153]. Although
this mass region has been limited by the gravitational micro lensing effect [154],
the gravitational wave observation provides the independent information about
the primordial black hole dark matter.
DECIGO and B-DECIGO are sensitive instruments for another dark matter

candidate, axion dark matter. Axion is a pseudo-scalar field which is originally
proposed a half-century ago and high energy physics also predicts manifold of
axion-like particles. From cosmological point of view, axion or axion-like particle
is considered to be a candidate of dark matter. Axion dark matter varies the
velocities of the phase of the circular-polarized light. This phase velocity varia-
tion can be measured precisely with the Fabry–Pérot cavity [155]. DECIGO and
B-DECIGO can improve the current upper limit of the axion-photon coupling
constant provided by the haloscope observation by three orders or so. This new
scheme was proposed by the researchers including the author of this thesis as a
leading person and is explained in detail in Appendix A.
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4.1.5 Distinguish formation scenario of supermassive black holes

B-DEICGO (and DECIGO, of course) observes numerous black hole binary co-
alescences even at very high redshift that corresponds to the age of the Universe
of the first star formation. For example, when the strain sensitivity of 10−22

/
√
Hz is achieved with B-DECIGO, it can detect 30-30 M⊙ black hole binary

at z = 10, which corresponds to the age of the Universe of the first star for-
mation [156]. Also the intermediate-mass black hole binaries having mass of
∼ 1000 M⊙ at z = 10 can be observed with signal-to-noise ratio of 100. These
various mass black hole observations allow us to distinguish formation scenario
of the supermassive black holes, which are observed in galactic centers [36,37].

4.1.6 Testing the modified gravitational theory

Using DECIGO and B-DECIGO, the modified gravitational theories can be
tested precisely. Although only tensor modes of the gravitational waves are
allowed in general relativity, the other modes of vector and scalar can exist in
the alternative modified gravity theories [83]. For example, Brans–Dicke theory,
which is the simplest tensor-scalar theory, predicts the existence of scalar mode in
addition to tensor mode [80]. DECIGO and B-DECIGO have an ability to probe
Brans–Dicke theory with the observation of intermediate mass ratio inspiral, e.g.
neutron star and black hole binaries with 1.4-10 M⊙ [44]. The inspiral evolution
in Brans–Dicke theory differs from that predicted by general relativity because of
the scalar dipole radiation. Since the observable number of inspiral cycle of the
neutron star and black hole binaries is large in DECIGO and B-DECIGO, the
Brans–Dicke parameter, ωBD, which is the characteristic parameter of Brans–
Dicke theory, can be tested precisely. The current limit, ωBD > 4×104, provided
by the doppler tracking with Cassini [157] can be improved by four orders with
DECIGO. In addition to the Brans–Dicke theory, other modified gravitational
theory can be tested with DECIGO and B-DECIGO [158–160].

4.1.7 Probing for Type Ia supernova progenitor

Type Ia supernovae are considered to be related with the carbon-oxygen white
dwarfs although there is no direct observational evidence. Among the white
dwarf related events, white dwarf binary merging is one promising candidate of
the Type Ia supernova progenitor. White dwarf binary merges typically between
0.05 and 0.1 Hz, which is almost in the DECIGO and B-DECIGO band, i.e.
[161]. Given the event rate of the Type Ia supernovae, DECIGO (B-DECIGO)
can observe white dwarf binaries of ∼ 20000 (∼ 20) per one year. Since the
three-dimensional localization volume of the white dwarf binary is estimated to
be about 500 Mpc3 with DECIGO, a host galaxy can be identified for many
events. Even with B-DECIGO, the nearby but rare event could be associated
with its host galaxy. If the coincidence of the white dwarf binary and Type Ia
supernova is observed with DECIGO or B-DECIGO, the progenitor of the Type
Ia supernova may be able to be probed.
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4.2 Interferometer design
According to the scientific objectives explained above, the strain sensitivity of
DECIGO is required to be better than 10−23 /

√
Hz between 0.1 and 10 Hz.

B-DECIGO aims to achieve the strain sensitivity of 10−22 /
√
Hz in the same

frequency range. Here, we explain the interferometer design of DECIGO and
B-DECIGO to meet their sensitivity requirement, at least, in terms of the prin-
cipal noise discussed in Appendix C. The summary of this section is shown in
table 4.1. Notice that the design in this chapter is mainly considered just with
the longitudinal things and simple control scheme. For more detailed design, we
need to consider the control scheme of all degrees of freedom and control scheme
as shown in Chapter 5.

4.2.1 Interferometer configuration

DECIGO and B-DECIGO are Fabry–Pérot type gravitational wave antennas.
The pre-conceptual design is shown in figure 4.1. DECIGO and B-DECIGO are
constructed as a triangular shaped interferometer. DECIGO (B-DECIGO) has
a 1000-km-long (100-km-long) arm cavity of which finesse is 10 (100). DECIGO
and B-DECIGO have shorter arms than LISA. This is because of constructing
the cavity by reducing the optical loss due to the diffraction, i.e. divergence of
the laser light [127]. As a result, DECIGO and B-DECIGO have a better shot
noise level than LISA.
Compared with the L-shaped interferometer such as the current ground-based

detectors, the triangular shaped interferometer has the following advantages.
First, the calibration and false alarm ratio are improved by constructing null-
streams, which are time-series data where the gravitational wave signals are can-
celled, from the linear combination of each interferometer output [61]. Since the
instruments are limited in space detectors, in-situ calibration method is impor-
tant. Second advantage is the improvement of the sensitivity to the polarization
of gravitational waves [60,61]. As discussed above, detection of non-tensor grav-
itational waves leads to the test of the modified gravity theories. Third, the
triangular shaped interferometer provides the redundancy which is important
for space gravitational wave detectors.
In DECIGO and B-DECIGO, the laser lights from two satellites are injected

one arm cavity from both sides and its length can be measured with the two
lasers. This type of the interferometer is called dual-pass Fabry–Pérot inter-
ferometer. The dual-pass Fabry–Pérot interferometer leads to the redundancy
with minimum number of the main mirrors. However, since the dual-pass Fabry–
Pérot interferometer is new configuration for DECIGO and B-DECIGO, we need
to develop it.
In order to achieve the DECIGO and B-DECIGO interferometers, two-type

concepts as shown in figure 4.3 have been proposed up to now. Notice that
the Fabry–Pérot Michelson interferometer similar to the ground-based detector
is not effective in DECIGO and B-DEICGO since it is difficult to implement
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Table 4.1: Specification and requirement of DECIGO and B-DECIGO in dual-
pass differential Fabry–Pérot interferometer. Spectrum items are defined at 0.1
Hz.

Items
Specification/Requirement

Limiting factor
DECIGO B-DECIGO

Arm cavity
Arm length L [km] 103 102 Sensitivity
Finesse F 10 100 Diffraction loss
Wavelength λ [nm] 515 515
Mirror mass m [kg] 100 30 Sensitivity
Mirror diameter [cm] 166 70 Diffraction loss
Mirror thickness [cm] 2 4

Radius of curvature [km] 607 60.7
Angular optical
anti-spring

Pre stabilized laser
Output power P0 [W] > 10 > 0.02 Sensitivity
Relative intensity noise

δP/P0 [/
√
Hz]

< 2× 10−9 < 10−8 Sensitivity

Frequency noise

δf [Hz/
√
Hz]

< 1 < 1 Sensitivity

Interferometer sensing
and actuation
Actuator noise

δFact [N/
√
Hz]

< 2× 10−17 < 2× 10−17 Sensitivity

Actuator range

F
(max)
act [µN]

> 2
> 0.06
(> 6)

Depend on
orbit design

Satellite
Mass mSAT [kg] 1000 1000
Cross section [m2]
(typical)

2 2

Coupling from sat. disp.
to mirror acc. K [/s2]

< 5× 10−7 < 5× 10−7 Sensitivity

Drag-free control
Local sensor noise

δxLS [m/
√
Hz]

< 10−12 < 10−12 Sensitivity

Control gain
of satellite at 0.1 Hz

> 250 > 250 Sensitivity

Control gain
of mass at 0.1 Hz

< 10−6 < 10−6 Sensitivity

Thruster
Thruster noise

δFthruster [N/
√
Hz]

< 1× 10−7 < 1× 10−7 Sensitivity

Thruster range

F
(max)
thruster [µN]

> 100
> 100
(> 200)

Depend on
orbit design
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so-called recycling techniques in space [21, 135]. The left and right concepts in
figure 4.3 are called a single-source and a two-source concepts, respectively. The
advantages and disadvantages of these two concepts are summarized in table 4.2.
In the two-source concept, there is a major concern about the detection instru-
ment, i.e. phase meter [162, 163]. To achieve the shot-noise-limited sensitivity,
a new low noise phase meter should be developed, especially for DECIGO sen-
sitivity. On the other hand, in the single-source concept, the shot-noise-limited
measurement can be achieved with Pound–Drever–Hall technique similarly to
the ground-based gravitational wave detectors [164,165]. Thus, we focus on the
single-source concept in this thesis and this concept is called a dual-pass differ-
ential Fabry–Pérot interferometer. Note that the two lasers confronting in the
cavity have orthogonal polarization for decoupling the dual-pass interferometer.
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(a) (b)

Thruster
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Figure 4.3: Two proposed concepts of the Fabry–Pérot type space gravitational
wave antennas. PM means phase meter.

The dual-pass differential Fabry–Pérot interferometer can be divided into three
arm-cavity pairs as shown in figure 4.4. In the interferometer (1), one cavity is
kept to resonate with the feedback control of the laser frequency and the res-
onance of the other cavity is kept by controlling the mass position. This kind
of interferometer is called a differential Fabry–Pérot interferometer (or locked
Fabry–Pérot interferometer), which was used in the ground-based gravitational
wave detectors [166, 167]. The interferometer (2) can be operated as another
differential Fabry–Pérot interferometer same as the interferometer (1). The in-
terferometer (3) is not simple. Since the length of Cavity b is determined by
the interferometer (1), the mass position cannot be controlled arbitrarily. In
addition, the laser frequencies are shifted for each other for decoupling the three
interferometers. Therefore, in order to resonate Cavity b for both lasers of in-
terferometer (1) and (3) simultaneously, we need to adjust the length of Cavity
a and b. They can be adjusted, for example, with auxiliary ranging instruments
explained in Section 4.3.5. For more detail, see Chapter 6 also.
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Table 4.2: Comparison of the two concepts of the proposed Fabry–Pérot type
space gravitational wave antennas.

Concept type Single source Two sources

Advantage

• Simple configuration,
• Shot noise limited sen-
sitivity can be achieved
with the state-of-the-art
interferometer technique.

• Three arms can be re-
garded independently,

• Mass control is not nec-
essary (in length control),
i.e. mass actuator noise
does not matter.

Disadvantage

• To obtain length sig-
nals of three arms, abso-
lute length should be ad-
justed,

• Low noise mass actuator
is necessary,

• Three arms should be
controlled in phase.

• To obtain shot noise lim-
ited sensing, new low
noise sensing technique
should be developed,

• Doubled space and elec-
tric power are necessary
for two laser sources.

4.2.2 Arm cavity design

DECIGO has 1000-km-long arm cavities. The finesse of the cavity is 10 and
corresponds to the amplitude reflectivity of the mirrors of 0.84. The test masses
that float in the satellites are made of fused silica and each test mass weighs
100 kg. The geometry of the test mass is as follows: the diameter, 166 cm; the
thickness, 2 cm; the radius of curvature of high reflectivity surface, 607 km. The
diameter is designed to receive enough amount of light to reduce diffraction loss
in terms of optical power less than 6%. The radius of curvature is designed to
obtain stable cavity and to weaken the optical angular anti-spring effect, known
as Sidles–Sigg effect [168], as explained in Section 5.2.2. B-DECIGO cavity is 100
km and its finesse is 100. The mirror diameter is 70 cm to make diffraction loss
less than 0.6%. Above parameters and the others are summarized in table 4.1.

4.2.3 Pre stabilized laser

The seed laser source of DECIGO and B-DECIGO is the Yb-doped fiber dis-
tributed feedback laser of which wave length is 1030 nm [169]. The seed laser is
injected to a second harmonic generator and converted to the green light, 515
nm. The laser has to be stabilized and amplified in order to meet the require-
ment of DECIGO (P0 = 10 W, δP/P0 = 2× 10−9 /

√
Hz, δf = 1 Hz/

√
Hz) and

B-DECIGO (P0 = 0.02 W, δP/P0 = 10−8 /
√
Hz, δf = 1 Hz/

√
Hz), which are

summarized in table 4.1.
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Figure 4.4: Schematic of division of the DECIGO or B-DECIGO interferometer
into three pairs of the arm cavities.

For the power amplification to meet the B-DECIGO requirement, the seed
laser is amplified with Yb doped fiber amplifier in 1030 nm using master oscillator
power amplifier technique. Although the way to amplify the laser to 10 W has not
been decided, the coherent combing scheme, which is used in the ground-based
gravitational wave detector [170, 171], is one candidate to meet the requirement
of DECIGO.
The laser intensity is stabilized with feedback control [169]. The amplified

laser is splitted into two paths. One beam goes to the main interferometer and
the other is received by the photodetector. The latter signal is fed back to the
current of the laser diode used as a pump laser for the above power amplification.
As a result, the intensity of the laser introduced to the main interferometer is
stabilized.
The frequency stabilization is performed with the iodine cell [169]. In general,

stable frequency reference is necessary for the frequency stabilization. In the
frequency stabilization with the iodine cell, the saturated absorption line is used
as frequency reference. The laser frequency fluctuation is stabilized better than 1
Hz/

√
Hz. Since this stability is not enough to detect gravitational wave, the laser
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is more stabilized with main arm cavity. For this purpose, as shown in figure 4.5,
the laser before the iodine cell is introduced to the acousto-optic modulator,
which can shift the laser frequency proportional to the applied voltage. With
this scheme, the laser frequency can be controlled with the main interferometer
signal [172]. Hereafter, we call the pre-stabilized laser just the laser source unless
otherwise noted.

Seed laser

FBS

PD

PBS Beam dump
0th

1stAOM

Iodine cell

To main 
interferometer

Frequency stabilization

Signal from main interferometer
(can control frequency of the laser 
injected to the main inteferometer)Laser system

HWP
QWP

Figure 4.5: Schematic of the frequency stabilizing system with double-pass
acousto-optic modulator scheme. FBS is a fiber beam splitter; QWP is a quarter
wave plate.

It is important to note that the central frequencies of the three laser sources in
each satellite are shifted for each other by a few hundred MHz for decoupling the
dual-pass interferometers. Without the frequency shifting, the relative motion of
the laser source, i.e. the satellite, makes large phase noise due to Doppler shift.
However, this frequency shift requires the absolute cavity length adjustment to
operate the three dual-pass interferometers as explained in Chapter 6.

4.2.4 Sensing and actuation

In DECIGO and B-DECIGO, the same sensing method is planned to be used.
The longitudinal signal of the cavity is obtained with the Pound–Drever–Hall
method [129]. The absolute length of the cavity is measured with the beatnote
frequency of the two dual-pass laser resonating in the same cavity as shown in
figure 4.6. The absolute cavity length, L, and the beatnote frequency, ∆ν, have
a relationship as

L =
Nc

2∆ν
, (4.1)

where N is the number of the beatnote frequencies in terms of the free spec-
tral range. Since N can be determined from the independent measurement,
e.g. see [173], the absolute length of the cavity can be determined from equa-
tion (4.1) [174, 175]. The precision is wavelength level, i.e. sub-µm or so. The
alignment signals are obtained with the wave front sensing method [133, 134]
and the dithering method [131]. In addition to these global sensings, in the
satellite, the local Michelson interferometer to measure differential optical path
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fluctuation is also implemented. The differential optical path fluctuation could
be a noise source due to the differential Doppler shift. In order to suppress the
Doppler noise, the local Michelson interferometer should have better sensitivity
than 2.4×10−15(0.1 Hz/f) m/

√
Hz for DECIGO and 2.4×10−14(0.1 Hz/f) m/

√
Hz

for B-DECIGO.

L

S pol.

P pol.

Satellite 2Satellite1

Laser

Laser

+

HWP

PBS

For another
satellite

PD

PDbeat

Figure 4.6: Schematic of measuring the beatnote, ∆ν, of the lasers from two
satellites. PDbeat is the photodetector for the beatnote measurement. HWP is
the half wave plate, and PBS is the polarizing beam splitter. The half wave plate
is used to adjust the polarization and make interference between the lasers from
Satellite 1 and 2. Note that the two laser lights in the arm cavity are shifted in
the illustration while they are overlapped in fact.

The actuator for cavity control is the frequency actuator in the laser source
and the displacement actuator on the test mass. The frequency actuator in the
laser is the acousto-optic modulator and has to have lower noise than 1 Hz/

√
Hz.

For the test mass actuator, electro-static actuator [176,177] is planned to be used

and its requirement of noise is better than 2 × 10−17 N/
√
Hz for DECIGO and

B-DECIGO.
The actuator range is designed to have force enough to compensate relative

acceleration to the test masses. In the space detectors, the main causes of the
force generating the relative acceleration are the laser radiation pressure and the
gravity from the satellite and the Earth. The amount of the force varies by the
detector configurations. In DECIGO, the laser radiation pressure is dominant to
be 0.1 µN. When B-DECIGO is in heliocentric orbit, gravity from the satellite
causes dominant noise which is given by

G
(∆m)mTM

(∆r)2
, (4.2)

where ∆m is the mass asymmetry and ∆r is the distance between the test mass
and the mass asymmetry. Since we assume ∆m = 3 kg and ∆r = 1 m, the
test mass of B-DECIGO feels the static force of about 6 × 10−9 N. Note that
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the laser radiation pressure in B-DECIGO is about 2 nN which is subdominant
force. When B-DECIGO is in geocentric orbit, gravity from the Earth causes the
major force that is about 0.6 µN as discussed in Section 4.3.4. Consequently, the
requirements for the actuators of DECIGO and B-DECIGO in heliocentric orbit
is > 1 × 10−6 N and > 6 × 10−8 N, respectively. We assume the safety factor
of 10 in terms of the maximum force range of the actuator. For B-DECIGO in
geocentric orbit, actuator range should be > 6× 10−6 N. Again, we assumed the
safety factor of 10. In order to achieve the dynamic range of the mass actuator
for DECIGO and B-DECIGO in geocentric orbit, we need to design frequency
dependent actuation efficiency: low gain and low noise in observation frequency
(0.1-10 Hz), high gain and large noise below observation frequency (≪ 0.1 Hz).
Actually, since actuators with these values are too weak to achieve the cavity
resonance at first moment, known as lock acquisition, stronger actuators (more
noisy) will be used during the lock acquisition stage. For alignment actuation,
steering mirrors are implemented in each optical path.
For the DECIGO and B-DECIGO operation, the control scheme, i.e. how to

use the sensed signal and actuators, is important. This will be discussed in detail
in Chapter 5.

4.2.5 Input and output optics

After the laser is output from the laser source, the laser is transferred to the
optical bench via optical fiber. During the transfer, phase modulation is applied
with an electro-optic modulator for the Pound–Drever–Hall method and the
wave front sensing method. In the optical bench, the light is divided into two
paths for two arm cavities and the polarization is adjusted for discrimination
of the dual-pass interferometer. Note that most of the optics are fixed on the
optical bench monolithically [178] except for a few steering mirrors, and so on.
Then, the light is expanded with telescope system before injected to the arm
cavity. The telescope system is one of the components that should be newly
developed since the very long cavity requires precise adjustment of the spacial
mode of the incident laser. The reflected light is contracted in reversing way.
The reflected light and the transmitted light coming from the other satellite are
distinguished with the polarization and frequency as explained in Section 4.2.1
and Section 4.2.3.
Using the laser distinguished with the polarization and frequency, the noise

caused by the other laser can be reduced. The noise due to the other laser is
mainly caused by the intensity fluctuation and is written as

hlaser ∼
αλ

βLF
δP (∆ν)

P0

1√
1 +

(
∆ν
ν1/2

)2 , (4.3)

where α is the amplitude of the non-desired polarized electric field normalized by
the amplitude of the desired polarized electric field, and β is the modulation index
of the laser for the Pound–Drever–Hall technique. When we design ∆ν ∼ 50

MHz, the typical intensity fluctuation is δP (∆ν)
P0

∼ 10−7 /
√
Hz [179, 180]. As
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a result, the noise caused by the other laser is estimated to be hlaser ∼ 10−28

/
√
Hz and is 105 (106) times smaller than the target sensitivity of DECIGO (B-

DECIGO). Here, we assume α = 0.01 and β = 0.1. For λ, L, and F , the values
shown in table 4.1 are used. ν1/2 can be calculated to be 7.5 Hz from L and F .

4.3 Satellite system design

4.3.1 Overview of satellite

Each satellite is equipped with two test masses, their actuators, a pre-stabilized
laser, and local input/output optics. In addition, local sensors around masses,
thrusters, auxiliary sensors, data acquisition/processing/transfer systems, and
power suppling system are also incorporated into the satellite. The latter two
are not discussed in this thesis.
The summary of the satellite parameters is shown in table 4.1. The mass of

satellite will be around 1000 kg and the typical cross section will be about 2
m2. To avoid generating mechanical vibration noise, movable components, e.g.
momentum wheel, are used as little as possible. Since the mast system can
weaken the structure of the satellite and enlarge a mechanical vibration noise,
the solar cell will be mounted on the body.
The test mass is stored in the satellite without any mechanical connection.

However, there is a small coupling from the satellite motion to the test mass
acceleration because of gravitational force or electromagnetic force. The coupling
factor, K [/s2], strongly depends on the geometry of the test mass and satellite
while it is estimated to be 10−6 /s2, at most [140]. In DECIGO and B-DECIGO,
K is designed to be less than 5× 10−7 /s2 with a geometry management.

4.3.2 Drag-free satellite

The drag-free control is the relative motion and angle control of the satellite
following the test mass [57]. The drag-free control minimizes the dragging force
effect to the test mass [139,140,181,182]. In DECIGO and B-DECIGO, main ob-
jective is reduction of solar radiation pressure fluctuation effect. In the drag-free
control, local sensor to measure the relative motion/angle between the satellite
and the mirror and low noise thrusters are used and their noise level and range
are important. The contribution from the satellite motion is written as

δaDF
TM = KδxDF

SAT (4.4)

= K

(
GDF

1 +GDF
δxLS +

1

1 +GDF

δFthruster

mSATω2

)
, (4.5)

where δaDF
TM is the acceleration of the test mass due to the drag-free control,

δxDF
SAT is the displacement of the satellite, and GDF is the open loop transfer

function of the drag-free control (about the open loop transfer function, see
Appendix B).
As the local sensor, interferometric sensors are planned to be used for DE-

CIGO and B-DECIGO while LISA will use electro static sensors [177,183]. The
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ultimate specification of drag-free control is limited by the sensor noise. The re-
quirement for drag-free control is more strict in DECIGO and B-DECIGO than
that of LISA because of the force noise requirement difference. Interferometric
sensor has low noise level, ∼ 10−12 m/

√
Hz, which meets the DECIGO and B-

DECIGO requirement [184,185]. About the range, orthogonal quadratures type
interferometer has a wide range [185].
The thruster for the drag-free control should have low noise although its noise

can be suppressed by the drag-free control. Lower noise thrusters make the
lower requirement for the control gain of the drag-free control. In addition,
the thruster should be continuously variable for the precise drag-free control.
Otherwise, quantization noise could be a problem. If the thruster noise is 1×10−7

N/
√
Hz, the control gain should be larger than 250 at 0.1 Hz. There are various

thruster candidates which can meet the above features [186], e.g. cold-gas jet,
ion thruster, and field-emission electric propulsion. However, they have not been
fully characterized and some of them have not been tested in space. Therefore,
the design will be finalized after further study.
The largest force applied to the satellite is solar radiation pressure in helio-

centric orbit and gravity of the Earth in geocentric orbit. Since the typical solar
radiation power density is 1360 W/m2 [140, 144], the solar radiation pressure
force is estimated to be ∼ 10 µN. Here, we assume that the typical satellite
cross section is 2 m2. To compensate this amount of force, the low noise thruster
should have maximum force larger than 100 µN in heliocentric orbit when we use
safety factor of 10. The gravity from the Earth in geocentric orbit is about 20
µN as discussed in Section 4.3.4. This leads to the requirement for the thruster
range in geocentric to be larger than 200 µN with safety factor of 10.
Considering that the three-dimensional mechanical degree of freedom of the

satellite is six and that of the two test masses is 12 in total,*1 we cannot control all
the relative motions and angles between the satellite and the two test masses only
with the drag-free control. Thus, one test mass should be controlled to follow the
satellite with the test mass actuators, i.e. electro static actuators.*2 However,
if the control band width is as high as the observation band, the sensitivity can
be easily contaminated. To avoid it, the test mass control gain is designed to be
less than 10−6 at 0.1 Hz. The detailed discussion is described in Chapter 5.

4.3.3 Test mass housing

The test mass is placed in the housing in the satellite. The housing includes
electrostatic actuators, interferometric local sensors, vacuum system, discharging
system [187], and launch locking system. Here, they are explained briefly. The
former two are mentioned above. The vacuum system is necessary in DECIGO
and B-DECIGO to reduce noise caused by the molecular gas around the test
mass. The molecules stochastically hit the test mass and make the test mass
fluctuate. This noise is called residual gas thermal noise. To obtain enough small

*1 The satellite and the mirror are each considered to be a rigid body.
*2 There is other choice of which degrees of freedoms are used for the drag-free control. For

example, the motion of two test masses (3+3) can be followed by the satellite [139,182].
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residual gas thermal noise, the vacuum level should be better than 10−10 Pa. The
discharging system is practically important to operate the interferometer stably.
Since the test mass does not touch anywhere mechanically, it is gradually charged
by the cosmic rays. When the charge of the test mass is large, its coupling
to the electrostatic actuator gets strange. Therefore, the test mass should be
discharged occasionally with, e.g., ultraviolet light and so on. The launch lock
system protects the test mass from the large vibration during launch. The test
mass will be softly released after the satellite arrives proper position.

4.3.4 Orbit

DECIGO is planned to be in the heliocentric orbit as shown in figure 4.7. DE-
CIGO is composed of the four clusters, i.e. 12 satellites [188]. Two of four
clusters are overlapped in opposite shape to take correlation for the stochastic
gravitational wave background. Using the four clusters, we can observe the multi-
mode gravitational waves, i.e. not only tensor mode gravitational wavs but also
vector/scalar mode gravitational waves, for testing the modified gravitational
theories.
B-DECIGO orbit will be heliocentric orbit or geocentric orbit as shown in fig-

ure 4.7. In geocentric orbit a bit far or near orbit from geostationary orbit is
considered for now. In contrast to DECIGO, B-DECIGO will have one cluster.
Note that even with one cluster, we can localize gravitational wave events consid-
ering the time variation of the angular response of the detector, called antenna
pattern discussed in Appendix G, during the event. For example, it is expected
that one neutron star inspiral is typically in B-DECIGO observation band in ∼ 1
year.

SunSun

Earth

Heliocentric orbit Geocentric orbit

Figure 4.7: Schematic of the heliocentric and geocentric orbit.

In geocentric orbit, the gravity of the Earth, especially its J2 term, limits the
range of actuator and thruster. J2 term is an ellipticity measure of the Earth
and makes a differential acceleration of the two masses, aJ2, given by

aJ2
≃ J2

3GMEr
2
E

2r4D
= 8.2× 10−6

(
42000 km

rD

)4 [
m/s2

]
, (4.6)

where, J2(= 1.08263 × 10−3) is the J2 constant, G is gravity constant, ME is
the mass of the Earth, rE is the radius of the Earth, and rD is orbital radius of
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B-DECIGO. The differential acceleration between two masses in distance of L is
written as

∆aJ2
≃ L

rD
aJ2

= 1.9× 10−8

(
L

100 km

)(
42000 km

rD

)5 [
m/s2

]
. (4.7)

4.3.5 Auxiliary sensors and thrusters

Auxiliary sensors

In addition to the main interferometer, DECIGO and B-DECIGO have various
auxiliary sensors. For example, star trackers, beam scanning systems with an
acousto-optic deflector, sun sensors, global positioning systems, microwave rang-
ing systems [189], and so on. They are used for rough ranging in orbit before
interferometer lock acquisition [190]. During observation, their signals are used
for the calibration of satellite position and orientation. The calibration precision
affects the systematic error of the gravitational wave localization. For example,
typical star tracker has the angular resolution ∼ 10 arcsec and it corresponds
to ∼ 10−5 deg2, which is much better than the statistic localization error while
relative calibration of the star tracker and interferometer axis is necessary.

Thrusters

In addition to the low noise thruster, two types of auxiliary strong thrusters
will be incorporated. The first one is bipropellant catalytic hydrazine thruster
(N2O4/N2H4) for apogee kick. The thruster has typically 500-N thrust force.
The second one is 1-N-class cold gas jets. They are used for orbital control
which will be performed when we need to move the satellite a lot, e.g. during
interferometer lock acquisition. These two strong thrusters are turned off during
observation for avoiding causing the vibration noise.
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Chapter 5

Control scheme of DECIGO and

B-DECIGO

DECIGO and B-DECIGO are currently designed to be unique space gravitational
wave antennas with Fabry–Pérot arm cavities and drag-free satellites. Each
technique has been independently demonstrated, e.g. the former in ground-based
detectors, and the latter in LISA path finder [139,182], while the combination of
them has been neither demonstrated nor considered. Actually, although the two
controls can be regarded almost independently in LISA configuration [191], they
are strongly related to DECIGO and B-DECIGO configurations. Therefore,
the control topology in which the interferometer and drag-free control should
be developed for DECIGO and B-DECIGO. Moreover, feedback control system
introduces additional noise through the feedback loop. The additional noise could
disturb the gravitational wave observation. Therefore, control system should be
carefully designed especially in observation frequency band [58,59].
In this chapter, we study on the control topology of DECIGO type space detec-

tor and construct the numerical control model. Moreover, using the model, the
detailed requirements including control design, the stability, and the sensitivity
of DECIGO and B-DECIGO are considered.
This chapter is organized as follows: In Section 5.1, we show the setup and

basis definition used in this chapter. From Section 5.2 to Section 5.4, as a prepa-
ration of the numerical model construction, we newly modeled the mechanical
and opto-mechanical response, and sensing and actuation scheme in DECIGO
and B-DECIGO. This modeling clarifies which degrees of freedom should be
controlled in the interferometer control or the drag-free control. In Section 5.5,
dominant sources of noise and instability are shown. In Section 5.6, using the
result prepared in the above sections, we design the control topology of DECIGO
and B-DECIGO. After that, in Section 5.7, the numerical control model of DE-
CIGO and B-DECIGO is constructed with the designed control topology. The
model is the new model including full responses of the Fabry–Pérot type space
antenna and is named a full DECIGO interferometer model. Subsequently, in
Section 5.8, using the full DECIGO interferometer model, we consider the de-
tailed requirement including control design for DECIGO and B-DECIGO, and
investigate the performance of the design control scheme. Especially, the sta-
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bility of the control and the interferometer operation, and noise performance of
DECIGO and B-DECIGO are investigated. Finally in Section 5.9, the obtained
results are discussed.

5.1 Setup and basis definition
The setup that we consider is shown in figure 5.1. Note that not all components
of DECIGO and B-DECIGO are shown here. For example, the electro-optic
modulator is not shown. All components except for the test masses are fixed
on the satellite. Hereafter, we assume all test masses have the same mass mTM,
reflectivity r, and the radius of curvature Rc and the optical loss of the cavity is
negligible. The length of each cavity is La(b,c) and they are macroscopically the
same (L ≃ La,b,c). Each laser frequency is represented as f1(2,3).
The basis with which we consider the interferometer and satellite motion and

angle is shown in figure 5.1-(b). Hereafter, we assume that the center of mass
and geometry of the satellite are located at the same position, and the satellites
and the test masses are rigid bodies when we consider the control topology. The
origin of each basis is defined at initial position of the center of satellite mass for
the satellites, and the center of mass for the test mass. The optical basis origin
is defined at the initial waist position that is located at the center of the cavity
since the cavity is composed of the mirror having the same radius of curvature.
The mechanical position and angle vector of Test Mass iα and Satel-

lite i are represented as xiα ≡ (xiα, yiα, ziα, θrol,iα, θpit,iα, θyaw,iα)
⊤ and

xSATi ≡ (xSATi, ySATi, zSATi, θrol,SATi, θpit,SATi, θyaw,SATi)
⊤ (i = 1, 2, 3, and α =

a,b,c). The optical alignment of Cavity α and incident beam from Satellite i
are expressed as xcavα

iα ≡ (xcavα, ycavα, zcavα, θcavαrol , θcavαpit , θcavαyaw )⊤ and xinciα ≡
(xinciα, yinciα, zinciα, θinciαrol , θinciαpit , θinciαyaw )⊤. In terms of Satellites 1(2,3) basis, test

mass TM1b(2c,3a) is at (a cos(π/6), a sin(π/6), 0)⊤ and test mass TM1c(2a,3b) is
at (a cos(π/6),−a sin(π/6), 0)⊤. The force and torque applied to the Test mass iα
and Satellite i are expressed as Fiα ≡ (Fxiα

, Fyiα
, Fziα , Tθrol,iα , Tθpit,iα , Tθyaw,iα

)⊤

and FSATi ≡ (FxSATi , FySATi , FzSATi , Tθrol,SATi
, Tθpit,SATi , Tθyaw,SATi)

⊤, respectively.

5.2 Cavity and satellite

5.2.1 Mechanical property

Table 5.1 shows the mechanical property of the test masses and satellites. They
are regarded as rigid bodies in the consideration of control. The satellite is
assumed to be cylindrical shaped along z-axis and to have uniform density. In
addition, we assume that they are damped with the surrounding gas of which
pressure is 10−10 Pa and damping ratio is the same for all degrees of freedom as
1011 Hz. As a result, the equations of motion of the test mass and the satellite
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Figure 5.1: (a) Setup for control topology consideration. PD is photodetector,
LAS is laser, SAT is satellite, TM is test mass, and BD is beam dump. The
photodetector is composed of the photodetector and quadrant photodetectors
that are used for length and alignment sensing although the quadrant photode-
tectors are not explicitly shown in the figure. The mirrors located between the
beamsplitter just in front of the laser source and each test mass are used as
steering mirrors. The black boxes around the test masses are each their housing
including actuators and local sensors. Note that not all components on DECIGO
and B-DECIGO are shown here. (b) Basis of each component. Black and blue
colors indicate the bases for satellites and test masses, respectively. Green color
indicates the basis for the optical axis for cavity and injected beam. The top
right subpanel shows the definition of six degrees of freedom of the basis.

are given by

MTM(ẍiα + γTMẋiα) = Fiα, (5.1)

MSAT(ẍSATi + γSATẋSATi) = FSATi, (5.2)

where Miα ≡ diag(mTM,mTM,mTM, ITM,rol, ITM,pit, ITM,yaw) and MSAT ≡
diag(mSAT,mSAT,mSAT, ISAT,rol, ISAT,pit, ISAT,yaw) are the mass matrices
(mTM(SAT) is the mass of the test mass (satellite) and ITM[SAT],rol(pit,yaw) is
the moment of inertia along x(y, z)-axis) of the test mass and the satellite,
respectively, and γTM ≡ γTMI6 and γSAT ≡ γSATI6 (I6 is a 6-by-6 identity
matrix) are the damping matrices of the test mass and the satellite, respectively.
γTM(SAT) is a damping ratio of the test mass (satellite). By performing Laplace
transformation (for detail, see Appendix B), equations (5.1) and (5.2) are
denoted as

MTM(−ω2I6 + iωγTM)x̃iα ≡ M ′
TMx̃iα = F̃iα, (5.3)

MSAT(−ω2I6 + iωγSAT)x̃SATi ≡ M ′
SATx̃SATi = F̃SATi, (5.4)

where the tilde indicates the frequency domain parameters.
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Table 5.1: Mechanical property of test masses and satellites. In the parentheses,
B-DECIGO parameters are shown if they are different from DECIGO one.

Test mass Satellite

Mass [kg] 100 (30) 1000
Diameter [m] 1.66 (0.70) 1.6
Thickness [m] 0.02 (0.04) 2.0

Moment of inertia [kg·m2]
along x-axis (Roll) 36 (1.8) 490
along y-axis (Pitch) 18 (0.90) 490
along z-axis (Yaw) 18 (0.90) 320
Damping ratio [Hz] 10−11 10−11

The satellite motion is coupled to the acceleration of the test mass. The
relationship is given by

ẍ1b(2c,3a) = KRSATtoM1xSAT1(2,3), (5.5)

ẍ1c(2a,3b) = KRSATtoM2xSAT1(2,3), (5.6)

where

RSATtoM1 ≡


cos
(
π
6

)
sin
(
π
6

)
0 0 0 0

− sin
(
π
6

)
cos
(
π
6

)
0 0 0 a

0 0 1 a sin
(
π
6

)
−a cos

(
π
6

)
0

0 0 0 cos
(
π
6

)
sin
(
π
6

)
0

0 0 0 − sin
(
π
6

)
cos
(
π
6

)
0

0 0 0 0 0 1

 , (5.7)

RSATtoM2 ≡


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−π
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)
sin
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−π

6

)
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(
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(
−π

6

)
cos
(
−π

6

)
0

0 0 0 0 0 1

 ,

(5.8)
are rotation matrices from the satellite position and angle to the mass position
and angle.

5.2.2 Opto-mechanical property

The test masses for the Fabry–Pérot cavity are coupled via radiation pressure of
the laser. This coupling is called opto-mechanical coupling. The angular opto-
mechanical coupling, known as Sidles–Sigg effect [168], affects the cavity stability
since one opto-mechanical mode behaves as an anti-spring. Also, translational
opto-mechanical couplings are considered [192]. These couplings are represented
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as 
Fy,1

Fy,2

Tθyaw,1

Tθyaw,2

 =


− 2P cav

c 0 2P cav

cRc
0

0 − 2P cav

c 0 2P cav

cRc

0 0 2P cav

c 0

0 0 0 2P cav

c
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
θyaw,1

θyaw,2

ymc
1

ymc
2

 , (5.9)


Fz,1

Fz,2

Tθpit,1

Tθpit,2

 =


2P cav

c 0 2P cav

cRc
0

0 2P cav

c 0 2P cav

cRc

0 0 − 2P cav

c 0
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c
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
θpit,1
θpit,2
zmc
1

zmc
2

 , (5.10)

where P cav is intracavity power,

(Fy(z),1, Fy(z),2) = (Fy(z)1b , Fy(z)3b), (Fy(z)2c , Fy(z)1c), (Fy(z)3a , Fy(z)2a),

(5.11)

(Tθyaw(pit),1
, Tθyaw(pit),2

) = (Tθyaw(pit),1b
, Tθyaw(pit),3b

), (Tθyaw(pit),2c
, Tθyaw(pit),1c

),

(Tθyaw(pit),3a
, Tθyaw(pit),2a

), (5.12)

(θyaw(pit),1, θyaw(pit),2) = (θyaw(pit),1b, θyaw(pit),3b), (θyaw(pit),2c, θyaw(pit),1c),

(θyaw(pit),3a, θyaw(pit),2a), (5.13)

and y(z)mc
1(2) is the mis-centering on the test mass and defined as (y(z)mc

1 , y(z)mc
2 ) ≡

(y(z)mc
1b , y(z)

mc
3b ), (y(z)

mc
2c , y(z)

mc
1c ), (y(z)

mc
3a , y(z)

mc
2a ). The mis-centering on each

test mass is denoted as

ymc
1b(2c,3a) =− L

2
θcavb(c,a)yaw + ycavb(c,a), ymc

3b(1c,2a) = −L

2
θcavb(c,a)yaw − ycavb(c,a),

zmc
1b(2c,3a) =

L

2
θ
cavb(c,a)
pit + zcavb(c,a), zmc

3b(1c,2a) = −L

2
θ
cavb(c,a)
pit + zcavb(c,a).

(5.14)

5.3 Sensing method
Hereafter, for simplicity, we use sensing efficiency normalized with its DC value.
This treatment does not lose generality.

5.3.1 Interferometer longitudinal sensing

In each cavity, its longitudinal fluctuation signal is taken with the Pound–Drever–
Hall technique. As discussed in Section 3.3.4, each photodetector measures the
phase fluctuation of the cavity. When we measure the phase in terms of length,
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the measured signals at photodetectors are each written as

sPD1b(1c)
=

H
(L)
FP (ω)

H
(L)
FP (0)

(
−δx3b(2c) − δx1b(1c) + L

δf1
f1

)
,

sPD2c(2a)
=

H
(L)
FP (ω)

H
(L)
FP (0)

(
−δx1c(3a) − δx2c(2a) + L

δf2
f2

)
,

sPD3a(3c)
=

H
(L)
FP (ω)

H
(L)
FP (0)

(
−δx2a(1c) − δx3a(3c) + L

δf3
f3

)
. (5.15)

Moreover, the absolute length of each cavity can be measured as

sPD1Lb(3Lb)
= Lb,

sPD2Lc(1Lc)
= Lc,

sPD3La(2La)
= La. (5.16)

5.3.2 Alignment sensing

In the alignment sensing of DECIGO and B-DECIGO, the wavefront sensing and
the dithering method are used. Using the wavefront sensing method [133,134], we
can measure the difference between the alignment of the incident beam (y(z)inc

and θincyaw(pit)) and the cavity axis (y(z)cav and θcavyaw(pit)). The signal is expressed
as

sQPD1b,y(z) = y(z)cavb − y(z)inc1b, sQPD1b,yaw(pit) = θcavbyaw(pit) − θinc1byaw(pit),

sQPD1c,y(z) = y(z)cavc − y(z)inc1c, sQPD1c,yaw(pit) = θcavcyaw(pit) − θinc1cyaw(pit),

sQPD2c,y(z) = y(z)cavc − y(z)inc2c, sQPD2c,yaw(pit) = θcavcyaw(pit) − θinc2cyaw(pit),

sQPD2a,y(z) = y(z)cava − y(z)inc2a, sQPD2a,yaw(pit) = θcavayaw(pit) − θinc2ayaw(pit),

sQPD3a,y(z) = y(z)cava − y(z)inc3a, sQPD3a,yaw(pit) = θcavayaw(pit) − θinc3ayaw(pit),

sQPD3b,y(z) = y(z)cavb − y(z)inc3b, sQPD3b,yaw(pit) = θcavbyaw(pit) − θinc3byaw(pit),

(5.17)

where the cavity axis can be written with the position and angle of the test mass
as

ycavb(c,a) =
y1b(2c,3a) − y3b(1c,2a)

2
+Rc

θyaw,1b(2c,3a) − θyaw,3b(1c,2a)

2
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2
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2
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Rc

Rc − L
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2
.

(5.18)
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Here, we assume L
2 < Rc < L. Note that the quadrant photodetectors are

located in the photodetector that has the same index.
With the dither sensing method [131], we can measure the mis-centering of

the beam spot on each test mass in the longitudinal signal. Note that the beam
mis-centering is denoted with the same basis as each test mass. The beam mis-
centering on each test mass can be distinguished with the dithering frequency.
For example, when we dither TM1b and TM3b at 1.03 Hz and 1.39 Hz, the mis-
centering signals on TM1b and TM3b appear at 1.03 Hz and 1.39 Hz, respectively.
The signals that we can measure are expressed as

sPD1b[3b],y
mc
1b(3b)

= ymc
1b(3b) − y1b(3b), sPD1b[3b],z

mc
1b(3b)

= zmc
1b(3b) − z1b(3b),

sPD2c[1c],y
mc
2c(1c)

= ymc
2c(1c) − y2c(1c), sPD2c[1c],z

mc
2c(1c)

= zmc
2c(1c) − z2c(1c),

sPD3a[2a],y
mc
3a(2a)

= ymc
3a(2a) − y3a(2a), sPD3a[2a],z

mc
3a(2a)

= zmc
3a(2a) − z3a(2a). (5.19)

In addition to the above single cavity alignment signal, the difference of the
two cavity axes can be measured with QPD1bc(2ca, 3ab) similarly to the wave
front sensing as

sQPD1bc(2ca,3ab),y = ycavb(c,a) + ycavc(a,b),

sQPD1bc(2ca,3ab),yaw = θcavb(c,a)yaw − θcavc(a,b)yaw ,

sQPD1bc(2ca,3ab),z = zcavb(c,a) − zcavc(a,b),

sQPD1bc(2ca,3ab),pit = θ
cavb(c,a)
pit + θ

cavc(a,b)
pit . (5.20)

5.3.3 Local sensing

Using local sensors, i.e. interferometric sensors, the test mass positions from the
satellite can be measured. The obtained signal is written as

sLS,1b(2c,3a) = x1b(2c,3a) −RSATtoM1xSAT1(2,3),

sLS,1c(2a,3b) = x1c(2a,3b) −RSATtoM2xSAT1(2,3), (5.21)

where sLS,iα ≡ (sLS,xiα
, sLS,yiα

, sLS,θrol,iα , sLS,θpit,iα
, sLS,θyaw,iα

)⊤ is the obtained
signal.

5.4 Actuation method
Hereafter, for simplicity, we use actuation efficiency normalized with its DC
value. This treatment does not lose generality. Note that we assume that the test
masses and the satellites float in free space though they rotate around the center
object (Sun or Earth) in reality. In other words, we neglect the centrifugal force
applied to the test mass and the satellite due to the actuation. In heliocentric
orbit, the additional centrifugal force applied to the test mass (satellite) due
to the actuation is ∼ 0.1 (1) nN and it is much smaller than the other forces.
In geocentric orbit, the additional centrifugal force applied to the test mass
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(satellite) due to the actuation is ∼ 30 (1000) µN. Although these values are
comparable with the other forces that should be compensated, this is just a
problem of the actuator diagonalization.

5.4.1 Frequency actuation

The laser frequency can be actuated by applying the voltage to the laser source.
When the voltage, vf1(2,3) , is applied to the laser source, the frequency is varied
as

δf1(2,3) = vf1(2,3) . (5.22)

5.4.2 Test mass actuation

The test mass position and angle are actuated with the test mass actuator, i.e.
electro-static drive. By applying the voltage, viα, we can apply the force and
torque δFiα to the test mass as

δFiα = viα, (5.23)

where

viα ≡ (vxiα
, vyiα

, vziα , vθrol,iα , vθpit,iα , vθyaw,iα
)⊤, (5.24)

δFiα ≡ (δFxiα , δFyiα , δFziα , δTθrol,iα , δTθpit,iα , δTθyaw,iα)
⊤. (5.25)

Here, δFx(y,z)iα and δTθrol(pit,yaw),iα
are the force along x(y, z)-axis and the torque

along roll (pitch, yaw) angle applied to the test mass.
Notice that when the force and torque are applied to the test mass, its back

reaction, δF br
SAT1(2,3) is applied to the satellite as

δF br
SAT1(2,3) = −RM1toSATδF1b(2c,3a), (5.26)

δF br
SAT1(2,3) = −RM2toSATδF1c(2a,3b), (5.27)

where
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(5.28)
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(5.29)
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are rotation matrices from the satellite position and angle to the test mass posi-
tion and angle.

5.4.3 Satellite actuation

The satellite is actuated with low noise thrusters. With the applying voltage,
vSATi, the force and torque applied to the satellite are expressed as

δFSATi = vSATi, (5.30)

where

vSATi ≡ (vxSATi
, vySATi

, vzSATi
, vθrol,SATi

, vθpit,SATi
, vθyaw,SATi

)⊤, (5.31)

δFSATi ≡ (δFxSATi , δFySATi , δFzSATi , δTθrol,SATi
, δTθpit,SATi , δTθyaw,SATi)

⊤. (5.32)

5.4.4 Incident beam alignment

The incident beam to the cavity is aligned with the satellite and steering mirrors
on the satellite. The incident beam is given by

xinc1b(2c,3a) = RSATtoInc1xSAT1(2,3) + xSTM1b(2c,3a) , (5.33)

xinc1c(2a,3b) = RSATtoInc2xSAT1(2,3) + xSTM1c(2a,3b) , (5.34)

where xSTMiα ≡ (xSTMiα , ySTMiα , zSTMiα , θSTMiα

rol , θSTMiα

pit , θSTMiα
yaw )⊤ denotes the

steering mirror position and angle, which are defined in the basis of the incident
beam, and

RSATtoInc1 ≡


cos
(
π
6

)
sin
(
π
6

)
0 0 0 0

− sin
(
π
6

)
cos
(
π
6

)
0 0 0 L

2

0 0 1 L
2 sin

(
π
6

)
−L

2 cos
(
π
6

)
0

0 0 0 cos
(
π
6

)
sin
(
π
6

)
0

0 0 0 − sin
(
π
6

)
cos
(
π
6

)
0

0 0 0 0 0 1

 , (5.35)

RSATtoInc2 ≡


cos
(
5π
6

)
sin
(
5π
6

)
0 0 0 0

− sin
(
5π
6

)
cos
(
5π
6

)
0 0 0 −L

2

0 0 1 −L
2 sin

(
5π
6

)
L
2 cos

(
5π
6

)
0

0 0 0 cos
(
5π
6

)
sin
(
5π
6

)
0

0 0 0 − sin
(
5π
6

)
cos
(
5π
6

)
0

0 0 0 0 0 1

 ,

(5.36)
are rotation matrices from the satellite position and angle to the incident beam
position and angle.
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5.5 Sources of the noise
In order to estimate the noise level, the sources of noise in DECIGO and B-
DECIGO are listed here. The listed noise sources are also used to estimate the
actuator loading. Noises not shown here are discussed in Appendix C and they
are negligible for the investigation of the control.

5.5.1 Interferometer noise

Quantum noise

As discussed in Appendix C, the most fundamental limit of the laser interfer-
ometer is determined by quantum noise due to the quantumness of photon. The
quantum noise is divided into two components: shot noise and radiation pressure
noise. They are given by [115]

xshot(f) =
1

4F

√√√√πℏcλ
2Pinc

[
1 +

(
f

ν1/2

)2
]
, (5.37)

xrad(f) =
16F

π(2πf)2mTM

√√√√2πℏPinc

cλ

1

1 +
(

f
ν1/2

)2 , (5.38)

where m is the mass of the test mass, ℏ is reduced Planck constant, and λ is
the wavelength of the laser. Note that this is equivalent to the differential cavity
length fluctuation, i.e. not to one test mass fluctuation.

Frequency noise

Equation (3.69) indicates that the laser frequency fluctuation is a noise source
of the laser interferometer. The frequency noise of the laser source in DECIGO
and B-DECIGO is given by

δf1(2,3) = 1 Hz/
√
Hz (5.39)

Intensity noise

According to equation (3.70), there is a kind of sensing noise due to the intensity
fluctuation coupled with the cavity detuning, which is written as

xint = ∆x
δP

P0
, (5.40)

where ∆x is the cavity detuning in terms of length.

60



Alignment sensing noise

The noises of the wave front sensing for shift and tilt of the optical axis are given
by [193]{

δyWFS = δzWFS ≃ 2× 10−10 m/
√
Hz,

δθpit,WFS = δθyaw,WFS ≃ 8× 10−16 rad/
√
Hz,

(DECIGO) (5.41)

{
δyWFS = δzWFS ≃ 1× 10−9 m/

√
Hz,

δθpit,WFS = δθyaw,WFS ≃ 5× 10−14 rad/
√
Hz.

(B-DECIGO) (5.42)

For the global attitude sensing, we assume the same noise level as the wave front
sensing.
The noises for the dithering method for beam spot shift measurement are given

by [194]

δydith = δzdith ≃

{
3× 10−8 m/

√
Hz, (DECIGO)

5× 10−9 m/
√
Hz. (B-DECIGO)

(5.43)

Here, we assume that dithering frequency is 1 Hz and applied force is 0.06 µN.
This leads to the root-mean-square of the beam spot fluctuation of about 0.1
mm.

Test mass tilt coupling

The tilt motion of the test mass causes length noise through the beam spot
mis-centering on the test mass. This tilt coupling noise is approximately given
by [195]

δxtilt = δθyaw(pit)∆y(z)RMS, (5.44)

where δθyaw(pit) is yaw (pitch) motion of the test mass and ∆y(z)RMS is the
root-mean-square of the beam mis-centering along y(z)-axis.

Absolute length sensing noise

The absolute length sensing is more noisy than sensing with the Pound–Drever–
Hall technique. We assume the absolute length sensing noise is to be

δxAbsL = 1× 10−13 m/
√
Hz. (5.45)

5.5.2 Force noise on test masses

The major force noise on the test mass is caused by electrostatic actuator, ther-
mal radiation pressure, and the gravity. To investigate the force noise effect
on the control scheme, it is enough to consider these noises since they are the
dominant noise sources.
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Actuator noise

The actuator noise is important above 0.001 Hz. The actuator of DECIGO and
B-DECIGO is planned to be electrostatic actuator. The force noise is assumed
to be

δFact ≃ 2× 10−17 N/
√
Hz, (5.46)

δTact ≃ 2× 10−17 Nm/
√
Hz. (5.47)

Note that the force noise level depends on the required actuator range [176].

Thermal radiation pressure

When temperature of the housing around test mass fluctuates, the thermal radi-
ation pressure applied to the test mass causes force noise. The thermal radiation
pressure force fluctuation, δFTrad, is given by [140]

δFTrad = ϵTrad
4σSBSTMT 3δT

c
, (5.48)

where σSB is Stefan–Boltzmann constant, STM is the cross section of the test
mass, δT is temperature fluctuation of housing, and ϵTrad is common mode re-
jection ratio. When the temperature fluctuations in front and back of the test
mass are correlated, the thermal radiation pressure is reduced. When we assume
ϵTrad = 0.1, STM = 2 m2, T = 300 K, δT = 10−8(0.1 Hz/f)1/3 K/

√
Hz, and

typical scale of temperature fluctuation is 0.5 m, the force and torque noises due
to the thermal radiation pressure are written as

δFTrad ≃ 4× 10−17

(
0.1 Hz

f

)1/3

N/
√
Hz, (5.49)

δTTrad ≃ 2× 10−17

(
0.1 Hz

f

)1/3

Nm/
√
Hz. (5.50)

Gravity

The gravity force is significant in the low frequency. In heliocentric orbit, the
gravity field caused by the satellite applies static force of 20 nN according to
equation (4.2). In geocentric orbit, the gravity of the Earth J2 term is ∼ 0.6 µN
at ∼ 10−5 Hz (∼ /1 day). We need to confirm that this force is successfully
suppressed with the feedback control. This point is discussed in the end of
Section 5.8.2

5.5.3 Force noise on satellites

About the force noise on the satellite, solar radiation force and thruster noise
should be considered. In the geocentric orbit, we also need to consider gravity
from the Earth.

62



Solar radiation pressure

The solar radiation pressure and its fluctuation are given by [140,142,144]

FSrad =
WSunSSAT

c
= 9× 10−6 N, (5.51)

δFSrad =
δWSunSSAT

c
= 3× 10−9

(
0.1 Hz

f

) 1
3

N/
√
Hz, (5.52)

where WSun = 1360 W/m2 and δWSun = 0.2
(

0.1 Hz
f

) 1
3

W/m2/
√
Hz are the solar

radiation power density and its fluctuation, respectively. The solar radiation
pressure torque depends on the satellite shape. When we assume the typical
scale of the satellite of 1 m and 10% coupling from the force to torque, the solar
radiation torque is denoted as

TSrad =
1

10
FSrad = 9× 10−7 Nm, (5.53)

δTSrad =
1

10
δFSrad = 3× 10−8

(
0.1 Hz

f

) 1
3

Nm/
√
Hz. (5.54)

Thruster noise

In DECIGO and B-DECIGO, 100-µN class thrusters are planned to be used.
Their force and torque noises are approximately given by [177]

δFthr = 1× 10−7 N/
√
Hz, (5.55)

δTthr = 1× 10−7 Nm/
√
Hz. (5.56)

Here, we assumed that the two thrusters are placed at a distance of 1 m.

Gravity of the Earth

In B-DECIGO with the geocentric orbit, the gravity of the Earth makes some
amount of force and torque at ∼ 10−5 Hz in the same manner as the gravity on
the test masses. They are written as

FGrE ∼ 2× 10−5 N, (5.57)

TGrE ∼ 3× 10−7 Nm. (5.58)

5.5.4 Sensing noise of local sensors

As a local sensor, interferometric sensors are planned to be used. The sensitivity
is given by [185]

δxLS = 1× 10−12 m/
√
Hz. (5.59)

63



By putting six local sensors to measure the six mechanical degrees of freedom
of the test mass, we measure the tilt of the test mass. Approximately, the tilt
sensing sensitivity is written as

δθLS = 3× 10−12 rad/
√
Hz. (5.60)

Here, the distance of the local sensors are assumed to be ∼ 0.5 m.
The noise of the star tracker is assumed to be

δθSTT = 2× 10−6 rad/
√
Hz. (5.61)

5.6 Control topology
Here, we show the basic control topology of length, alignment, drag-free, and
local control of DECIGO and B-DECIGO. In this section, the coupling between
the satellite and the test mass, back reaction, and opto-mechanical coupling are
not considered for simplicity. The effects of these couplings can be suppressed
when the control gain is enough. Note that they considered in the constructed
model shown in Section 5.7 to quantitatively evaluate the effects of the couplings.
For more description about the feedback control, such as Laplace transformation,
the block diagram, and stability analysis, see Appendix B. Note also that there
is no inter-satellite communication in terms of the data processing in the fol-
lowing design since the precise control with the inter-satellite communication is
challenging.

5.6.1 Length control

The block diagram of the length control is shown in figure 5.2. The signals
obtained from Cavity c with PD1c and PD2c, i.e. sPD1c and sPD2c are fed
back to Laser 1 and Laser 2, respectively. The output of PD3a, i.e. sPD3a is
fed back to Laser 3. Signals from PD1b and PD2a are fed back to TM1b and
TM2a (longitudinal motion), respectively. The longitudinal motion of TM1c is
controlled with the absolute length measurement of Cavity c, i.e. sPD1Lc

. The
gravitational wave signal is taken from PD1b, PD2a, and PD3b.
It is worth noting that PD3b can measure the signal of Cavity b even without

the feedback of any signal. This is achieved by adjusting the length of Cavity a
and Cavity b in the dual-pass differential Fabry–Pérot interferometer as shown
in Chapter 6.

5.6.2 Alignment control

Since the alignment control having the same topology is implemented to all the
cavities, we focus on one cavity, Cavity b, first. In the alignment control, the
position of the test mass is set as a reference of the alignment control. In other
words, these two parameters are regarded as parameters external to the control
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Figure 5.2: Block diagram of length control. We define HFP ≡ H
(L)
FP (ω)/H

(L)
FP (0).

Gf1(2,3) and G1b(2a) are the control gains of each control loop.

loop. From this point of view, the alignment sensing vector is denoted as

sASC1b(3b),y ≡


sQPD1b(3b),y

sQPD1b(3b),yaw

sPD1b(3b),y
mc
1b

sPD1b(3b),y
mc
3b

 = Ry


θyaw,1b

θyaw,3b

ySTM1b(3b)

θ
STM1b(3b)
yaw

+R′
y

(
y1b
y3b

)
+R′′

y

(
xSAT1

xSAT3

)
,

(5.62)

sASC1b(3b),z ≡


sQPD1b(3b),z

sQPD1b(3b),pit

sPD1b(3b),z
mc
1b

sPD1b(3b),z
mc
3b

 = Rz


θpit,1b
θpit,3b

zSTM1b(3b)

θ
STM1b(3b)

pit

+R′
z

(
z1b
z3b

)
+R′′

z

(
xSAT1

xSAT3

)
,

(5.63)

where Ry(z), R
′
y(z) and R′′

y(z) are the transfer matrices from each component

to the measured signals. Among these matrices, Ry and Rz are important to
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design the control topology and written as

Ry =


Rc

2 −Rc

2 −1 0
Rc

2(Rc−L
2 )

Rc

2(Rc−L
2 )

0 −1

−Rc(L−Rc)

2(Rc−L
2 )

− R2
c

2(Rc−L
2 )

0 0

− R2
c

2(Rc−L
2 )

−Rc(L−Rc)

2(Rc−L
2 )

0 0

 , (5.64)

Rz =


−Rc

2 −Rc

2 −1 0
Rc

2(Rc−L
2 )

− Rc

2(Rc−L
2 )

0 −1

Rc(L−Rc)

2(Rc−L
2 )

− R2
c

2(Rc−L
2 )

0 0

− R2
c

2(Rc−L
2 )

Rc(L−Rc)

2(Rc−L
2 )

0 0

 . (5.65)

The processed signals are fed back to the test mass angles and incident beam
alignments. The relation between them and the feedback voltages is written as

θyaw,1b

θyaw,3b

ySTM1b(3b)

θ
STM1b(3b)
yaw

 = diag

(
1

ITM,yaw(−ω2 + iγω)
,

1

ITM,yaw(−ω2 + iγω)
, 1, 1

)

·
(
vθyaw,1b

, vθyaw,3b
, v

y
STM1b(3b) , v

θ
STM1b(3b)
yaw

)⊤

≡ (MASCy)
−1vASCy,1b(3b), (5.66)

θpit,1b
θpit,3b

zSTM1b(3b)

θ
STM1b(3b)

pit

 = diag

(
1

ITM,pit(−ω2 + iγω)
,

1

ITM,pit(−ω2 + iγω)
, 1, 1

)

·
(
vθpit,1b , vθpit,3b

, v
z
STM1b(3b) , v

θ
STM1b(3b)
pit

)⊤

≡ (MASCz)
−1vASCz ,1b(3b), (5.67)

where vy(z)inc1b(3b) and v
θ
inc1b(3b)

yaw(pit)

are the voltages fed back to the steering mirror

1b(3b).
Figure 5.3 shows the block diagram of alignment control of one cavity. Ac-

cording to the discussion in Appendix B, the control matrix needs to meet the
following condition:

(MASCy)
−1GyRy = (diagonal matrix), (5.68)

(MASCz)
−1GzRz = (diagonal matrix). (5.69)
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The simple choice of the control gain, Gy(z), is [57]

Gy = MASCydiag
(
Gθyaw,1b

, Gθyaw,3b
, Gyinc1b(3b) , G

θ
inc1b(3b)
yaw

)
R−1

y , (5.70)

Gz = MASCzdiag
(
Gθpit,1b , Gθpit,3b

, Gzinc1b(3b) , G
θ
inc1b(3b)
pit

)
R−1

z , (5.71)

where Gθyaw(pit),1b(3b)
, Gy(z)inc1b(3b) , and G

θ
inc1b(3b)

yaw(pit)

are the control open loop gains

of each loop. The above discussion in this section including equations (5.62)-
(5.71) is valid for Cavity b and Cavity a by replacing (1b, 3b, SAT1, SAT3) to
(2c, 1c, SAT2, SAT1) and (3a, 2a, SAT3, SAT2) in equations (5.62)-(5.71).

yASC

yTM

ySAT

zASC

zTM

zSAT Rz''
Rz'
Rz

GzMz
-1

sASC1b(3b),y sASC1b(3b),z
Ry''
Ry'
Ry

GyMy
-1

Figure 5.3: Block diagram of alignement control. We de-

fine yASC ≡ (θyaw,1b, θyaw,3b, y
STM1b(3b) , θ

STM1b(3b)
yaw )⊤, zASC ≡

(θpit,1b, θpit,3b, z
STM1b(3b) , θ

STM1b(3b)

pit )⊤, yTM ≡ (y1b, y3b)
⊤, zTM ≡ (z1b, z3b)

⊤,

and y(z)SAT ≡ (xSAT1,xSAT3)
⊤.

5.6.3 Drag-free and local control

In the drag-free control, TM1c, TM2a, and TM3a are used as references for
SAT1, SAT2, and SAT3, respectively. The obtained signals are fed back to
the thruster of the satellite. The block diagram for these controls is shown in
figure 5.4. With the similar discussion in the previous section, we choose the
gain matrix, GDF1(2,3), as

GDF1 = (RSATtoM2)
−1

· diag(GxSAT1
, GySAT1

, GzSAT1
, Gθrol,SAT1

, Gθpit,SAT1
, Gθyaw,SAT1

)M ′
SAT,
(5.72)

GDF2 = (RSATtoM2)
−1

· diag(GxSAT2 , GySAT2 , GzSAT2 , Gθrol,SAT2
, Gθpit,SAT2 , Gθyaw,SAT2)M

′
SAT,
(5.73)

GDF3 = (RSATtoM1)
−1

· diag(GxSAT3
, GySAT3

, GzSAT3
, Gθrol,SAT3

, Gθpit,SAT3
, Gθyaw,SAT3

)M ′
SAT,
(5.74)

where GxSAT1(2,3)
, GySAT1(2,3)

, GzSAT1(2,3)
, Gθrol,SAT1(2,3)

, Gθpit,SAT(2,3)1
, and

Gθyaw,SAT1(2,3)
are the open loop gains of each degree of freedom.

The test masses other than the reference of the drag-free control are locally
controlled with local sensors partially. Specifically, the positions and rolls of
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-1

Satellite 2

Satellite 1

Satellite 3
sLS,3asLS,2a

sLS,1c
RSATtoM2

GDF1'(MSAT)
-1

Figure 5.4: Block diagram of the drag-free control.

TM2c and TM3b are controlled and the positions only along y- and z-axes and
roll of TM1b are controlled. The block diagram of this control is shown in
figure 5.5. The control gain is designed as

GLS,1b = diag(0, GLSy,1b, GLSz ,1b, GLSθroll,1b, 0, 0), (5.75)

GLS,2c = diag(GLSx ,2c, GLSy,2c, GLSz ,2c, GLSθroll,2c, 0, 0), (5.76)

GLS,3b = diag(GLSx ,3b, GLSy,3b, GLSz ,3b, GLSθroll,3b, 0, 0), (5.77)

where GLSx ,2c(3b), GLSy,1b(2c,3b), and GLSz ,1b(2c,3b) are the open loop gains of
each degree of freedom.

xSAT1

x1b

Satellite 1

xSAT2

x2c

Satellite 2

RSATtoM1

GLS,2c

xSAT3

x3b

Satellite 3

RSATtoM2

GLS,3b

sLS,2c sLS,3b

sLS,1bRSATtoM1

GLS,1b

Figure 5.5: Block diagram of the local control.

5.6.4 Global attitude control of satellite formation

In addition to the above control, global attitude of satellite formation needs to be
controlled. For this purpose, the cavity axis difference in yaw motion of Cavity
b and c is fed back to y-axis motion of TM1c. The cavity axis difference in pitch
motion of Cavity c and a (a and b) is fed back to the z-axis motion of TM2a
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(TM3a). The obtained signal, sQPD1bc,y(z), is denoted as

sQPD1bc,y = − 1

2
(
Rc − L

2

)y1c + f(y1b, y3b, y2c, θyaw,1b, θyaw,3b, θyaw,2c, θyaw,1c),

(5.78)

sQPD2ca,z = − 1

2
(
Rc − L

2

)z2a + f ′(z2c, z1c, z3a, θpit,2c, θpit,1c, θpit,2a, θpit,3a),

(5.79)

sQPD3ab,z =
1

2
(
Rc − L

2

)z3a + f ′′(z3b, z2a, z1b, θpit,3a, θpit,2a, θpit,3b, θpit,1b).

(5.80)

In addition, the roll motion of the drag-free control reference masses, i.e.
TM1c, TM2a, and TM3a, is controlled with the star trackers.

5.6.5 Summary of control

In the end of this section, the summary of control topology is shown in table 5.2.
Note that x and the roll of incident beam alignment do not need to be controlled
and x- and y-axis motion of TM3a, y-axis motion of TM2a, and z-axis motion
of TM1c define the reference frame of the control. In other words, the attitude
of the triangular interferometer can be changed by actuating these test masses.
This topology is implemented in the model constructed in Section 5.7.

5.7 Control model construction
In order to analyze the control of DECIGO and B-DECIGO, we construct a
control model with Matlab and Simulink. In this model, mechanical and opto-
mechanical properties (Section 5.2), sensing and actuation method (Section 5.3
and 5.4), and control topology (Section 5.6) are implemented with graphically
coding using block diagrams of Simulink. The constructed model is shown in
Appendix H. We named this model a full DECIGO interferometer model. We
used the parameters that we considered in this chapter and shown in table 4.1.
With the model, we can calculate the transfer function from each excitation port
to each sensing port and noise spectrum based on the calculated transfer function
(for more details of the noise estimation method, see Appendix B). Therefore,
whether the controls of all degrees of freedom shown in table 5.2 are stable and
the requirements of noises and their root-mean-square for the sensitivity and
stability are met can be investigated.
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Table 5.2: Summary of control topology. Used signal name to control each degree
freedom is shown. Align, alignment control; Global, global attitude control; DF,
drag free control; STT, star tracker.

TM1b TM1c TM2c TM2a TM3a TM3b

x Length Length Local Length (Abs.) Ref Local
y Local Global Local Ref Ref Local
z Local Ref Local Global Global Local

Roll Local STT Local STT STT Local
Pitch Align Align Align Align Align Align
Yaw Align Align Align Align Align Align

Inc1b Inc1b Inc1b Inc1b Inc1b Inc1b

y Align Align Align Align Align Align
z Align Align Align Align Align Align

Pitch Align Align Align Align Align Align
Yaw Align Align Align Align Align Align

SAT1 SAT2 SAT3

x DF DF DF
y DF DF DF
z DF DF DF

Roll DF DF DF
Pitch DF DF DF
Yaw DF DF DF

LAS1 LAS2 LAS3

f Length Length Length

5.8 Investigation of the control system with the control

model

5.8.1 Open loop transfer function

Using the full DECIGO interferometer model, we designed the open loop gains
of each loop described in Section 5.6. Figures 5.6-5.12 show the designed open
loop gains for DECIGO. The figures indicate that all degrees of freedom of each
component are stably controlled (the stability can be checked with the phase at
the unity gain frequency as discussed in Appendix B). The peaks around 10−4

Hz, which appear in figures 5.7, 5.10, and 5.11, are caused by the coupling, K,
between the satellite and the test masses. Below the peak frequency, we cannot
increase the gain of the control loop. For B-DECIGO, the control gains are
designed in the same way and all controls are made to be stable.
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Figure 5.6: Open loop transfer func-
tion of frequency control loop. The
open loop gain for Laser 1 is over-
lapped by that for Laser 2.
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Figure 5.7: Open loop transfer func-
tion of x-axis motion of TM1b and
TM2a.
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Figure 5.8: Open loop transfer func-
tion of x-axis motion of TM1c.

Figure 5.9: Open loop transfer func-
tion of alignment control. The open
loop gain for TM1b Yaw is over-
lapped by that for TM3b Yaw. Also
the open loop gain for STM1b (y
and Yaw) and STM3b (y) is over-
lapped by that for STM3b Yaw.
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Figure 5.10: Open loop transfer
function of the drag-free control of
Satellite 1.
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Figure 5.11: Open loop transfer
function of local control of TM2c.
The open loop gain for y-axis motion
is overlapped by that for z-axis.
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Figure 5.12: Open loop transfer function of the global attitude control.

5.8.2 Noise suppression performance

We investigate the noise suppression performance of the designed control system.
Specifically, the residual motion between each mass and satellite and the resid-
ual cavity fluctuation are estimated. If the former is large, the actuator response
could be non-linear. If the latter is large, the intensity noise coupling could be
so large that the sensitivity can be degraded. Figures 5.13 and 5.14 show the
residual displacement and tilt between each test mass and the satellite for DE-
CIGO case, respectively. They meet the requirement for obtaining the linear
response of the electro-static actuator (displacement, 0.1 mm; tilt, 10−4 rad). In
B-DECIGO case, it is confirmed that the requirement is met. Figures 5.15 and
5.16 show the residual cavity fluctuation of DECIGO and B-DECIGO, respec-
tively. In DECIGO and B-DECIGO, the root-mean-square values of the residual
fluctuation, i.e. cavity detuning, are 5× 10−10 m and 1× 10−10 m, respectively.
The intensity noise with this cavity detuning is estimated in the next subsection.
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Figure 5.13: Residual displacement
between each test mass and the
satellite in DECIGO.

Figure 5.14: Residual tilt between
each test mass and the satellite in
DECIGO.

Figure 5.15: Residual cavity fluctu-
ation of DECIGO.

Figure 5.16: Residual cavity fluctu-
ation of B-DECIGO.

For B-DECIGO in geocentric orbit, the largest fluctuation of the cavity is
caused by the gravity of the Earth. As mentioned in Section 5.5.2, we need
to confirm the fluctuation caused by the gravity of the Earth is suppressed by
the control system. In order to keep the longitudinal cavity fluctuation to be
less than 10−10 m, i.e. not to make the gravity of the Earth affect the cavity
detuning, the transfer function from the force applied to the test mass to the
longitudinal cavity fluctuation should be less than 10−5 m/N at around 10−5 Hz
(≃ /1 day). According to the estimation with the constructed full mode, the
transfer function is less than 10−5 m/N in each cavity requirement.

5.8.3 Actuator range

In Chapter 4, we estimate the required actuator range considering the external
force that should be compensated. However, the sensing noise also takes a part
of the actuator range through the feedback system. Thus, we investigate the
amount of the applied force and torque for control as shown in figures 5.17 and
5.18 for DECIGO and figures 5.19 and 5.20 for B-DECIGO. The range required
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to each actuator of the test mass is 2 × 10−7 N in DECIGO and 8 × 10−7 N in
DECIGO.

Figure 5.17: Amount of the applied
force for control of DECIGO.

Figure 5.18: Amount of the applied
torque for control of DECIGO.

Figure 5.19: Amount of the applied
force for control of B-DECIGO.

Figure 5.20: Amount of the applied
torque for control of B-DECIGO.

5.8.4 Noise budget of DECIGO and B-DECIGO

Using the full DECIGO interferometer model with the designed control loop, we
estimate the expected noise budget of DECIGO and B-DECIGO. Figures 5.21-
5.23 show DECIGO cases and figures 5.24-5.26 show B-DECIGO cases. Note
that, in figures 5.21-5.26, L-shaped interferometer equivalent sensitivities are
shown. Here, we consider the noise sources described in Section 5.5. We assumed
the cavity detuning of 5×10−10 m for DECIGO and 1×10−10 m for B-DECIGO
as shown in figures 5.15 and 5.16 and the root-mean-square of the beam spot
mis-centering of 0.1 mm. The latter is mainly caused by the dithering. In these
figures, the curves labeled ‘ASC’ and ‘Global ASC’ mean the noises equivalent to
the strain that issues from the sensing noise of the alignment control and global
attitude control, respectively. For the frequency noise of DECIGO, we assume
the noise cancellation by a factor of 10 with post processing.
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Figure 5.21: DECIGO noise budget (interferometer 1) with the full control im-
plementation.

Figure 5.22: DECIGO noise budget
(interferometer 2) with the full con-
trol implementation.

Figure 5.23: DECIGO noise budget
(interferometer 3) with the full con-
trol implementation.
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Figure 5.24: B-DECIGO noise budget (interferometer 1) with the full control
implementation.

Figure 5.25: B-DECIGO noise bud-
get (interferometer 2) with the full
control implementation.

Figure 5.26: B-DECIGO noise bud-
get (interferometer 3) with the full
control implementation.
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5.9 Discussion

5.9.1 Control filter in the real detector

In order to design the control filter, we should know the interferometer responses
while, in the constructed model, they are known in advance as described in
Section 5.2-5.4. In the real detector, the interferometer response should be di-
agonalized in orbit after launch. Similar investigation was performed in the
ground-based detectors, especially, for suspension systems after their construc-
tion. This kind of work is known as commissioning. By using the auxiliary
sensors including the local interferometric sensors, the commissioning can also
be performed in space.
As shown in figure 5.6, the unity gain frequency of the control loop for the

frequency control loop in DECIGO is about 2 kHz that is higher than the free
spectral range of the arm cavity, 150 Hz. Such a high unity gain frequency
is necessary to reduce the residual cavity fluctuation shown in figure 5.15. The
source of the residual motion is the laser frequency fluctuation. At the frequencies
of multiple of the free spectral range, the gain of the cavity response goes zero
and the phase is delayed by 90 deg. Therefore, compensation of the phase delay
is necessary to obtain the unity gain frequency above the free spectral range.

5.9.2 Actuator range

The required actuator range for the developed control system is 2 × 10−7 N
in DECIGO. This is within the range considered in terms of the external force
in Chapter 4. To obtain the dynamic range of the actuator in DECIGO, new
techniques, such as frequency-dependent actuators, are necessary. The required
actuator range for the control system in B-DECIGO is 8 × 10−7 N, which is
mainly for the noise of the star tracker for the global attitude control. The
actuator range is larger than that of the heliocentric-orbit case mentioned in
Chapter 4. This result indicates that the frequency-dependent actuators or other
improved actuator are necessary for B-DECIGO even in the heliocentric orbit.
Another solution to save the actuator range is the development of the low noise
star tracker or compatible sensors.

5.9.3 Dominant technical noise source

Figures 5.21-5.26 indicate that the noise performance of the feedback control
meets the sensitivity requirement of DECIGO and B-DECIGO. As shown in
figures 5.21-5.26, the dominant noise sources are coupling noise from the sensing
noise of the local sensor in 0.1-0.2 Hz and the alignment sensing noise below 0.1
Hz. Local sensing noise is mainly coupled from the x-axis local control shown in
equations (5.76) and (5.77). As shown in figure 5.11, although the control gain
is rolled off at 0.1 Hz, we can improve the shape of control filters by considering
the measured open loop gain in actual operation. Notice that above 0.1 Hz,
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the sensitivity is limited by the residual motion of the satellites due to the local
sensing noise. Alignment sensing coupling is caused by the global attitude control
in equation (5.78). Cavity c can be mis-aligned by the motion of TM1c and the
y-axis motion of TM1c can couple with the x-axis motion through the motion of
Satellite 1. Thus, the global attitude control can make a spurious large coupling
from the alignment sensing noise to the length of Cavity b which is included in
Interferometer 1 and 3. This coupling can be reduced by improving the shape
of the control filter shown in figure 5.12, if necessary. These discussions also
support the qualitative reliability of the full DECIGO interferometer model.

5.9.4 Effect of the technical noise source on the gravitational-wave

observation.

As shown in figures 5.21-5.26, the sensitivity of DECIGO and B-DECIGO is
limited not only by the fundamental noise, i.e. quantum noise, but also by the
technical noise. We investigate the effect of the sensitivity degradation from
that only with quantum noise that is considered in the pre-conceptual design
of DECIGO [54]. Here the detection range (sometimes called inspiral range) of
the compact binary coalescence is investigated. The detection range is a kind
of measure of the detectability of the compact binary coalescence and is defined
as the luminosity distance for the binary detected at a certain signal-to-noise
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Figure 5.27: Comparison of DECIGO detection ranges with all noises and only
with quantum noise. Note that the source mass is represented in the detector
frame.
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ratio, typically eight.*1 Using the equations (2.35) and (B.4), we calculate the
detection range of the sensitivity with the full noise sources and that only with
quantum noise shown in figure 5.21. The result is shown in figure 5.27. Note
that the integration band is between 0.01 Hz and the frequency of the innermost
stable circular orbit (equation (2.36)). Figure 5.27 indicates that the detection
range is degraded by about 30% below 104 M⊙ and is decreased steeply above
104 M⊙. The degradation below 104 M⊙ is caused by the intensity noise. The
detection range above 104 M⊙ is decreased since the heavy binary merges below
the sensitivity band, which is 0.06 Hz or so. In spite of the degradation of
the detection range due to the technical noises, most of the scientific targets
discussed in Chapter 4 are still within the reach of DECIGO and B-DECIGO.
Especially, the detection range longer than 200 Gpc is enough to observe the
compact binaries since the first star of the Universe is thought to be formed at a
luminosity distance of 200 Gpc [196]. Actually, the probability of the detection of
the light white-dwarf binaries, which are estimated to merge at around 0.05 Hz,
is relatively low. For investigating the wide mass range distribution of the black
holes (1-106 M⊙), multi-band observation with the detectors that are sensitive
below 0.01 Hz, such as LISA, is important.

*1 The signal-to-noise ratio of eight is a kind of gravitational wave detection threshold in
the gravitational wave research field. The signal-to-noise ratio of eight corresponds to
the false detection probability of ∼ 10−15 [63].
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Chapter 6

Demonstration of the dual-pass

differential Fabry–Pérot

interferometer

In this chapter, we show the result of the demonstration of the dual-pass differ-
ential Fabry–Pérot interferometer in the ground laboratory.

6.1 Objective
The dual-pass differential Fabry–Pérot interferometer is a new interferometer
configuration for DECIGO and B-DECIGO. In the dual-pass differential Fabry–
Pérot interferometer, its longitudinal signals cannot be obtained with the same
way as the conventional differential Fabry–Pérot interferometer since, in general,
all the cavities cannot meet the resonance condition simultaneously as explained
in Section 6.2.1. In order to obtain the signal of the dual-pass differential Fabry–
Pérot interferometer, the length of each cavity has to be adjusted to be similarly
(quantitative discussion is in the next section). By adjusting the cavity lengths,
the offset of the laser frequency from the cavity resonant frequency, known as
cavity detuning, can be reduced. This is an essential feature of the dual-pass
differential Fabry–Pérot interferometer not only for signal extraction but also
for noise reduction to the gravitational wave observation. When there is cavity
detuning, intensity fluctuation of the laser couples with the detuning and can be
a dominant noise source of DECIGO and B-DECIGO. Therefore, we develop the
dual-pass differential Fabry–Pérot interferometer to demonstrate its operation
and to investigate its behavior. In particular, the dependence of the cavity
detuning on the cavity length is investigated. This time, in order to focus on
the operation of one dual-pass differential Fabry–Pérot interferometer, the setup
constructed in the ground loboratory has two arm cavities with two laser sources.
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6.2 Formulation and behavior of the dual-pass differential

Fabry–Pérot interferometer

6.2.1 Dependence of the cavity detuning on the cavity length difference

Here, we explain the behavior of the dual-pass differential Fabry–Pérot interfer-
ometer in DECIGO and B-DECIGO. In the dual-pass differential Fabry–Pérot
interferometer, one cavity is composed of two lasers, which have different fre-
quency in order to reduce interference effect of them. Even in this case, two of
the three arm cavities in DECIGO and B-DECIGO can be resonant for both
lasers with feedback control as shown in figure 6.1. Laser 1 and Laser 2 are
controlled to follow the resonant frequency of Cavity c. The length of Cavity
a and b are controlled to follow Laser 2 and 1, respectively. The frequency of
Laser 3 is controlled to use Cavity a as a reference. Thanks to these feedback
control, Cavity a (c) is resonant for Laser 2 and 3 (1 and 2) and Cavity b is
resonant for Laser 1. However, Cavity b cannot be resonant for Laser 3 using
feedback control in general. This is because, if there is the additional feedback
control loop, the feedback control is cancelled out due to the other control loops.
Therefore, without a new technique, we cannot obtain the longitudinal signal of
Cavity b with Laser 3.
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Figure 6.1: (a) Schematic of the dual-pass differential Fabry–Pérot interferometer
length control topology. (b) Relation between the cavity resonant frequency and
laser frequency. fi (i = 1, 2, 3) is the frequency of each laser. (c) Enlarged figure
of (b) around f3.

In order to make the cavity resonant for both lasers without feedback control,
it is found that we need to adjust the absolute cavity length. The frequency
difference of the frequency of Laser 3, f3, from the resonant frequency of Cavity
b, fb, is written as

∆f3 ≡ f3 − fb = f3 −N
c

2Lb
. (N ∈ N) (6.1)
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Since Laser 3 is controlled to resonate with Cavity a, the frequency of Laser 3 is
denoted as f3 = N ′ c

2La
(N ′ ∈ N). Consequently, ∆f3 is written as

∆f3 = N ′ c

2La
−N

c

2Lb
. (6.2)

We can choose N ′ in 0.995N ≲ N ′ ≲ 1.005N . This range corresponds to the
actuation range of the laser source. Obviously, when N ′ = N and La = Lb, the
frequency difference ∆f3 is zero, i.e. Cavity a is resonant with Laser 3. When
N ′ = N +∆N (∆N ∈ N) and La = Lb +∆L (|∆L|/Lb ≪ 1), ∆f3 is denoted as

∆f3 ≃ c

2Lb

(
∆N +N

∆L

Lb

)
. (6.3)

When |∆L|/Lb ≲ 0.005 (this level can be achieved with auxiliary sensors such
as microwave ranging system), we can choose ∆N to be the nearest integer to
−N ∆L

Lb
. As a result, the frequency difference ∆f3 is within,

|∆f3| ≤
c|∆L|
2L2

b

. (6.4)

The frequency difference corresponds to the cavity detuning. When the cavity
detuning is smaller than the resonant width of the cavity, i.e. 2ν1/2, the longi-
tudinal and alignment signal of the cavity can be obtained in the same manner
as the conventional cavity. The stringent requirement for the cavity detuning is
determined by the intensity noise coupling (equation (3.70)) to be |∆f3| ≤ 0.6 Hz
for B-DECIGO (|∆f3| ≤ 0.3 Hz for DECIGO). This leads to the length adjust-
ment requirement of |∆L| ≤ 40 m for B-DECIGO (|∆L| ≤ 2 km for DECIGO).
This precision can be achieved with the auxiliary ranging instruments such as
micro-wave ranging system [189]. The dependence of the cavity detuning on the
cavity length is a representative feature of the dual-pass differential Fabry–Pérot
interferometer and should be confirmed in the experiment.

6.2.2 Optical spring effect

Here, we discuss the effect of the optical spring due to the cavity detuning. When
there is detuning in a cavity, the circulating power of the cavity varies depending
on the mirror motion. As a result, the radiation pressure of the circulating laser
behaves as a spring. This effect is called the optical spring [197]. The spring
constant of the optical spring is given by [198]

Kopt ≡ kopt + iωγopt, (6.5)

kopt ≡ 4Pcircωl

Lc

∆f

2π[(∆f)2 + ν21/2]
, (6.6)

γopt ≡ −8Pcircωl

Lc

ν1/2(∆f)

4π2[(∆f)2 + ν21/2]
2
, (6.7)
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where Pcirc is the circulating power in the cavity and ∆f is the cavity detuning
in terms of frequency. Equations (6.5)-(6.7) indicate that the optical spring
provides the positive and anti-damping spring (or the negative and damping
spring) depending on the detuning. In the dual-path differential Fabry–Pérot
interferometer shown in Chapter 5, the optical spring exists in Cavity c since
there is cavity detuning due to the different length of the cavity as discussed in
Section 6.2. In other words, TM1b and TM3b are considered to be connected
with the optical spring.
One way to deal with the optical spring effect due to the different length of

the cavity is detuning the resonance of Cavity c from f1. When the resonance
of Cavity c is detuned from f1, the laser beam from Satellite 1 behaves as the
optical spring, too. When the amount of the detuning of the resonance of Cavity
c from f1 is the same as that from f3 but the sign is reversed, the optical spring
effect is cancelled. Notice that the optical spring by detuning the cavity has
been demonstrated [199, 200] and the amount of the detuning can be adjusted.
Therefore, the results in Chapter 5 are valid when the optical spring effect is
cancelled by adjusting the detuning of the resonance of Cavity c from f1.
Actually, even without detuning the resonance of Cavity c from f1, the optical

spring effect due to the different length of the cavity can be dealt with using the
control discussed in Chapter 5. If we assume ∆f = ∆f3 = 0.3 Hz for DECIGO
and ∆f = ∆f3 = 0.6 Hz for B-DECIGO, the spring constants of the optical
spring between TM1b and TM3b for DECIGO and B-DECIGO are given by,
according to equations (6.5)-(6.7),{

kopt = 0.63 N/m,

γopt = −2.7× 10−2 N/(m/s),
(DECIGO) (6.8)

{
kopt = 0.25 N/m,

γopt = −1.1× 10−2 N/(m/s).
(B-DECIGO) (6.9)

Here, we also use the parameters shown in table 4.1. Note that, in the dual-
path differential Fabry–Pérot interferometer, we can choose the positive and
anti-damping optical spring by adjusting f3. In the condition with the positive
and anti-damping optical spring, we discuss the optical spring effect. The res-
onant frequency of the optical spring in Cavity c is 0.017 Hz for DECIGO and
0.020 Hz for B-DECIGO. These resonant frequencies are smaller than the unity
gain frequency of the control of the x-motion of TM1b according to figure 5.7.
Since the optical spring affects the control system below the resonant frequency,
the optical spring effect can be suppressed with the control system considered in
Chapter 5. We also confirmed the above discussion using the full DECIGO inter-
ferometer model including the optical spring effect, and could obtain the stable
control system and the sensitivity better than the target sensitivity between 0.1
Hz and 10 Hz.
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6.3 Experimental setup
Figure 6.2 shows the schematic of the dual-pass differential Fabry–Pérot inter-
ferometer experiment. A photograph of the main dual-pass Fabry–Pérot cavities
is shown in figure 6.3. We use single-frequency distributed-feedback fiber lasers
with a wavelength of 1550 nm (Laser1, Koheras AdjustiK C15; Laser 2, Koheras
BASIK X15). The powers of output of Laser 1 and Laser 2 are about 10 mW
and 30 mW, respectively. Each of their outputs is a polarization-maintaining
single-mode optical fiber. The single-mode optical fiber is the optical fiber that
is designed to transmit only the fundamental spacial mode of the laser beam [127]
(about the spacial mode of the laser beam, see Appdendix F). The emitted lasers
go to the fiber coupled Faraday isolators (Thorlabs IO-G-1550-APC for both
lasers, not shown in figure 6.2) and electro-optic modulators (EO Space PM-
0K5-00-PFA-PFA-UL-S for Laser 1 and PM-0S5-00-PFA-PFA-NT for Laser 2).
The phase modulation frequencies for Laser 1 and Laser 2 are 14.7 MHz and 15.3
MHz, respectively. We use the different modulation frequencies for signal decou-
pling of the two lasers. After the electro-optic modulator, the laser is splitted
with the fiber coupled beam splitter: one goes to the main dual-pass interferome-
ter (main beam) and the other goes to the monitoring system for absolute cavity
length measurement as explained later. The main beams are introduced to free
space through collimators (Newport F-COL-9-15-FCAPC) and splitted with the
beam splitter for the two arm cavities. After adjusting the mode matching and
alignment, the beam is incident to the cavity from both sides. This is the main
dual-pass Fabry–Pérot cavity. The cavity is 55-cm-long and its finesse is designed
to be 210. The radius of curvature of the mirrors is 2 m and their amplitude
reflectivity is 0.992 (Lattice Electro Optics, Inc. BS-1550-R98.5-UF-MPC-0525-
2000). These cavity mirrors are placed on the two optical benches isolated with
rubber stacks. The reflected light and the transmitted light from the other side
are received by each photodetector. Note that the two beams have orthogonal
linear polarization to avoid interference effect. The cavity longitudinal signals
are obtained with the Pound–Drever–Hall technique.
The block diagram of the control in this experiment is shown in figure 6.4.

Signals from PD1a and PD2a are fed back to the frequencies of Laser 1 and Laser
2, respectively. With the signal from PD2b, the position of M2b is controlled
using a piezoelectric transducer. We defined open loop transfer functions of each
feedback loop as

G1a ≡ S1aE1aA1a, (6.10)

G2a ≡ S2aE2aA2a, (6.11)

G2b ≡ flas
L

S2bE2bA2b. (6.12)
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Figure 6.2: Schematic of the dual-pass differential Fabry–Pérot interferometer
experiment.

Figure 6.3: Photograph of the main dual-pass Fabry–Pérot cavities.

Each error signal (about the notation, see Appendix B) is denoted as

e1a =
S1a

1 +G1a

flas
L

(x1a − x2a) +
S1a

1 +G1a
f1, (6.13)

e2a =
S2a

1 +G2a

flas
L

(x1a − x2a) +
S2a

1 +G2a
f2, (6.14)
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e1b =

(
G2a

1 +G2a

G2b

1 +G2b
− G1a

1 +G1a

)
flas
L

S1b (x1a − x2a)

+
1

1 +G2b

flas
L

S1b (x1b − x2b) +
1

1 +G1a
S1bf1 −

1

1 +G2a

G2b

1 +G2b
S1bf2,

(6.15)

e2b = − G2a

1 +G2a

1

1 +G2b

flas
L

S2b (x1a − x2a) +
1

1 +G2b

flas
L

S2b (x1b − x2b)

+
1

1 +G2a

1

1 +G2b
S2bf2. (6.16)

When |G1a| ≫ 1 and |G2a| ≫ 1, we can write e1b and e2b as

e1b = − 1

1 +G2b

flas
L

S1b (x1a − x2a) +
1

1 +G2b

flas
L

S1b (x1b − x2b) , (6.17)

e2b = − 1

1 +G2b

flas
L

S1b (x1a − x2a) +
1

1 +G2b

flas
L

S1b (x1b − x2b) , (6.18)

so that the same signal should be measured at the two ports.

f1 S1a

x1a
x2a

e1a

f1a
e2a

f2a

e2b

f2b

e1b

E1a
A1a

L
flas

S2a

A2a

E2af2

x1b
x2b L

flas
S2b

A2b

E2b

S1b

Figure 6.4: Block diagram of the dual-pass differential Fabry–Pérot interferome-
ter experiment. eiα and fiα are the error signal and feedback signal of each port,
respectively, Siα is the sensing efficiency, Eiα is the control electric filter, Aiα is
the actuator efficiency (i = 1, 2 and α = a,b), flas = 5.8 × 1014 Hz is the laser
frequency, and L is the cavity length.

6.4 Characterization of each component
After the setup was constructed, the finesse of the cavities, the actuation effi-
ciencies, the sensing efficiencies, the control filters, and the cavity lengths were
evaluated.
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6.4.1 Finesse of the cavity

The finesse of the cavity was measured by taking the ratio of the free spectral
range to the resonance peak full width at half maximum by sweeping the fre-
quency of Laser 2. This method is called cavity scanning. Since Laser 2 has
larger power than Laser 1, the measurement with better signal-to-noise ratio can
be performed with Laser 2. We scanned Cavity a and Cavity b and saw several
pairs of the resonant peaks next to each other for each cavity. One pair of the
resonant peaks is shown in figures 6.5 and 6.6 as an example. The largest peak in
figures 6.5 is the fundamental Hermite–Gaussian mode (about Hermite–Gaussian
mode, see Appendix F). The finesse is measured with the following equation:

F =
∆tFSR

∆tFWHM
, (6.19)

where ∆tFSR is the temporal difference of the peaks and ∆tFWHM is the full
width at half maximum of the peak in terms of time. As a result, the finesses of
Cavity a and b were measured to be,

Cavity a: 290± 70, (6.20)

Cavity b: 270± 80, (6.21)

where statistical errors are shown. The measured finesses of the two cavities are
the same within error ranges. Although the measured finesse of Cavity a does
not agree with the designed value within the error range, it does not significantly
affect the whole result in this chapter.
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Figure 6.5: Example of the result for cavity scanning to measure actuation effi-
ciency. In this plot, the applied voltage to Laser 2 for scanning its frequency and
transmitted power measured with PD1b is shown. During this measurement, the
beam from Laser 1 was blocked.
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Figure 6.6: Enlarged plot of figure 6.5 around 0.08 s. We can see the peak of the
fundamental mode. The origin of the horizontal axis (i.e. 0 s) is set to be the
peak point.
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6.4.2 Actuator efficiency

Actuator efficiencies, i.e. laser frequency change of Laser 1 (Laser 2) when 1
V is applied to Laser 1 (Laser 2) and the efficiency of piezoelectric transducer
on M2b, were measured with two methods. The first one is cavity scanning
again for overall efficiency measurement and the second one is frequency response
measurement. The cavity has a peak at every half of the wavelength, which is a
precise length reference. Thus, by comparing the voltage difference between the
two cavity peaks during cavity scanning with each actuator to the half of the
wavelength, we can measure the overall efficiency of the actuator. If we scan the
cavity with the piezoelectric transducer on M2b, the efficiency of the cavity is
measured. The frequency response can be measured with the transfer function
measurement from the input of the actuator to the sensor output when the cavity
is locked with each actuator. As a result, the actuator efficiencies were measured
to be

Laser 1 (freqency): A1a(f) = A1 exp (−if/f1) , (6.22)

A1 = (1.31± 0.04)× 108 [Hz/V], f1 = 5500± 20 [Hz],

Laser 2 (freqency): A2a(f) = A2
1

1 + if/f2

1

1 + if/f ′
2

exp (−if/f ′′
2 ) , (6.23)

A2 = (3.89± 0.08)× 107 [Hz/V], f2 = 328± 3 [Hz],

f ′
2 = 5250± 40, [Hz], f ′′

2 = 17.0± 0.2 [kHz],

Piezoelectric transducer: A2b(f) = APZT
1

1 + if/fPZT
exp (−if/f ′

PZT) , (6.24)

APZT = (4.7± 0.4)× 10−7 [m/V],

fPZT = 2500± 700 [Hz], f ′
PZT = 5500± 20 [Hz].

6.4.3 Sensing efficiency

In the cavity experiment, the laser frequency difference from the resonant fre-
quency of the cavity can be measured with the Pound–Drever–Hall technique
as explained in Chapter 3. The efficiency of the measurement of the frequency
difference between the laser frequency and the resonant frequency of the cavity
can be represented by sensing efficiency, which is the transfer function from the
difference of the resonant frequency to the output voltage. The sensing efficiency
can be measured from the measurement of the transfer function from the input
of the actuator to the sensor output if the actuator efficiency is known. In this
dual-pass differential Fabry–Pérot interferometer experiment, sensing efficiency
is assumed to have a flat response since ν1/2 is ∼ 500 kHz, which is much larger

90



than the frequency that is considered in this experiment, e.g. at most 10 kHz
(see also Section 3.3.2). The measured sensing efficiencies are

PD1a : S1a = (2.64± 0.01)× 10−8 [V/Hz], (6.25)

PD1b : S1b = (1.655± 0.006)× 10−8 [V/Hz], (6.26)

PD2a : S2a = (8.76± 0.03)× 10−8 [V/Hz], (6.27)

PD2b : S2b = (1.40± 0.03)× 10−7 [V/Hz]. (6.28)

Note that these results are expressed in terms of the cavity resonant frequency.

6.4.4 Control electric filter

The control electric filter is designed to obtain stable control. The measured
transfer functions are

Laser 1 loop: E1a(f) = E1a
1 + if/f ′′

1a

1 + if/f1a

1 + if ′′′/f1a
1 + if/f ′

1a

(6.29)

E1a = 3598± 2, f1a = 2.80± 0.01 [Hz], f ′
1a = 32.6± 0.2 [Hz],

f ′′
1a = 310± 2 [Hz], f ′′′

1a = 1.1± 0.4 [kHz],

Laser 2 loop: E2a(f) = E2a
1 + if ′′/f2a
1 + if/f2a

1 + if ′′′/f2a
1 + if/f ′

2a

1

1 + if/f ′′′′
2a

, (6.30)

E2a = 94830± 60, f2a = 0.390± 0.008 [Hz], f ′
2a = 34.1± 0.3 [Hz],

f ′′
2a = 286± 3 [Hz], f ′′′

2a = 1.67± 0.03 [kHz], f ′′′′
2a = 9.7± 0.2 [kHz],

M2b loop: E2b(f) = E2b
1 + if/f ′′

2b

1 + if/f2b

1 + if ′′′/f2b
1 + if/f ′

2b

, (6.31)

E2b = 55.32± 0.01, f2a = 2.76± 0.02 [Hz], f ′
2b = 31.9± 0.4 [Hz],

f ′′
2b = 353± 6 [Hz], f ′′′

2b = 1.434± 0.002 [kHz].

6.4.5 Absolute cavity length

The absolute cavity length can be determined if the cavity free spectral range
is measured according to equation (3.31). In this experiment, the free spectral
range can be measured by observing the beatnote frequency with PDbeat and a
frequency counter when the two lasers are made to resonate at the next resonance
of the cavity. The measured lengths of Cavity a and b are

Cavity a: La = 0.55340± 0.00001 [m], (6.32)

Cavity b: Lb = 0.55340± 0.00001 [m]. (6.33)

Note that the length of Cavity a can be changed with the stage on which M2a
is located and the value of La shown in equation (6.32) is the length of Cavity a
after the adjustment to be the same as the length of Cavity b.
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6.5 Results of the dual-pass differential Fabry–Pérot

interferometer experiment

6.5.1 Lock sequence

Figure 6.7 shows the lock sequence of the dual-pass differential Fabry–Pérot
interferometer. At 11 s, the frequency of Laser 1 is controlled to be the resonant
frequency of Cavity a. Then, at 19 s, the frequency of Laser 2 is controlled to
be the resonant frequency of Cavity a. Finally, at 32 s, the length of the cavity
b is controlled with the signal obtained with PD2b. The error signal from the
PD1b can be observed although it is not fed back to any actuator. Note that at
7 s, Cavity a is held in the non-intended higher order mode.
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Figure 6.7: Lock sequence of the dual-pass differential Fabry–Pérot interferom-
eter. Left panels show the laser power received by each photodetector, center
panels show the error signals of each cavity, and right panels show the feedback
signals in each control loop. The error and feedback signals are written in terms
of the resonant frequency, which is the origin of these signals. At the timings
indicated by the dashed lines, each control servo was engaged successively.
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Figure 6.8: Measured open loop gain of each control loop. The upper and lower
panels show the gain and phase, respectively. The solid lines are the open loop
gains predicted by the characterization of each component in Section 6.5.

6.5.2 Open loop transfer function

We measured open loop transfer functions of the two frequency servos and piezo-
electric transducer servo as shown in figure 6.8. The open loop transfer functions
predicted by the characterization of each component described in Section 6.5 are
also shown. Here, we used the mean values. The measured gain and predicted
gain agree with each other around their unity gain frequency.

6.5.3 Detuning dependence on the cavity length

We measured the dependence of the error signal offset from the resonant fre-
quency on the cavity length with the Pound–Drever–Hall technique. The error
signals correspond to the cavity detuning. The cavity length was adjusted by
moving the stage with a micro meter where M2a is placed. Two examples of
the time series data of the error signals when the two cavity lengths are off and
adjusted are shown in figures 6.9 and 6.10. We measured the error signal offsets
with five different positions of M2a as shown in figure 6.11. During this mea-
surement, the cavity alignment is kept to be almost the same. We determined
the error signal offset dependence of the mirror position by fitting the result in
figure 6.11 to be (−5.1± 0.5)× 108 Hz/m.
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Figure 6.9: Error and feedback signals when two cavity lengths are shifted.
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Figure 6.10: Error and feedback signals when two cavity lengths are adjusted by
moving the position of M2a as described in Section 6.4.5.
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Figure 6.11: Measured offsets of the Pound–Drever–Hall signal, i.e. error signals,
at the five different cavity lengths. The offset of the Pound–Drever–Hall signal
corresponds to the cavity detuning.

6.5.4 Noise spectrum measurement

We measured noise spectra of the dual-pass differential Fabry–Pérot interferom-
eter. The result is shown in figure 6.12. The ‘1a’ and ‘2a’ curves are calibrated
from the feedback signal and the ‘2b’ curve is calibrated from the error signal.
The ‘1b’ and ‘2b’ curves represent the differential length fluctuations of Cav-
ity a and b. The spectra of ‘1a’ and ‘1b’ indicate that the frequency noise is
successfully stabilized by the frequency servo and they work as a differential
Fabry–Pérot interferometer effectively without feeding back the signal of PD1b.

6.6 Discussion
When the dual-pass differential Fabry–Pérot interferometer works well, the same
signal, i.e. the differential length fluctuation of the two cavities, is obtained in
the two interferometer. To show that, we calculated the coherence of e1b and
e2b as shown in figure 6.13. Since the average number is 100, the two signals are
regarded as coherent when the coherence is larger than 0.06 [201]. Figure 6.13
indicates that the two signals are coherent between 1 and 1500 Hz. The coherence
below 10 Hz decreases since the noise is large. The main noise source is considered
to be the differential component of the seismic motion. The coherence above
1500 Hz is small since the gain of the frequency feedback loop is small. In
this case, the independent frequency noise affects the measurement according to
equations (6.15) and (6.16). The discussion in this paragraph indicates that the
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Figure 6.12: Calibrated noise spectra of the dual-pass differential Fabry–Pérot
interferometer measured with PD1a, PD1b, PD2a, and PD2b.

dual-pass differential Fabry–Pérot interferometer is considered to be successfully
operated.
In order to see the behavior of the dual-pass differential Fabry–Pérot interfer-

ometer with another way, we also check if the common motion can be subtracted
by taking the difference between the output signals of PD1b and PD2b. Since
there could be relative calibration error between PD1b and PD2b, we need to
apply a factor to the output signal of PD2b for the subtraction of the output of
PD2b from the output of PD1b. We survey the optimal factor of the subtraction
with 1D-grid searching. The best subtracted signal is shown in figure 6.14. This
figure suggests that the two interferometers measure the same signal, i.e. the
differential cavity length fluctuation. The optimal factor for the subtraction of
the output of PD2b from the output of PD1b was 0.89. This indicates that there
is relative calibration error of 11% between the two interferometers. The 11%
calibration error can be explained by the sensing efficiency error estimated in
Section 6.5.
It is worth noting that the procedure mentioned above for the subtraction

from the signal of PD1b with the signal of PD2b is a kind of way to make a
null-stream and can also be used for the relative calibration of each sensing port
even in DECIGO and B-DECIGO. Since the mass and volume of the instrument
are limited in the space mission, this kind of in-situ scheme is beneficial.
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Figure 6.13: Measured magnitude-squared amplitude (upper panel) and phase
(lower panel) of coherence of the error signal from PD1b and PD2b.
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Here, the result in Section 6.5.3 is discussed to see the dependence of the
cavity detuning on the cavity length. The fitting result of the relation between
mirror position and cavity detuning from figure 6.11 is (−5.1± 0.5)× 108 Hz/m.
Our formulation and the cavity length measurement in Section 6.4.5 predict
that the dependence of the detuning of Cavity b to the position of TM2a is to be
(−4.8976±0.0002)×108 Hz/m. They are consistent within the error ranges. This
discussion indicates that, by adjusting the cavity length, the longitudinal signal of
the dual-pass differential Fabry–Pérot interferometer can be obtained. Moreover,
there is the position of TM2a where the cavity detuning is zero as shown in
figure 6.11. Therefore, intensity noise coupling explained in Section 3.3.5 can be
reduced in the dual-pass differential Fabry–Pérot interferometer.
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Chapter 7

Conclusion

7.1 Summary
In this thesis, the control scheme of the Fabry–Pérot type space gravitational
wave antenna is studied. First, the control topology is considered with the nu-
merical model of the Fabry–Pérot type antenna including a mechanical and opto-
mechanical response, a sensing and actuation scheme, external disturbances, and
sensing noises. The new model is named a full DECIGO interferometer model.
This new model reveals that the interferometer control and drag-free control can
be engaged at the same time by separating the degrees of freedom controlled
by the control system: one mirror in the satellite is used as the reference of
the drag-free control and the other mirror is used for the interferometer control
and the local control. The model also reveals that the mirror position can be
used as a reference of the control to obtain the stable control system. Using the
model, a solution of DECIGO parameters with interferometer control achieving
the target strain sensitivity of 10−23 /

√
Hz is also found as shown in figure 5.21.

In addition, more than one-day stability was also achieved. Second, the dual-
pass differential Fabry–Pérot interferometer is formulated and is constructed in
a ground laboratory as shown in figure 6.2. The operation of the dual-pass differ-
ential Fabry–Pérot interferometer is demonstrated for the first time. Moreover,
it is confirmed that cavity detuning can be reduced by the cavity length ad-
justment as predicted by the formulation as shown in figure 6.11. The cavity
detuning reduction is essential to minimize a noise coupled with the laser inten-
sity fluctuation, which would be a major noise source in DECIGO. These results
indicate that the dual-pass differential Fabry–Pérot interferometer is correctly
understood with the new formulation.

7.2 DECIGO and B-DECIGO design
In this thesis, control topology and the dual-pass differential Fabry–Pérot in-
terferometer are developed. These two components are essential for DECIGO
and B-DECIGO. Here, including the obtained results, we summarize the design
of DECIGO and B-DECIGO as shown in table 7.1. The dual-pass differential
Fabry–Pérot interferometer is utilized. The sensing method for the longitudinal
signal is the Pound–Drever–Hall method. The methods for the alignment signal
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are the wavefront sensing method and the dithering method. With these sensing
methods, the interferometer is controlled stably with almost shot-noise-limited
sensitivity between 0.1 and 10 Hz. We can implement the drag-free control to
control the satellite motion at the same time as the interferometer control with
control scheme developed in this thesis. The degrees of freedom of the test mass
that is not controlled with the interferometer control is controlled with the local
sensors and the star trackers. In this design, the dominant technical noise is
caused by the noise of the local sensor and the significant part of the actuator
range is taken by the star tracker noise. The local sensors and the star trackers
should be more sensitive than 1×10−12 m/

√
Hz above 0.1 Hz (for interferometer

sensitivity), and 2× 10−6 rad/
√
Hz below 0.01 Hz (for interferometer stability),

respectively. The test mass actuators should have the maximum range of 2×10−6

N and the noise level of 2× 10−17 N/
√
Hz above 0.1 Hz. The dynamic range of

the actuator is ∼ 10−11 /
√
Hz, which is greater than that of the conventional

simple actuators, so that we need to develop a new actuator. One candidate is
the frequency-dependent actuator that has the large range (larger than 2× 10−6

N with the safety factor of 10) outside the observation band, and is low noise

(better than 2×10−17 N/
√
Hz ) in the observation band. The coupling from the

satellite motion to the test mass acceleration should be less than 5 × 10−7 /s2

not only for the sensitivity but also for the stability below 10−4 Hz. Using these
components and control scheme developed in this thesis, we achieved the target
sensitivity of DECIGO (10−23 /

√
Hz) and B-DECIGO (10−22 /

√
Hz) between

0.1 and 10 Hz and one-day-long stability in the simulation.

Table 7.1: Summary of the design of DECIGO and B-DECIGO considered in
this thesis. In the brackets, the achieved values in the previous works are shown.

Interferometer
configuration

Dual-pass differential
Fabry–Pérot interferometer

Sensing method
longitudinal Pound–Drever–Hall method
alignment Wavefront sensing and dithering

Control topology
Combined control of the interferometer control
with the drag-free control

Local sensor
sensitivity

1× 10−12 m/
√
Hz (> 0.1 Hz)

[ 2× 10−9 m/
√
Hz (in space) [182],

1× 10−12 m/
√
Hz (ground) [185] ]

Star tracker
sensitivity

2× 10−6 rad/
√
Hz (< 0.01 Hz)

[ 2× 10−6 rad/
√
Hz [182] ]

Actuator
range 2× 10−6 N

noise 2× 10−17 N/
√
Hz (> 0.1 Hz)

[ ∼ 5× 10−6 N, ∼ 5× 10−15 N/
√
Hz [176] ]

Coupling between
satellite and test mass

5× 10−7 /s2 [ 4× 10−7 /s2 [140] ]
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7.3 Conclusion
The observation frequency of the ground-based gravitational wave observatory,
such as aLIGO, is limited between ∼ 10 Hz and a few kHz. The lower frequency
limit is mainly determined by the seismic motion. Some observational targets
below 10 Hz are predicted. One target is the coalescence of the intermediate-
mass black holes with masses in the range between ∼ 103 M⊙ and ∼ 106 M⊙.
The intermediate-mass black holes typically emit the gravitational waves in
the frequency range between ∼ 10−3 Hz and ∼ 1 Hz. The coalescence of the
intermediate-mass black holes is considered to be a candidate of the origin of the
super massive black hole that has been discovered at the galactic center. Another
target is the early Universe. The quantum fluctuation is considered to cause the
gravitational waves in the wide frequency range, for example, between ∼ 10−17

Hz and ∼ 104 Hz. Therefore, some space gravitational wave observatories are
proposed to avoid the seismic motion.
DECIGO and B-DECIGO are the planned Fabry–Pérot type interferometric

space gravitational wave antennas to observe the gravitational waves between
0.1 Hz and 10 Hz. The design sensitivity of DECIGO is better than 10−23 /

√
Hz

so that the stochastic gravitational wave background generated by the quantum
fluctuation in the early Universe could be observed. These space antennas have
two unique features: the precise interferometer control system including the
Fabry–Pérot cavity and drag-free satellite, and the dual-pass differential Fabry–
Pérot interferometer.
The Fabry–Pérot cavity is necessary to achieve high shot-noise-limited sensi-

tivity. The drag-free satellite is also necessary to isolate the test masses from the
extra-satellite noise sources. Although these two techniques have been demon-
strated independently, there was a concern about the simultaneous operation
of them, especially in terms of control method. Thus, we numerically modeled
the full control system of DECIGO and B-DECIGO. The model is named the
full DECIGO interferometer model. This numerical model reveals that the in-
terferometer control and drag-free control can be engaged at the same time by
separating the degrees of freedom controlled by the control system; one mirror
in the satellite is used as the reference of the drag-free control and the other
mirror is used for the interferometer control and the local control. Using the
model, we also considered the detailed requirement including control design for
DECIGO and B-DECIGO. As a result, we found a solution of interferometer
control with target strain sensitivity of DECIGO, which is 10−23 /

√
Hz, and

more than one-day stability. If we achieve the sensitivity of 10−23 /
√
Hz at 0.1

Hz, some features at the early Universe can be tested, for example the phase
transition at the electroweak scale [113] and the cosmic strings [114].
The dual-pass differential Fabry–Pérot interferometer is a totally new inter-

ferometer configuration. We formulated the dual-pass differential Fabry–Pérot
interferometer and found that absolute length adjustment is needed to obtain
all interferometer signals. For the demonstration, the ground-based dual-pass
differential Fabry–Pérot interferometer was constructed. In the actual experi-

101



ment performed in the ground-base laboratory with the 0.55-m-long dual-pass
Fabry–Pérot cavities, we succeeded in operating the dual-pass differential Fabry–
Pérot interferometer and confirmed that adjustment of the absolute arm length
reduced the cavity detuning as expected with our formulation. This leads to
the reduction of the laser intensity noise coupling. These results indicate that
the behavior of the dual-pass differential Fabry–Pérot interferometer is correctly
understood. In future, the constructed interferometer can be expanded for the
experimental demonstration of the full control scheme, which we developed with
the full DECIGO interferometer model.
We conclude that the sensing and control scheme of the interferometer in

Fabry–Pérot type interferometric space gravitational wave antenna, especially
DECIGO and B-DECIGO, has been demonstrated theoretically and experimen-
tally. We hope that this work provides an essential basis for opening the window
of gravitational wave physics and astronomy in the decihertz band.

7.4 Future prospect
In this section, we describe the future prospect towards the actual DECIGO
and B-DECIGO observation and further expansion of gravitational wave physics
and astronomy. Specifically, further investigation of interferometer simulation,
construction of ground-based DECIGO and B-DECIGO prototype, and space
demonstration are shown.

7.4.1 Further investigation of interferometer simulation

In the simulation expressed in this thesis, the orbital motion is incorporated
as a typical external force noise. However, the actual behavior of the orbital
motion varies depending on the orbital parameters, such as semi-major orbital
axis, orbital inclination, longitude of the ascending node, launch date, and so
on. For more realistic simulation, orbital simulation should be combined with
the interferometer simulation.
Moreover, though we showed one solution to achieve shot noise limited sensi-

tivity of DECIGO and B-DECIGO, there are other possibilities to achieve the
similar sensitivity. For example, interferometer configuration could be changed
to the interferometer with two laser sources in one satellite while the configura-
tion requires new research and development. If it is confirmed in future that the
new interferometer configuration can achieve the shot noise limited sensitivity,
we need to perform a trade-off study between the scheme studied in this thesis
and the newly developed configuration.

7.4.2 Construction of ground-based DECIGO and B-DECIGO proto-

type

The dual-pass differential Fabry–Pérot interferometer experiment constructed in
this work can be expanded into the future small-scale ground-base prototype of
DECIGO and B-DECIGO. The prototype will have the following two features:

102



the same control topology including interferometer of sensors and actuators and
soft suspension systems. The latter is necessary to mimic the situation of space.
About the control topology, the alignment sensing system will be implemented
in addition to the main dual-pass differential Fabry–Pérot interferometer demon-
strated in this thesis. Since the alignment sensing method was demonstrated in
the previous work [133], just an implementation is necessary. About the soft
suspension system, we will use torsion pendulums. The conceptual design has
been done as shown in Appendix D. By using the prototype, the control scheme
discussed in this thesis can be experimentally demonstrated. After the princi-
pal demonstration, the integrated test with the actual components such as test
mass actuators, local sensors, thrusters and so on, should be performed. This
integration test can also be performed with the modification of the prototype.

7.4.3 Space demonstration

Towards DECIGO and B-DECIGO, even small scale demonstration in space,
if any, is very beneficial. The implementation of the control scheme discussed
in this thesis including the interferometer characterization leads to an essential
milestone for DECIGO and B-DECIGO. Another thing which would be tested in
space is noise characterization. Using the measured data in space , the accuracy
of the performance estimation in this thesis can be improved. In addition, it is
important to demonstrate the end-to-end test of the gravitational wave observa-
tion, i.e. initial alignment, detector operation, data transfer from the satellite to
the Earth, and data analysis.
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Appendix A

Axion dark matter search with the

Fabry–Pérot cavity

The Fabry–Pérot cavity is a very precise measurement instrument which is used
even to detect gravitational waves. In addition to the gravitational wave ob-
servation, there are many applications of precision measurements, for example,
axion dark matter search. Here, we explain the new approach for the axion dark
matter search with interferometric gravitational wave detectors. This work is
reported in K. Nagano et al. [155]. In this chapter, the natural unit ℏ = c = 1 is
used.

Axion dark matter and its probe technique
The axion is a pseudo-scalar field which is originally proposed a half-century
ago by Roberto Daniele Peccei and Helen Rhoda Quinn to solve the strong
Charge-conjugation Parity problem in quantum chromodynamics physics, known
as “quantum chromodynamics axion” [202]. Recently, high energy physics, e.g.
string theory, also predicts manifold of axion-like particles from the compactifi-
cation of extra dimensions [203–206]. Typically, the axion is considered to have
a light mass m ≪ 1 eV. Also, it behaves like non-relativistic fluid in the current
universe because of its oscillatory feature. Therefore, from cosmological point
of view, the axion or axion-like particle is considered to be a candidate of dark
matter. Hereafter, they are jointly called “axion”.
In general prediction of high energy physics, the axion has a weak but finite

coupling to gauge bosons, such as photons. This feature allows us to search
for axion dark matter with optical techniques. Conventionally, many experi-
ments and observations have tried to detect axions under the magnetic field
background, where axions are converted to photons (and vise versa) [207–213].
For example, in the solar axion observation such as CERN Axion Solar Telescope
(CAST) [214, 215], the axion that is generated in the Sun is converted to X-ray
with magnets and then the axion could be observed by the X-ray detector. An-
other example is the observation of the axion generated in the supernova such as
SN1987A [216]. The axion generated in SN1987A is considered to be converted
to gamma ray by the galactic magnetic field. Thus the axion could be observed
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with the gamma-ray observation. Note that the result of the axion observation
using SN1987A depends on the model of the galactic magnetic field. Although
the various observations explained above were performed, no characteristic signal
of axion dark matter has been detected and a new method to search for axion
dark matter is needed.
Lately, a number of new approaches to search for axion dark matter using

optical cavity have been proposed [217–220]. These proposals do not need a
strong magnet which could be a noise source (or make an experiment expensive),
while they utilize phase velocity variation between two circular-polarized lights
caused by axion dark matter [221–225]. Inspired by these experimental proposals,
we propose a new scheme to search for axion dark matter by using a Fabry–
Pérot cavity, especially the arm cavity of the interferometric gravitational wave
detectors.

Phase velocity modulation caused by axion dark matter
In this section, how the dispersion relations of two circular-polarized lights are
modified in the axion background field. The axion-photon coupling constant, gaγ ,
which is the characteristic parameter of axion’s coupling to photons is denoted
as Chern-Simons interaction

gaγ
4

a(t)Fµν F̃
µν = gaγ ȧ(t)ϵijkAi∂jAk + (total derivative), (A.1)

where a(t) is the value of the axion field, the dot is the time derivative, ϵijk is
the three-dimentional Levi-Civita tensor, and Aµ is the vector potential obtained
from a curl of the electromagnetic field strength tensor. The electromagnetic
field strength tensor is defined as Fµν ≡ ∂µAν − ∂νAµ. The Hodge dual of Fµν

is defined as F̃µν ≡ ϵµνρσFρσ/2, where ϵµνρσ is the four-dimentional Levi-Civita
tensor. Here, cosmic expansion is ignored and the Coulomb gauge, ∂iAi = 0 and
the temporal gauge, A0 = 0 are adopted. By the Fourier transformation of Ai,
they are decomposed to the two circular-polarized photons,

Ai(t,x) =
∑

λ=L,R

∫
d3k

(2π)3
Aλ(t,k) e

λ
i (k̂) e

ik·x , (A.2)

where k is the vector of the wave number (k ≡ |k|), and the circular-polarization
vectors meet

eλi (k̂) = eλ∗i (−k̂), eλi (k̂)e
λ′∗
i (k̂) = δλλ

′
, iϵijmkje

L/R
m (k̂) = ±ke

L/R
i (k̂). (A.3)

Here the indices of L and R mean the left- and right-handed circular lights,
respectively. The upper and lower signs of the double sign in equation (A.3)
correspond to the left- and right-handed circular lights, respectively. Hereafter,
the same notation for the double sign is used as equation (A.3). The equation of

motion for electromagnetic field, ÄL/R + ω2
L/RAL/R = 0, needs the modification

of the dispersion relation because of the axion field,

ω2
L/R = k2 (1∓ gaγ ȧ/k) , (A.4)
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where ωL/R is the angular frequency of the left- and right-handed polarized light.
Equation (A.4) also modifies the phase velocity of the two circular polarized
lights,

c2L/R = 1∓ gaγ ȧ

k
. (A.5)

Notice that, since axion dark matter is non-relativistic, its momentum is ignored.
The field of the axion dark matter is written as

a(t) = a0 cos[mt+ δτ (t)], (A.6)

where m is the axion mass which corresponds to the oscillation frequency, f =
m/(2π) ≃ 2.4 Hz (m/10−14 eV), and δτ (t) is a phase factor of the axion oscilla-
tion. The phase factor, δτ (t), can be considered to be constant within the time
scale of the coherent axion oscillation, τ = 2π/(mv2a), where va is the velocity
of the axion dark matter. Plugging the local dark matter velocity, ∼ 10−3, we
obtain

τ ∼ 1

(
10−16 eV

m

)
years. (A.7)

According to equations (A.6) and (A.5), the phase velocity of the left- and right-
handed light is written as

cL/R(t) ≃ 1± δc(t) ≡ 1± δc0 sin[mt+ δτ (t)], (A.8)

where δc0 ≪ 1 is assumed and

δc0 ≡ gaγa0m

2k
≃ 1.3× 10−24

(
λ

1550 nm

)(
gaγ

10−12 GeV−1

)
. (A.9)

Here the present energy density value of axion dark matter around the Earth,
ρa = a20m

2/2 ≃ 0.3 GeV/cm
3
is used. By measuring the phase velocity modula-

tion, i.e. δc0, we can search for axion dark matter.

Axion search with a Fabry–Pérot cavity
Figure A.1 shows the schematic of the experiment with a Fabry–Pérot cavity
that we propose. The cavity is kept on resonance with Pound–Drever–Hall tech-
nique [129] and increases the phase velocity difference, δc, as explained later. The
linearly-polarized laser with the wavelength of λ is injected. Here, p-polarized in-
cident laser can be considered without loosing generality. The cavity is composed
of the input and output mirrors with amplitude reflectivities and transmissivities
of (r1, t1) and (r2, t2). Hereafter, the axion is regarded as oscillating coherently
while the laser circulating in the cavity interacts with axion dark matter unless
otherwise mentioned. In other words, δτ (t) is treated as a constant. This is valid
for the light axion mass range where τ > 4πL

√
r1r2/(1− r1r2).

The signal of axion dark matter is detected as polarization modulation since
it is generated by the phase velocity modulation of the circular polarized lights.
The modulation is detected in the detection ports (a) and (b) using polarizing
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optics. Specifically, interference between p-polarized light (incident light) and
s-polarized light (generated by axion dark matter) which are mixed by the half-
wave plate (in port (a)) or non-ideal birefringence of the input mirror (in port
(b)) is detected. Note that detection ports (a) and (b) can be installed without
changing the rest part of the interferometer.

Laser
PBS

Transmission 
monitor

HWP

FI

PDrefl PDtrans

Cavity

r1, t1 r2, t2

p-pol.

Detection port (b) Detection port (a)

Ecav

PBS

p-pol. s-pol.

PDH signal

Figure A.1: Schematic of the experimental setup for axion dark matter search
with a Fabry–Pérot cavity [155]. FI is the Faraday isolator, PBS is the polarizing
beam splitter, HWP is the half wave plate, and PD is the photodetector. The
detection instrument for Pound–Drever–Hall method is not shown.

Here, the way to enhance, δc, is explained. The incident light with
p-polarization is given by

Ein(t) = Ep(t) = E0e
ikt
(
eL eR

) 1√
2

(
1
1

)
, (A.10)

where Ep(t) is the vector of the electric field of the p-polarized laser, eL and
eR are basis vectors of left- and right-handed lights, respectively. In the axion
background field, the vector of the electric field in the cavity in front of the front
mirror is written as

Ecav(t) = t1E0e
ikt
(
eL eR

) [ ∞∑
n=1

An(t)

]
1√
2

(
1
1

)
, (A.11){

An+1(t) ≡ An(t)R1T [t− 2L(n− 1)]R2T [t− 2L(n− 1/2)](n ≥ 1)

A1 = 1
, (A.12)

where L is the length of the cavity, T (t) is transfer matrix for one-way translation,

T (t) ≡

(
e−iϕL(t) 0

0 e−iϕR(t)

)
, (A.13)

ϕL/R(t) ≡ kL∓ k

∫ t

t−L

δc(t′)dt′, (A.14)

and Ri is the matrix for the reflection of the circularly-polarized lights,

Ri ≡
(

0 −ri
−ri 0

)
(i = 1, 2). (A.15)
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By calculating the summation of equation (A.11), we obtain

Ecav(t) =
t1E0e

ikt

1− r1r2

(
eL eR

)(1 + iδϕ(t) 0
0 1− iδϕ(t)

)
1√
2

(
1
1

)
(A.16)

=
t1

1− r1r2
[Ep(t)− δϕ(t)Es(t)] , (A.17)

where Es is the vector of the electric field of the s-polarized laser

δϕ(t) ≡
∫ ∞

−∞
δ̃c(m)Ha(m)eimt dm

2π

(
δ̃c(m) =

∫ ∞

−∞
δc(t)e−imtdt

)
, (A.18)

and Ha(m) is the cavity response function to the phaser velocity modulation,

Ha(m) ≡ i
k

m

4r1r2 sin
2
(
mL
2

)
1− r1r2e−i2mL

(
−e−imL

)
. (A.19)

Here, we assumed that the cavity is on resonance, i.e. 2kL = 2πn (n ∈ N).
Equation (A.19) shows that the signal of the axion dark matter is enhanced
to be proportional to the finesse, i.e. π

√
r1r2/(1 − r1r2), and resonates at odd

multiple of the free spectral range of the cavity, i.e. m = π(2N − 1)/L (N ∈ N).

Sensitivity of gravitational wave detectors to the

axion-photon coupling
Here, we estimate the sensitivity of the gravitational wave detectors to the axion
dark matter by considering just a quantum noise. Actually, the proposed method
is not affected by the displacement noise such as the radiation pressure noise, or
the gravitational wave. Thus, it is enough just to consider a shot noise. In each
detection port, the electric field received by the photodetector is written as

EPD(t) =

{√
Tj [θp − δϕ(t)] +

Evac(t)

E0

}
Es(t) (j = 1, 2), (A.20)√

Tj ≡
t1tj

1− r1r2
, (A.21)

where Evac(t) is the electric field of vacuum fluctuation, and θp (|θp| ≪ 1, |θp| ≫
|δϕ(t)|, |θp| ≫ |Evac(t)|) is the mixing angle of the polarization. Here, the second
(or higher) order of |θp| is ignored. The power received by the photodetector is
written as

PPD(t) ∝ |EPD(t)|2

≃ θp
√

TjE2
0

[
θp
√
Tj − 2

√
Tjδϕ(t) + 2

Evac(t)

E0

]
, (A.22)

where we neglect the second order terms of δϕ(t) and Evac(t) and their cross
term since |δϕ(t)| ≪ 1 and |Evac(t)| ≪ E0. We can evaluate the sensitivity by
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Table A.1: Sets of parameters of the considered detectors. The incident power,
P0, is enhanced by the power recycling technique for CE-, KAGRA-, and aLIGO-
like detectors [21].

Similar detector L [m] P0 [W] λ [×10−9 m] (r21, r
2
2)

DECIGO [54] 106 5 515 (0.69, 0.69)
CE [48] 4× 104 600 1550 (0.9988, 0.999995)

KAGRA [27,28] 3× 103 335 1064 (0.996, 0.999995)
aLIGO [22] 4× 103 2600 1064 (0.986, 0.999995)

comparing the signal term (second term) and noise term (third term) of equa-
tion (A.22). The one-sided amplitude spectrum density of shot noise equivalent

to δ̃c(m) is denoted as,

√
Sshot(m) =

√
k

2P0√
Tj |Ha(m)|

, (A.23)

where P0 = kE2
0/2 is the incident power. Here, the one-sided spectrum of Evac(t)

is unity [115]. Equation (A.23) indicates that, if r1 < r2, the detection port
(b) has better sensitivity than the detection port (a). On the other hand, the
detection port (a) is better when r1 = r2. Equation (A.23) can be translated
into the sensitivity to the axion dark matter, i.e. the axion-photon coupling gaγ ,
as

gaγ(m) ≃ 1.5× 1012 GeV−1

(
1550 nm

λ

)
×


√

Sshot(m)
Tobs

(Tobs ≲ τ)√
Sshot(m)√

Tobsτ
(Tobs ≳ τ)

, (A.24)

where Tobs is the measurement time. The sensitivity improvement depends on if
Tobs is larger than the axion coherent oscillation time, τ , or not [226].
Figure A.2 shows the sensitivities of the gravitational wave detectors to gaγ

with the method that we propose. Here, we set the experimental parameters
similar to the gravitational wave detectors in operation or planned (specifically,
DECIGO [54], Cosmic Explorer (CE) [48], KAGRA [27, 28] and aLIGO [22]) as
shown in table A.1. We assume Tobs = 1 year and a lossless cavity, i.e. r2i +t2i = 1
(i = 1, 2). For DECIGO-like detector, the detection port (a) is adopted, and for
CE-, KAGRA-, and aLIGO-like detectors the detection port (b) is adopted. All
detectors overcome the upper limit provided by CAST [214,215].
We can apply the proposed method to the gravitational wave detectors by

installing polarizing optics in detection ports without replacing optics in the
main interferometer, e.g. main test masses, and so on. Although it is not so
simple to realize the detection port (b) due to the existing apparatuses, such as
a signal recycling mirror [135, 227], the axion dark matter signal, in principle,
can be obtained from the detection port behind the signal recycling mirror as
with the gravitational wave signal readout [228].
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Figure A.2: Sensitivity comparison of the detectors of which parameters are
shown in table A.1. The sensitivity in higher mass range is peaky at the axion
mass of m = π(2N−1)/L (N ∈ N). The red and gray regions express the current
limit set by CAST [214,215] and the cosmic ray observations of SN1987A [216],
respectevely.

Summary
Axion dark matter modulates the phase velocities of the circular polarized lights.
The effect in the Fabry-Pérot cavity is modeled and its response is formulated.
With this model, we propose a new scheme to search for axion dark matter
with the Fabry–Pérot cavity in the arm of gravitational wave detectors. Their
potential sensitivity to the axion-photon coupling constant, gaγ , is evaluated to
be so sensitive that the current limit of CAST [214, 215] can be improved with
1 year observation. Remarkably, these sensitivities can be realized by installing
the additional polarizing optics without changing the main gravitational wave
interferometer.
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Appendix B

Power spectral density and

feedback control

Here, we review power spectral density and feedback control. In this appendix,
only linear system is considered.

Power spectral density
Power spectral density is a measure of the noise/sensitivity of the system in
frequency domain. The (single-sided) power spectral density for a random fluc-
tuation, x(t), is defined as

Sx(f) ≡ lim
T→∞

1

T

⟨
x†
T (f)xT (f) + xT (f)x

†
T (f)

⟩
, (B.1)

xT (f) ≡
∫ T/2

−T/2

x(t)e−2iπftdt, (B.2)

where ⟨· · · ⟩ means the ensemble average. Physically, the power spectral density,
Sx(f), means the contribution of x(t) to its variance in a frequency band around
f . Sometimes, linear spectral density (or amplitude spectral density) defined as√
Sx(f) is useful to consider noise effect.
Here, how to calculate signal-to-noise ratio is shown. We consider the detector

that has noise level of the power spectral density S(f) and signal h(f), which is
Fourier space representation of h(t). In this setup, the squared signal-to-noise
ratio, ρ2, is estimated by [63],

ρ2 = 4

∫ ∞

0

|h(f)|2

S(f)
df (B.3)

= 4

∫ ∞

0

|
√
fh(f)|2

S(f)
d(log f). (B.4)

The cross spectral density and the magnitude-squared coherence are also intro-
duced here. The cross spectral density and the magnitude-squared coherence are
measures of the correlation of the two systems. The (single-sided) cross spectral
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density for two random fluctuation, x(t) and y(t), is defined as

Sxy(f) ≡ lim
T→∞

1

T

⟨
x†
T (f)yT (f) + xT (f)y

†
T (f)

⟩
, (B.5)

xT (f) ≡
∫ T/2

−T/2

x(t)e−2iπftdt, yT (f) ≡
∫ T/2

−T/2

y(t)e−2iπftdt. (B.6)

The magnitude-squared coherence is defined as

C2
xy(f) ≡

S2
xy(f)

Sx(f)Sy(f)
. (B.7)

Feedback control

Laplace transformation

Feedback control is often considered in frequency domain. The frequency re-
sponse of the linear system can be easily understood with Laplace transforma-
tion. Laplace transformation of time-domain function f(t) is defined as

f̃(s) ≡
∫ ∞

0

f(t)e−stdt, (B.8)

where s ≡ iω. In this thesis, tilde of the function in frequency domain is some-
times omitted if there is no confusion.

Transfer function

The frequency response of the linear system is characterized with the transfer
function. When the input and output of the system are X̃(s) and Ỹ (s), respec-
tively, the transfer function, G(s), is defined as

G(s) ≡ Ỹ (s)

X̃(s)
. (B.9)

The absolute value and angle of the transfer function, i.e. |G(s)| and ∠G(s), are
called the gain and phase, respectively. This system is illustrated as shown in
figure B.1 which is called a block diagram.

YX~ ~G

Figure B.1: Block diagram of a single-input single-output system.

For example, let’s consider the equation of motion of a mass. The equation of
motion in time-domain can be written as

mẍ(t) = F (t), (B.10)
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where, m is the mass, x is the position of the mass, and F is the force applied
to the mass. By performing Laplace transformation, the equation of motion is
written as

−mω2x̃(ω) = F̃ (ω). (B.11)

Here, we use s = iω. As a result, the transfer function from the force to the
position is written as

x̃(ω)

F̃ (ω)
=

1

−mω2
. (B.12)

This equation indicates that the frequency response of the equation of motion
from the force to the position is proportional to ω−2 with phase delay of π rad
(or 180 deg).

Open loop transfer function

Feedback control is composed of a sensor, filter, and actuator. The block diagram
of the feedback controlled system is shown in figure B.2. H(s), F (s), and A(s)
are transfer functions of the sensor, filter, and actuator, respectively. In this
system, the output of each port is written as

∆x̃(s) =
1

1 +H(s)F (s)A(s)
x̃ext(s), (B.13)

ỹ(s) =
H(s)

1 +H(s)F (s)A(s)
x̃ext(s), (B.14)

z̃(s) =
H(s)F (s)

1 +H(s)F (s)A(s)
x̃ext(s). (B.15)

Here, we assumed zinj = 0. Sometimes, ỹ(s) and z̃(s) are called error signal and
feedback signal, respectively. The feedback control is characterized with the open
loop transfer function defined as Go(s) ≡ H(s)F (s)A(s) which we can measure
by injecting a large signal from the injection port and taking the ratio of z̃′(s)
to z̃(s) as

− z̃′(s)

z̃(s)
= H(s)F (s)A(s) = Go(s), (B.16)(

z̃(s) =
1

1 +H(s)F (s)A(s)
z̃inj(s), z̃′(s) = − H(s)F (s)A(s)

1 +H(s)F (s)A(s)
z̃inj(s)

)
,

where z̃inj is the injection signal from the injection port shown in figure B.2.
One important feature of the feedback control is the suppression of the external

fluctuation. Equation (B.13) shows that, when |Go(s)| ≫ 1, the residual motion
is suppressed to be x̃0(s) ≃ x̃ext(s)/Go(s). On the other hand, when |Go(s)| ≪ 1,
the external motion is not suppressed, i.e. x̃0(s) ≃ x̃ext(s). The above discussion
about the fluctuation suppression is also valid when we change x̃ext(s) and x̃0(s)
into the linear spectral density.
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Figure B.2: Block diagram of the feedback control system.

Signal equivalent noise estimation

In the feedback control system, we can estimate the effect of noise equivalent to
the signal. For example, if x̃(s) is the signal, the effect of the measured noise,
ñ(s), injected from the injection port in figure B.2 is estimated as follows: first,
we calculate the transfer function from the signal and the noise to the sensing

port. If we use error signal, the transfer functions are written as y(s)
xext(s)

≡ Gs(s)

and y(s)
zinj(s)

≡ Gn(s). Then, using these transfer functions, the signal equivalent

noise is estimated to be

x̃n(s) =
Gn(s)

Gs(s)
ñ(s). (B.17)

The discussion in this subsection is also valid for the linear spectral density.

Stability of feedback control

For the stable operation of the system, the feedback control should be stable.
The stability of the feedback control can be checked with the open loop transfer
function. Although there are several ways to check the stability [229], we focus
on the scheme with a Bode plot here. The Bode plot is a plot set of the gain and
phase of the open loop transfer functions as shown in figure B.3. The frequency
where the gain is unity is called unity gain frequency. Equation (B.13) indicates
that, if the open loop transfer function at the unity gain frequency is −1 (gain is
1 and phase is −π), the residual motion, x̃0(s), goes to infinity, i.e. the feedback
control is unstable. Thus, the open loop transfer function should be designed to
have phase delay less than π at the unity gain frequency. In practice, the phase
delay at the unity gain frequency is designed to be less than 5π/6 to obtain the
robust system. The phase delay can be checked with the Bode plot intuitively
as shown in figure B.3.
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Figure B.3: Example of the Bode plot of open loop transfer functions of stable
and unstable feedback control. Phase plots for both cases are overlapped. The
unity gain frequencies in the stable and unstable cases are 10 Hz and 1000 Hz,
respectively.

Multivariable control system

Up to here, we considered a single-input single-output system. Hereafter, we will
expand the above discussion to a multi-input multi-output system. When the
inputs and outputs of the system are n- and m-dimensional, respectively, the
transfer function can be denotes with m× n matrix as

Ỹ (s) = G(s)X̃(s), (B.18)

where, X̃(s) and Ỹ (s) are the n-dimensional input column vector and the m-
dimensional output column vector, respectively.
The block diagram of the feedback control system with multi variables is

represented in figure B.4. In order to control the n-dimensional system, we
need the n-dimensional sensors, at least. Here, we consider the n-dimensional
system. If we choose the filter matrix as F (s) = A−1(s)G(s)H−1(s)
(G(s) ≡ diag(G1(s), ..., Gn(s))), the open loop transfer function is written
as A(s)F (s)H(s) = G(s). In this condition, the n-dimensional system is
decomposed into the n feedback loops of the single-input single-output system
and the discussion up to the previous section can be applied independently to
each loop (for more detailed discussion, see [229,230]).
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Figure B.4: Block diagram of the multi-input multi-output feedback control sys-
tem and equivalent set of the single-input single-output feedback control systems.
x̃ext ≡ (x̃1, ..., x̃n)

⊤ is an input vector, and H, F , and A are sensing, filter, and
actuation matrices (n× n), respectively.
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Appendix C

Noise sources of laser

interferometer

In order to detect gravitational waves, we need to reduce many noises. For ex-
ample, quantum noise of the laser light, Brownian motion of the mirror, seismic
motion, and Newtonian force caused by the density fluctuation of the ground
are considered to be major noise sources for the ground based detectors. The
latter two can be mitigated in the space detectors. Here, major noise sources
are reviewed. In this appendix, we considered one differential Fabry–Pérot in-
terferometer as shown in figure C.1. For simplicity, we assume |Gfreq| ≫ 1 and
|Gx| ≪ 1 in the observation frequency range. In this condition, the gravitational
wave signal is obtained at the error signal of the cavity length control loop. Note
that the amplitude spectral density of the noise equivalent to the length fluc-
tuation, xnoise(f) [m/

√
Hz], is shown and it can be converted to the amplitude

spectral density of the stain equivalent noise, hnoise(f) [/
√
Hz], with the relation

hnoise(f) =
1

L
xnoise(f), (C.1)

where f is the frequency and we assume that the mirrors are free.

General noises

Quantum noise

Quantum noise is caused by the quantumness of the laser light. Since the laser is
intrinsic to the laser interferometers, quantum noise is the most principal noise
for the interferometers. Quantum noise can be divided into two parts: shot
noise and radiation pressure noise. Shot noise is the sensing noise and radiation
pressure noise is the force noise. With the classical measurement, shot noise and
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Figure C.1: Considered differential Fabry–Pérot interferometer. The open loop
transfer functions of the frequency and the cavity length control loop are Gfreq

and Gx, respectively.

radiation pressure noise can be written as [115]

xshot(f) =
1

4F

√√√√πℏcλ
2Pinc

[
1 +

(
f

ν1/2

)2
]
, (C.2)

xrad(f) =
16F

π(2πf)2mTM

√√√√2πℏPinc

cλ

1

1 +
(

f
ν1/2

)2 , (C.3)

where mTM is the mass of the mirror, ℏ is the reduced Planck constant, and λ is
the wavelength of the laser. According to equaitons (C.2) and (C.3), shot noise
and radiation pressure noise inversely depend on

√
Pinc. This means that, by

changing the input power, the root mean square of the shot noise and radiation
pressure noise, i.e. the power spectral density of the quantum noise, cannot be
less than,

xSQL(f) =

√
4ℏ

mTM(2πf)2
. (C.4)

xSQL(f) is called standard quantum limit and means the lower limit of the quan-
tum noise in the classical measurement. To beat the standard quantum limit,
quantum measurement, so called quantum-non-demolition measurement, is nec-
essary [115,116,231]. The quantum-non-demolition measurement is the measure-
ment scheme using the quantum correlation of the system to reduce the quantum
noise.
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Thermal noise

Since mirrors (its supporting system, if any) have finite temperature, they fluc-
tuate due to their Brownian motion. This motion is the source of the thermal
noise. The main thermal noise source is the mirror substrate and coating (and
its suspension system).
The thermal noise is estimated with the fluctuation-dissipation theorem. Ac-

cording to the fluctuation-dissipation theorem, the fluctuation force is given
by [117]

Fth(f) =
√

4kBTR(f), (C.5)

where kB is the Boltzmann constant, T is the temperature of the mirror, and
R(f) is the mechanical resistance. By applying the mechanical transfer function
from the force at the dissipation point to the longitudinal motion of the mirror,
the thermal noise is obtained.
The thermal noises of the mirror substrate and coating are classified into two

types according to the dissipation mechanism: Brownian noise and thermoelastic
noise. The substrate brownian noise, xSB(f), and thermoelastic noise, xSTE(f)
are represented as [118–120]

xSB(f) =

√
16kBT

(2πf)

1− σs
2

√
πEsw0

ϕs

(
1 +

2√
π

1− 2σs

1− σs

ϕc

ϕs

dc
w0

)
, (C.6)

xSTE(f) =

√
64√
π

αs
2 (1 + σs)

2
kBT 2

ρs2Cs
2

ks
w0

3

1

(2πf)2
, (C.7)

where σs is the Poisson’s ratio of the substrate, Es is Young’s modulus of the
substrate, w0 is the laser radius on the mirror, ϕs(c) is the loss angle of the
substrate (coating), and dc is the depth of the coating, αs is the coefficient of
thermal expansion of the substrate, ρs is the mass density of the substrate, Cs is
the heat capacity of the substrate, and ks is the thermal conductivity.
Coating brownian noise, xCB(f), and thermoelastic noise, xCTE(f), are given

by [122]

xCB(f) =

√
16kBT

(2πf)

dc
πw0

2
ϕc

Ec (1 + σs)
2
(1− 2σs)

2
+ Es

2 (1 + σc)
2
(1− 2σc)

Es
2Ec (1− σc

2)
,

(C.8)

xCTE(f) =

√
64kBT (1 + σs)

2
αs

2κs√
πρsCsw0

3(2πf)2
, (C.9)

where Ec is Young’s modulus of the coating, σc is the Poisson’s ratio of the
coating, and κs (≡ ks/ρs/Cs) is the thermal diffusion coefficient of the substrate.
In addition to the mirror thermal noise, the residual gas could introduce non-

negligible thermal noise, so called residual gas thermal noise, even if the mirror
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is placed in the vacuum system. The residual gas thermal noise is given by

xgas(f) =
1

mTM(2πf)2

√√√√16
SmirPgasT

Cgas

√
3mgaskB
Tgas

, (C.10)

where Smir is the cross section of the mirror along the longitudinal axis, Pgas is
the pressure around the mirror, Cgas is the shape factor which is almost unity
for the cylinder-shaped mirror, mgas is the mass of the residual gas molecular,
and Tgas is the temperature of the residual gas.

Seismic noise

The ground always fluctuates even when the earthquake does not occur. The
surface ground motion in quiet site above 10 Hz is approximately written as [232]

x′
seis(f) = 1× 10−10

(
10 Hz

f

)2 [
m/

√
Hz
]
. (C.11)

Note that the actual seismic motion is different from place to place. This seismic
motion is much larger than the expected fluctuation caused by the gravitational
wave. Thus, we need to isolate the test mass from the ground motion. One
way to do this is to float the mirror in space. Another way which is done in
the ground based detectors is suspending the mirror by pendulums. When the
mirror is suspended by the n-fold pendulum which has the resonant frequency of
fpend and the damping value γpend, the transfer function from the seismic motion
to the mirror motion is approximately denoted as

Tpend(f) ≃

[
f2
pend

−f2 + f2
pend + ifγpend/(2π)

]n
. (C.12)

As a result, the cavity length fluctuation with seismic motion is written as

xseis(f) = x′
seis|Tpend(f)|. (C.13)

For example, when we use 9-fold pendulums with fpend = 2.5 Hz and γpend = 2π
rad·Hz, the seismic noise above 10 Hz is approximately written as

xseis(f) = 1.5× 10−21

(
10 Hz

f

)20 [
m/

√
Hz
]
. (C.14)

Newtonian noise

When the environmental Newtonian gravity field around the test mass fluctuates,
the gravitational force jiggles the test mass even without gravitational wave. This
force fluctuation is a source of noise called Newtonian noise. The environmental
Newtonian gravity can vary due to the mass density fluctuation of the ground,
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atmosphere, water, space craft, planets, and so on. For example, the seismic
Newtonian noise is modeled as [55]

xSNN(f) = 2× 10−20


(

10 Hz
f

)2
(3 Hz ≲ f ≲ 10 Hz)(

10 Hz
f

)4
(10 Hz ≲ f ≲ 30 Hz)

[
m/

√
Hz
]
, (C.15)

while modeling most types of the Newtonian noises is still on going.

Interferometer noises

Frequency noise

As explained in Section 3.3.5, the laser frequency fluctuation is a noise source.
Considering the frequency stabilization with y-arm, the frequency noise is de-
noted as

xfreq =
1

1 +Gfreq

L

ν
δf, (C.16)

where δf is the laser frequency fluctuation of the laser source before the stabi-
lization.
It is worth noting the frequency noise can be subtracted with the frequency

fluctuation measured in the frequency control loop. In the frequency control
loop, the dominant signal is frequency fluctuation. Thus, if we know the transfer
function from the laser frequency fluctuation to the gravitational wave signal,
the frequency noise can be subtracted as follows:

h(t) = hgw(t) + nfreq(t)− T ′
freqδf(t) + nothers(t), (C.17)

nfreq(t) = Tfreqδf(t) (C.18)

where h(t) is the measured signal equivalent to the gravitational wave strain,
hgw(t) is the gravitational wave signal, nfreq(t) is the noise due to the laser fre-
quency fluctuation, T is the transfer function from the laser frequency fluctuation
to the measured signal equivalent to the gravitational wave strain, δf(t) is the
laser frequency fluctuation, and nothers(t) is the noise other than the frequency
noise. If we can estimate T ′

freq ideally, i.e. Tfreq = T ′
freq, the frequency noise can

be totally subtracted. However, when there is an error, ∆Tfreq, in the estimation
of T ′

freq, i.e. T ′
freq = Tfreq + ∆Tfreq, the frequency noise after the subtraction

becomes ∆Tfreqδf(t). For example, when the precision of the transfer function
measurement is 10%, i.e. ∆Tfreq = 0.1Tfreq, the frequency noise is subtracted by
a factor of 10, i.e. the frequency noise after the subtraction becomes 0.1nfreq(t).

Intensity coupled noise

As explained in Section 3.3.5, the laser intensity fluctuation is a noise source
through the cavity detuning. According to equation (3.70), the intensity coupled
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noise is written as

xint =
√
(∆xrms)2 + (∆yrms)2

δP

Pinc
, (C.19)

where ∆x(y)rms is the root-mean-square of the cavity detuning of x(y)-arm, δP is
the intensity fluctuation, and Pinc is the incident power to the first beamsplitter.

Classical radiation pressure noise

In addition to the intensity coupled noise, the intensity fluctuation of the laser
light causes the classical radiation pressure noise due to the radiation pressure
fluctuation applied to the test masses. The classical radiation pressure noise is
denoted as

xCRP =
8FδP

πcmTMω2
, (C.20)

where m is the mass of each test mass, and F is the finesse of the cavity.
It is worth noting that the classical radiation pressure noise can totally be

subtracted with the measured intensity fluctuation. For example, if the cavity is
critically coupled, the intensity fluctuation can be measured at the transmission
port of the cavity.

Phase noise after the beam splitter

In the differential Fabry–Pérot interferometer, the phase noise between the first
beamsplitter and the input test mass affect the interferometer sensitivity to the
gravitational waves since the phase noise corresponds to the differential frequency
fluctuation. The phase noise is expressed as

xphase =
2xdiffω

c
L, (C.21)

where xdiff is the displacement fluctuation between the first beam splitter and
each test mass.

Test mass actuator noise

The actuator on the test mass is essential part if we actuate the test mass to keep
the cavity resonance.*1 The force noises of the actuators are not distinguished
from the gravitational wave. The force noise is written as

xact =
2δfact
mTMω2

, (C.22)

where δfact is the force fluctuation of the actuator.

*1 In some interferometer configuration where the cavity resonance is kept with the fre-
quency control, the test mass actuator is not necessary.
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Noise sources in space detectors
Here, we show the specific noise sources in space detectors, especially in DECIGO
and B-DECIGO. Specifically, force noises applied to the test masses and satellites
are explained. Although the other noises, such as local sensor noises and so on,
are noise sources as discussed in Chapter 5, their effects vary depending on the
detector configuration. Thus they are not discussed here.

Force noise applied on test masses

Gravitational force

The gravitational force is a noise source especially in the geocentric orbit. The
main source is the higher order mode of the eccentricity of the Earth gravity.
Currently, the effect of the higher order modes up to the 2190th order is consid-
ered [233]. However, in high orbital radius, such as the geostationary orbit, the
gravitational force noise can be negligible.

Electro-magnetic force

One of the electro-magnetic force noise is caused by the magnetic fluctuation.
Since there is magnetic field in the satellite, the test mass is magnetized. Thus,
the magnetic field fluctuation couples the test mass motion. The magnetic fluc-
tuation noise is written as [140]

xmag =
2χTMVTM

mTMµ0ω2
B′δB, (C.23)

where χTM is magnetic susceptibility of the test mass, VTM is the volume of the
test mass, µ0 is magnetic permeability of vacuum, B′ is a local gradient of the
magnetic field, and δB is the fluctuation of the local magnetic field. In DECIGO
and B-DECIGO case, the largest magnetic field is caused by the satellite, e.g.
B′ = 3× 10−8 T/m and δB = 1× 10−9 T/

√
Hz [140]. Here we assume shielding

by a factor of 100 around the test mass.
The Lorentz force also makes a force noise applied to the test mass [140]. The

largest noise of Lorentz force is caused by the velocity fluctuation coupled with
the static magnetic field of the Earth [234] (in the geocentric orbit) or in the
inter-planet [140] (in the heliocentric orbit). However, the Lorentz force effect
can be negligible.

Thermal radiation

When there is a temperature fluctuation, the thermal radiation makes a force
noise on the test mass. As explained in Section 5.5, the thermal radiation noise
is denoted as [140]

xTrad = ϵTrad
8σSBSTMT 3δT

mTMcω2
. (C.24)
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Cosmic ray collision

Cosmic rays occasionally collides with the test mass. The momentum transfer
from a cosmic ray makes a force noise on the test mass. However, the effect can
be negligible [140].

Force noise of applied on satellites

Solar radiation pressure

The major force noise applied on the satellite is caused by the solar radiation
pressure fluctuation. As explained in Section 5.5, the solar radiation pressure
fluctuation is estimated to be [140,142]

δFSrad =
δWSunSSAT

c
= 3× 10−9

(
0.1 Hz

f

) 1
3

N/
√
Hz. (C.25)

Gravitational force

The gravity force is also applied to the satellite in the same way as the test mass.
However, the gravity force can be negligible in the observation frequency band.

Other practical noises
In addition to the principal noises explained above, there are many practical
noise sources. Since these practical noise sources vary from detector to detector,
they should be considered in each case. The possible noise sources are scattered
light, electrical circuit noise and so on.
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Appendix D

Suspension system for

ground-based DECIGO prototype

Before the launch of DECIGO and B-DECIGO, the ground-based prototype
should be constructed. However, it is impossible to make a free mass on the
Earth. One way to mimic the situation in space on the Earth is using a soft
suspension system. Here, we show the suspension design study for the future
prototype construction.

Suspension design
The schematic of the suspension system is shown in figure D.1. The ground base
prototype consists of the cavity mirror suspension and the optical bench suspen-
sion. In the design, we aimed to obtain almost all the considered eigenmodes of
the suspensions to be ≲ 1 Hz.
The cavity mirror is suspended from the frame with a double pendulum. The

intermediate beam stage is made of copper and its dimensions are 10×2×2 cm3.
The mass of the beam is ∼ 360 g. As the suspension wire, the 10-cm-long and
120-µm-diameter tungsten wire is utilized. From one edge of the intermediate
beam, the mirror holder made of aluminum is suspended with two tungsten wires.
The cavity mirror is attached to the mirror holder. The mirror holder weighs
∼ 220 g and the two tungsten suspension wires are 40 µm in diameter. The
mirror holder is designed to be a plus shape to obtain a large moment of inertia
for pitch and roll rotations. On the other edge of the intermediate beam, the
counter weight is attached to compensate the mass of the mirror holder.
The optical bench that mimics the satellite is suspended with a single piano

wire. The piano wire has the diameter of 150 µm and the length of 25 cm. In
order to decrease the resonant frequency of the vertical motion, a coil spring of
a spring constant of ∼ 103 N/m is inserted between the frame of the suspension
system of the optical bench and the suspension wire. The optical bench is made
of aluminum plate of which thickness is 1.5 cm and diameter is 30 cm. On the
optical bench, some optics are fixed and the total mass of the optical bench and
the optics is estimated to be ∼ 15 kg.
We estimate the resonant frequencies of the cavity mirror suspension and the
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Figure D.1: Schematic (upper panel) and CAD image (lower panel) of the sus-
pension system of the prototype. The left panel shows the cavity mirror system
and the right panel shows the optical bench system. Notice that the coil spring
is not shown in the CAD image of the optical bench.

optical bench suspension in terms of the center of the mirror and aluminum
plate, respectively. We use a toolkit of three-dimensional rigid-body modeling
coded in Mathematica® [235, 236]. The results are shown in table D.1. As a
result, almost all the resonant frequencies are designed to be lower than ∼ 1 Hz.
Since the roll mode of the mirror is less important due to the symmetry of the
mirror, its resonant frequency is designed to be relatively high. The roll resonant
frequency can be reduced using a spring system.

Table D.1: Resonant frequencies for each mode of two suspension types. Mode
name: (L, T, V, R, P, Y) indicates (Longitudinal, Translation, Vertical, Roll,
Pitch, Yaw). Since the roll mode of the mirror is less important due to the
symmetry of the mirror, its resonant frequency is designed relatively higher.

Suspension type L T V R P Y
Cavity Mirror 0.02 Hz 1 Hz 0.5 Hz (30 Hz) 0.05 Hz 0.1 Hz
Optical Bench 1 Hz 1 Hz 1.4 Hz 0.09 Hz 0.09 Hz 0.01 Hz
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Local sensors and actuators
For the ground-based prototype of DECIGO and B-DECIGO, not only the me-
chanical part, i.e. the suspension, but also the sensor/actuator for control is
necessary. As the sensor and actuator of the first prototype, the reflective pho-
tosensor and the coil-magnet actuator are planned to be used, respectively. The
photosensor imitates the local sensor and satellite attitude sensor in DECIGO
and B-DECIGO. The coil-magnet actuator imitates the test mass actuator and
the thruster of the satellite. Although the sensor and the actuator are not the
same as those of DECIGO and B-DECIGO, we can demonstrate the control
scheme that is developed in this thesis.
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Appendix E

Electronic circuit

Here, we show the electronic circuit diagram used in the experiment in Chapter 6.
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Figure E.1: Circuit diagram of the photodetectors.
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Figure E.2: Circuit diagram of the driver for the laser frequency (Koheras BASIK
X15).
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Figure E.3: Circuit diagram of the filter of a length loop.
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Figure E.4: Circuit diagram of the filter of a DC boost.
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Appendix F

Hermite–Gaussian mode of the

electric field

Here, we show the brief review of the spacial mode of the laser beam and the laser
alignment sensing. For comprehensive explanation, see [127]. In this appendix,
we consider electric and magnetic field in vacuum.

Hermite–Gaussian mode
From Maxwell equations, the electric field propagating along z-axis, E, meets
the following equation,

∇× (∇×E) + µ0ϵ0
∂2

∂t2
E = 0. (F.1)

This equation is denoted as

∇2E − µ0ϵ0E = −∇
(

1

ϵ0
E · ∇ϵ0

)
. (F.2)

Since ∇ϵ0 = 0 and the electric field can be denoted as E = E0e
i(ωlt−2πz/λ), we

can rewrite the equation as

∇2E + ωlµ0ϵ0E = 0. (F.3)

When we set the origin of the spacial coordinates at the beam waist, i.e. the
position where the beam radius becomes smallest, the general solution of equa-
tion (F.3) is given by

El,m(x, y, z, t) =E0
w0

w(z)
Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
eiωlt

× exp

[
−x2 + y2

w2(z)
− i

π(x2 + y2)

R(z)
− i

2πz

λ
+ i(l +m+ 1)η

]
,

(F.4)
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where Hl(· · · ) is the l-th Hermite polynomial, w0 and w(z) = w0

√
1 + z2

z2
0
are

the spot sizes of the laser beam at waist (z = 0) and z, z0 =
πw2

0

λ is Rayleigh

length, R(z) = z
(
1 +

z2
0

z2

)
is the radius of curvature of the electric field at z, and

η = tan−1
(

z
z0

)
is Gouy phase at z. Here, we assume rotationally symmetric

beam along z-axis. The electric field modes represented in equation (F.4) are
called Hermite–Gausssian modes. Hermite–Gaussian mode with l = m = 0
is called the fundamental mode. In addition, Hermite–Gaussian modes with
(l = 1,m = 0) and (l = 0,m = 1) are sometimes called 10 and 01 modes,
respectively.

Beam translation and tilt
In laser interferometric gravitational wave detectors, the fundamental mode laser
is mainly used. The small translation and tilt of the beam can be expressed by
the combination of the fundamental mode and 10/01 modes [130]. The translated
(x → x+δx) and tilted ((x, z) → (x′ = x cos δθ−z sin δθ, z′ = x sin δθ+z cos δθ))
beams are given by

Translation (δx): E0,0(x+ δx, y, z, t) ≃ E0,0(x, y, z, t) +
δx

w0
E1,0(x, y, z, t),

(F.5)

Tilt (δθ): E0,0(x
′, y, z′, t) ≃ E0,0(x, y, z, t) + i

δθ

θD
E1,0(x, y, z, t), (F.6)

where θD = λ
πw0

(w0 ≫ λ) is the beam divergence angle. Here, we assume

|δx| ≪ w0 and |δθ| ≪ θD.
We can measure the translation and tilt of the laser beam by measuring the

amplitude of the 10/01 modes. There are some schemes to measure the 10/01
modes. One example for Fabry–Pérot cavity alignment is the wavefront sensing
method [133,134] where the 10/01 modes generated in the cavity due to the cavity
axis translation/tilt are measured by taking the beatnote with the fundamental
mode reflected by the input mirror. Note that the optical axis of the Fabry–Pérot
cavity is determined by the centers of curvature of the cavity mirrors.
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Appendix G

Antenna pattern

Here, we show the brief review of the antenna pattern of interferometric gravita-
tional wave detectors, i.e. angular response. Especially, we compared the pattern
of the L-shaped detector and the pattern of the triangular-shaped detector.
The output signal of the gravitational wave detectors are given by [63]

h(n̂, t) =
∑
A

FA(n̂, t)hA(t), (G.1)

where n̂ is the unit vector along the traveling gravitational wave direction,
FA(n̂, t) is the antenna pattern function of the gravitational wave detector, and
hA(t) is the gravitational wave form. Here, A indicates the existing mode of the
gravitational wave in the theory. As discussed in Chapter 2, in general relativity
the allowed modes are two tensor modes, i.e. plus and cross modes (A = +,×).
In some modified gravity theories, two vector modes and two scalar modes are
allowed in addition to the tensor modes. The two additional vector modes are
called vector-x and vector-y modes (A = x, y). Also, the two additional scalar
modes are called breathing and longitudinal modes (A = b, l). The gravitational
waves of each mode are given by [84]

Plus mode: h+(t)e
+
ij(n̂), e+ij(n̂) ≡ ê′x ⊗ ê′x − ê′y ⊗ ê′y, (G.2)

Cross mode: h×(t)e
×
ij(n̂), e×ij(n̂) ≡ ê′x ⊗ ê′y + ê′y ⊗ ê′x, (G.3)

Vector-x mode: hx(t)e
x
ij(n̂), exij(n̂) ≡ ê′x ⊗ ê′z + ê′z ⊗ ê′x, (G.4)

Vector-y mode: hy(t)e
y
ij(n̂), eyij(n̂) ≡ ê′y ⊗ ê′z + ê′z ⊗ ê′y, (G.5)

Breathing mode: hb(t)e
b
ij(n̂), ebij(n̂) ≡ ê′x ⊗ ê′x + ê′y ⊗ ê′y, (G.6)

Longitudinal mode: hl(t)e
l
ij(n̂), elij(n̂) ≡

√
2ê′z ⊗ ê′z, (G.7)

where the set of the three unit vector, {ê′x, ê′y, ê′z} (ê′x = (cos θ cosϕ, cos θ sinϕ,− sin θ),
ê′y = (− sinϕ, cosϕ, 0), ê′z = (sin θ cosϕ, sin θ sinϕ, cos θ) = −n̂), and the coordi-
nates of the traveling gravitational wave are defined in figure G.1-(a). Here, ⊗ is
the Kronecker product. The detection of the non-tensor mode is an important
milestone for the test of the modified gravity theory.
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Figure G.1: Some definitions for antenna pattern calculation: (a) the coordinates
(b) L-shaped detector orientation, and (c) triangular-shaped detector orientation.

The antenna pattern function is calculated as

FA(n̂) = DijeAij(n̂), (G.8)

Dij ≡ 1

2
(û⊗ û− v̂ ⊗ v̂), (G.9)

where Dij is the detector tensor, and û and v̂ are the unit vectors along the arm
direction of the detector. Here and hereafter, we ignore the time dependence of
the antenna pattern function. When we set the coordinate as shown in figure G.1,
û and v̂ are given by

L-shaped: û = (1, 0, 0), v̂ = (0, 1, 0), (G.10)

Triangular-shaped (1): û =
(
− cos

(π
3

)
,− sin

(π
3

)
, 0
)
,

v̂ =
(
cos
(π
3

)
,− sin

(π
3

)
, 0
)
, (G.11)

Triangular-shaped (2): û = (1, 0, 0), v̂ =
(
cos
(π
3

)
, sin

(π
3

)
, 0
)
, (G.12)

Triangular-shaped (3): û =
(
− cos

(π
3

)
, sin

(π
3

)
, 0
)
, v̂ = (−1, 0, 0). (G.13)

Consequently, the antenna pattern functions for the L-shaped detector are
calculated as

F
(L)
+ =

1

2
(1 + cos2 θ) cos 2ϕ, F

(L)
× = − cos θ sin 2ϕ,

F (L)
x = sin θ cos θ cos 2ϕ, F (L)

y = − sin θ sin 2ϕ,

F
(L)
b = −1

2
sin2 θ cos 2ϕ, F

(L)
l =

1√
2
sin2 θ cos 2ϕ. (G.14)

The antenna pattern functions for the triangular shape detectors are calculated

136



as

ITF1:


F

(T1)
+ =

√
3
4 (1 + cos2 θ) sin 2ϕ, F

(T1)
× = −

√
3
2 cos θ cos 2ϕ,

F
(T1)
x =

√
3
2 sin θ cos θ sin 2ϕ, F

(T1)
y =

√
3
2 sin θ cos 2ϕ,

F
(T1)
b = −

√
3
4 sin2 θ sin 2ϕ, F

(T1)
l = 1

2

√
3
2 sin

2 θ cos 2ϕ.

(G.15)

ITF2:



F
(T2)
+ = 1

8 (1 + cos2 θ)(3 cos 2ϕ−
√
3 sin 2ϕ),

F
(T2)
× = − 1

4 cos θ(
√
3 cos 2ϕ+ 3 sin 2ϕ),

F
(T2)
x = 1

4 sin θ cos θ(3 cos 2ϕ−
√
3 sin 2ϕ),

F
(T2)
y = − 1

4 sin θ(
√
3 cos 2ϕ+ 3 sin 2ϕ),

F
(T2)
b = − 1

8 sin
2 θ(3 cos 2ϕ−

√
3 sin 2ϕ),

F
(T2)
l = 1

4
√
2
sin2 θ(3 cos 2ϕ−

√
3 sin 2ϕ).

(G.16)

ITF3:



F
(T3)
+ = − 1

8 (1 + cos2 θ)(3 cos 2ϕ+
√
3 sin 2ϕ),

F
(T3)
× = − 1

4 cos θ(
√
3 cos 2ϕ− 3 sin 2ϕ),

F
(T3)
x = − 1

4 sin θ cos θ(3 cos 2ϕ+
√
3 sin 2ϕ),

F
(T3)
y = − 1

4 sin θ(
√
3 cos 2ϕ− 3 sin 2ϕ),

F
(T3)
b = 1

8 sin
2 θ(3 cos 2ϕ+

√
3 sin 2ϕ),

F
(T3)
l = − 1

4
√
2
sin2 θ(3 cos 2ϕ+

√
3 sin 2ϕ).

(G.17)

The results are illustrated in figures G.2-G.5.
For non-tensor mode detection, we need the interferometers which have inde-

pendent antenna patterns. If we utilize a triangular-shaped geometry, there is
one pair of the interferometer. Therefore, when the number of satellites is three,
the triangular geometry is better than the L-shaped geometry for the test of the
modified gravity theory even though the single L-shaped interferometer has a
good response to each mode.
It is worth noting two things. First, although there are three interferometers

in the triangular geometry, we can obtain only two independent signals. This
is because the third interferometer signal can be constructed ideally from the
signals of the other two interferometers. However, the third interferometer is
still very useful for constructing null-streams, which are time-series data where
the gravitational wave signals are cancelled. The null-stream is useful for the
test of general relativity [61]. The second is the time dependence of the antenna
pattern. Although it is not ignored in the above discussion, we can obtain
more information from the observation data considering the time dependence
of the antenna pattern. This is because, when the antenna pattern varies during
the observation, the detector can be regarded as multiple detectors effectively.
Especially in DECIGO and B-DECIGO, the observation duration of a single
event lasts more than one month. Thus, time dependence of the antenna pattern
is useful.
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Figure G.2: Antenna pattern functions for the L-shaped interferometer.
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Figure G.3: Antenna pattern functions for triangular-shaped interferometer 1.
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Figure G.4: Antenna pattern functions for triangular-shaped interferometer 2.
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Figure G.5: Antenna pattern functions for triangular-shaped interferometer 3.
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Appendix H

Full DECIGO interferometer model

Here, we show the Simulink system of the full DECIGO interferometer model.
The model is organized as follows: Figure H.1 shows the top layer of the full
DECIGO interferometer model, which is mainly for defining the name of the
ports. From these ports, the noise explained in Section 5.5 or the excitation sig-
nal to measure the open loop transfer functions can be injected and the sensor
signals can be obtained. Note that virtual sensors to measure parameters that
cannot be measured in the real detector (e.g. a global position of the mirror)
can also be used. Figure H.2 is the main system of the full DECIGO interfer-
ometer model included in the top system (represented as ‘DECIGO’). This main
system represents the behavior of the whole DECIGO. In the orange blocks, the
longitudinal and alignment sensing methods explained in Section 5.3 are coded.
In the magenta blocks, control topology explained in Section 5.6 is coded. The
gravitational wave can be injected in the cavity length to estimate the noise
performance. Figure H.3 shows the plant system of the mechanical and opto-
mechanical system of the full DECIGO interferometer model, which includes the
test masses and the satellites. In the subsystems of the plant model, the me-
chanical property (in Section 5.2), the actuation system (except for the frequency
actuation in Section 5.4) and the local sensors (in Subsection 5.3.3) are coded.
The opto-mechanical coupling is also coded in this plant block.
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Figure H.1: Top layer of the full DECIGO interferometer model.
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Figure H.2: Main system of the full DECIGO interferometer model.
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Figure H.3: Plant system of the mechanical and opto-mechanical system of the
full DECIGO interferometer model.
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[131] S. Solimeno et al., “Fabry-Pérot resonators with oscillating mirrors”, Phys-
ical Review A 43, 6227 (1991).

[132] N. M. Sampas and D. Z. Anderson, “Stabilization of laser beam alignment
to an optical resonator by heterodyne detection of off-axis modes”, Applied
Optics 29, 394 (1990).

[133] E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, “Experimental
demonstration of an automatic alignment system for optical interferome-
ters”, Applied Optics 33, 5037 (1994).

155



[134] E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, “Automatic
alignment of optical interferometers”, Applied Optics 33, 5041 (1994).

[135] J. Mizuno et al., “Resonant sideband extraction: a new configuration for
interferometric gravitational wave detectors”, Physics Letters A 175, 273
(1993).

[136] T. Robson, N. Cornish, and C. Liu, “The construction and use of LISA
sensitivity curves”, Classical and Quantum Gravity 36, 105011 (2019).

[137] L. Barsotti, S. Gras, M. Evans, and P. Fritschel, “The updated Advanced
LIGO design curve”, LIGO Document T1800044-v5, 2018.

[138] D. Bortoluzzi et al., “Testing LISA drag-free control with the LISA tech-
nology package flight experiment”, Classical and Quantum Gravity 20,
S89 (2003).

[139] A. Schleicher et al., “In-orbit performance of the LISA Pathfinder drag-free
and attitude control system”, CEAS Space Journal 10, 471 (2018).

[140] B. L. Schumaker, “Disturbance reduction requirements for LISA”, Classical
and Quantum Gravity 20, S239 (2003).

[141] G. Noci et al., “Cold Gas Micro Propulsion System for Scientific Satel-
lite Fine Pointing: Review of Development and Qualification Activities
at Thales Alenia Space Italia”, in 45th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference &amp; Exhibit, Denver, Colorado, 2009, American
Institute of Aeronautics and Astronautics.

[142] G. Anderson et al., “Experimental results from the ST7 mission on LISA
Pathfinder”, Physical Review D 98, 102005 (2018).

[143] M. Armano et al., “LISA Pathfinder micronewton cold gas thrusters: In-
flight characterization”, Physical Review D 99, 122003 (2019).

[144] J. Pap et al., “Variations in total solar and spectral irradiance as measured
by the VIRGO experiment on SOHO”, Advances in Space Research 24,
215 (1999).

[145] S. Kuroyanagi, K. Nakayama, and S. Saito, “Prospects for determination
of thermal history after inflation with future gravitational wave detectors”,
Physical Review D 84, 123513 (2011).

[146] P. L. Bender and D. Hils, “Confusion noise level due to galactic and
extragalactic binaries”, Classical and Quantum Gravity 14, 1439 (1997).

[147] M. R. Adams and N. J. Cornish, “Detecting a stochastic gravitational
wave background in the presence of a galactic foreground and instrument
noise”, Physical Review D 89, 022001 (2014).

[148] A. J. Farmer and E. S. Phinney, “The gravitational wave background from
cosmological compact binaries”, Monthly Notices of the Royal Astronom-
ical Society 346, 1197 (2003).

156



[149] C. C. Yancey et al., “MULTI-MESSENGER ASTRONOMY OF
GRAVITATIONAL-WAVE SOURCES WITH FLEXIBLE WIDE-AREA
RADIO TRANSIENT SURVEYS”, The Astrophysical Journal 812, 168
(2015).

[150] A. Nishizawa, A. Taruya, and S. Saito, “Tracing the redshift evolution
of Hubble parameter with gravitational-wave standard sirens”, Physical
Review D 83, 084045 (2011).

[151] N. Seto, S. Kawamura, and T. Nakamura, “Possibility of Direct Mea-
surement of the Acceleration of the Universe Using 0.1 Hz Band Laser
Interferometer Gravitational Wave Antenna in Space”, Physical Review
Letters 87, 221103 (2001).

[152] S. Hawking, “Gravitationally Collapsed Objects of Very Low Mass”,
Monthly Notices of the Royal Astronomical Society 152, 75 (1971).

[153] R. Saito and J. Yokoyama, “Gravitational-Wave Background as a Probe
of the Primordial Black-Hole Abundance”, Physical Review Letters 102,
161101 (2009).

[154] H. Niikura et al., “Microlensing constraints on primordial black holes
with the Subaru/HSC Andromeda observation”, Nature Astronomy 3,
524 (2019).

[155] K. Nagano, T. Fujita, Y. Michimura, and I. Obata, “Axion Dark Mat-
ter Search with Interferometric Gravitational Wave Detectors”, Physical
Review Letters 123, 111301 (2019).

[156] T. Nakamura et al., “Pre-DECIGO can get the smoking gun to decide the
astrophysical or cosmological origin of GW150914-like binary black holes”,
Progress of Theoretical and Experimental Physics 2016, 093E01 (2016).

[157] B. Bertotti, L. Iess, and P. Tortora, “A test of general relativity using
radio links with the Cassini spacecraft”, Nature 425, 374 (2003).

[158] K. Yagi, N. Yunes, and T. Tanaka, “Gravitational Waves from Quasicir-
cular Black-Hole Binaries in Dynamical Chern-Simons Gravity”, Physical
Review Letters 109, 251105 (2012).

[159] K. Yagi, “SCIENTIFIC POTENTIAL OF DECIGO PATHFINDER AND
TESTING GR WITH SPACE-BORNE GRAVITATIONAL WAVE IN-
TERFEROMETERS”, International Journal of Modern Physics D 22,
1341013 (2013).

[160] G. Gnocchi, A. Maselli, T. Abdelsalhin, N. Giacobbo, and M. Mapelli,
“Bounding alternative theories of gravity with multiband GW observa-
tions”, Physical Review D 100, 064024 (2019).

[161] T. Kinugawa, H. Takeda, and H. Yamaguchi, “Probe for Type Ia supernova
progenitor in decihertz gravitational wave astronomy”, arXiv:1910.01063
[astro-ph] (2019).

157



[162] D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein,
“Overview of the LISA Phasemeter”, in AIP Conference Proceedings, vol-
ume 873, pages 654–660, Greenbelt, Maryland (USA), 2006, AIP.

[163] I. Bykov, J. J. E. Delgado, A. F. G. Maŕın, G. Heinzel, and K. Danz-
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