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Properties of dark matter with the Lyman-alpha forest 
The example of fuzzy dark matter



Dynamics of large, gravitationally bound 
systems 
Galaxies, clusters 

Distance ladders + BBN 
ΩM = 0.25      ≠     ΩB = 0.04 

Large-scale matter fluctuations, BAO 
"Simple" physics, linear regime: precise predictions

Dark matter in cosmological observation
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Clowe 2007 Complex "baryonic" 
phenomena



Dark matter in cosmological observation
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Ωb h2 = 0.0224 +/- 0.0001 
Ωc h2 = 0.120 +/- 0.001

Planck 2018

BOSS 2017

Dynamics of large, gravitationally bound 
systems 
Galaxies, clusters 

Distance ladders + BBN 
ΩM = 0.25      ≠     ΩB = 0.04 

Large-scale matter fluctuations, BAO 
"Simple" physics, linear regime: precise predictions

Robust 

on large scales: DM = cold, 
collisionless fluid of massive 

particles 𝓁
k (h Mpc-1)
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* impact cosmological 
structures at large k

 

uncertainty principle 
large-k fluctuations reduced 
Lyman-alpha : m ≳ few 10-21 eV

DM « granularity » 
large-k fluctuations enhanced 
Lyman-alpha : m ≲ 100 M⊙ 

Murgia+ 2019EA+ 2017, Irsic+ 2017



Microphysical DM properties from cosmology ?
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Small scales: optimise the impact of 
"microphysics" vs gravitational effects 

But: must mitigate baryon physics 

- Ex: search for high-energy photon 
fluxes, use dwarf galaxies 

In this talk: search for statistical 
modifications of the matter distribution 
at small cosmological scales wrt CDM 

-  Lyman-alpha forest an efficient 
probe

FERMI-Lat, 
WIMP search



The CDM « small-scale crisis »
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cusp vs core profiles 
Oh et al., AJ 141:193 (2011)

missing satellites 
Bullock, arxiv:1009.4505Since end of ‘90s  

Several ~kpc-scale features of matter distribution 
cannot be reproduced by CDM-only LSS simulations

- Baryon physics (feedback) 
- Dark matter properties ??



DM solutions to the « small-scale issues »
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σ/m ~ 0.1-1 cm2/g 
best solve cusp-core 

eg. sub-GeV thermal relic 
with 3→2 annihilation 
[Hochberg+ 2014]

Warm Dark Matter 
(WDM) 

free-streaming 
best solve missing 
satellites 

eg. sterile neutrino 

3.5 keV line signal ?

m~10-22 eV 
de Broglie 
wavelength 

« no Catch 22 
problem » - 
could solve both 
halo statistics & 
core profile ?

Strongly-
Interacting DM 
(SIDM) 

Fuzzy Dark 
Matter (FDM)

DM SM
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Measure 
fluctuations of 
Lyman-α flux 
transmitted by the 
neutral 
intergalactic 
medium  

The Lyman-alpha forest

HI fraction ~ 10-5 

F = e-𝜏  with

wavelength in visible 
⇒ z > 2

𝜏 ~ 1 for mild (~linear) density fluctuations: a miracle ! 
- sensitive to small-scale matter density fluctuations 
- does not probe "dense" objects (DLAs)
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In order to precisely connect to matter power spectrum, need knowledge of : 
- non-linear structure growth                 -  IGM physics 
- intrinsic source (quasar) emission        -  instrumental response

Measure 
fluctuations of 
Lyman-α flux 
transmitted by the 
neutral 
intergalactic 
medium  

The Lyman-alpha forest

wavelength in visible 
⇒ z > 2



The SDSS - BOSS redshift survey
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2.5 m SDSS telescope 
~1000 spectra at a time 

104 sq. deg. (1/4 sky) 
2 optical mid-resolution spectrographs 
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eBOSS DR14 
de Sainte Agathe+ 2019

Large-scale correlations in the Ly-alpha forest

from BAO peak 
position, parallel and 
perp. to line of sight

near los

perpendicular 
 to los



Lyman-alpha forest: small-scale, 1D power spectrum
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δ (λ) = f (λ)
Cq (λ) f (z)

−1

(Quasar continuum) x (mean transmission)

P1D(k) = < (FFT(𝛿))2 > 
related to 3D matter P(k)

DLAeBOSS DR14: 43,000 spectra out of 190,000 
 - select SNR, resolution 
 - remove high density absorbers



Lyman-α : P1D measurement
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Yèche et al. JCAP2017

SDSS catalog 
⟹ flux power spectra with near-% precision  

- z=2.4-4.2 
- scales down to ~ Mpc

Palanque-Delabrouille et al., A&A 2013

High resolution spectra 
(VLT/X-SHOOTER, Magellan/MIKE, 
Keck/HIRES)) 
Smaller scales, higher z



P1D measurement
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Praw (k) = [PLyα (k)+ PHI−Si3(k)+ Pmetals (k)].W
2 (k)+Pnoise(k)
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Strong impact on high k 
(small scales)

(eBOSS)



15

Uncertainties in the eBOSS 1D Lya power spectrum
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latest measurement mostly systematics limited, except at high z

Chabanier+ 2019
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1) Linear matter power spectrum 
Boltzmann solver [As, ns, ΩM...] 

2) Non-linear gravitational evolution + 
hydrodynamics :  
cosmo-hydro simulation (GADGET, NYX, ...) 

gaz from SPH or grid method 
includes explicit model for gaz thermodynamics 
(heating rates) [T0, ɣ] 

3) Model Lya forest: 
Draw « lines of sight », compute absorption 
Compute P1D(k)

Borde+ JCAP 2014

Modelling the small-scale Lyman-alpha forest

- Full computation for a few models 
- Interpolate between models in parameter space (Taylor grid, bayesian emulator)
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Modelling the small-scale Lyman-alpha forest

Lukic+ MNRAS 20151) Linear matter power spectrum 
Boltzmann solver [As, ns, ΩM...] 

2) Non-linear gravitational evolution + 
hydrodynamics :  
cosmo-hydro simulation (GADGET, NYX, ...) 

gaz from SPH or grid method 
includes explicit model for gaz thermodynamics 
(heating rates) [T0, ɣ] 

3) Model Lya forest: 
Draw « lines of sight », compute absorption 
Compute P1D(k)

- Full computation for a few models 
- Interpolate between models in parameter space (Taylor grid, bayesian emulator)
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Modelling the small-scale Lya forest: BOSS, ΛCDM

Palanque-Delabrouille+ 
JCAP 2020

Inference based on a GADGET grid 
4 "cosmology" + 4 "IGM" parameters 

Likelihood includes several other "nuisance" 
parameters (observational + modelling)

Overall good agreement with 
simplest CDM scenario
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Bolton+ MNRAS 2017
Walther+ 2017

Cutoff @ high k: thermal broadening + Jeans smoothing 
Description depends on thermal model for IGM [T0, ɣ] 

Other possible IGM effects not included in simulation 
grids: 
- AGN / SN feedback 
- Reionization (@ high z) 
- Spatial fluctuations of the UV background 

=> Impact estimated with dedicated simulations

IGM effects



keV sterile neutrinos
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νMSM (and variants) [Shaposhnikov+ 2005] 
If  M(N1) ~ keV : possible DM window 

Production by mixing with active ν 
X-ray line N1→νɣ
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Baur+ 2016

"Warm" dark matter: velocity distribution 
smoothes structures (free streaming) 

→ Cut-off in linear P(k) 

Impacts Lyman-alpha P1d @ high z, high k 

Lyman-alpha constraints on keV sterile neutrinos

Baur+ 2017

7 keV scenario (marginally) 
disfavored by Lyman-alpha
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Yèche+ 2017 

Not fully settled yet: impact of IGM thermal modelling 

Garzilli+ 2015 
Specific toy model for IGM 

temperature may still fit 
sterile neutrino scenario



Probes of very light DM bosons
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D. Marsh, Phys. Rep. 2016

log(m/eV)

expts search : DM 
coupling to SM

spinning BH (GW)
Fermions : Tremaine-Gunn  m ≳ few 100 eV



Fuzzy dark matter (FDM)

• Archetype : axion-like particles    ==> misalignement mechanism
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Linear perturbations : FDM ~ fluid with effective speed of sound  

Related "Jeans" scale : 

Structure formation in FDM
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Hlozek et al 2015

Cut-off in linear matter 
power spectrum  

for scales smaller than 
Jeans scale at the time 
of equality
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Constraints on FDM : linear perturbations
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Hlozek+ 2015

- Linear cosmology excludes  ma ~10-24 eV 
- Larger masses ~ 10-22 eV probed by eg. galaxy luminosity function,  
reionization, strong gravitational lensing, Lyman-α forest



FDM phenomenology: halos

Non-linear, non-relativistic : Schrödinger-
Poisson system 

Dedicated simulations 

Key prediction: solitonic core 

May fit dwarf kinematics with ma~10-22 eV
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Schive et al. Nature Phys. 2014
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mX = 0.79
⇣ ma

10�22 eV

⌘0.42
keV

EA+ 2017

Linear DM P(k)

Lyman-alpha P1DLyman-alpha constraint on FDM

Combine grid of CDM simulations + few simulations with FDM initial conditions 
Fair to use WDM - FDM mass scaling :

ma > 2.0 x 10-21 - 2.9 x 10-21 eV    

Also Irsic+ 2017 ma > 2.0x10-21 - 3.7x10-21 eV 

Rogers+ 2020  ma > 2x10-20



Quantum pressure in cosmological simulations

Schrödinger ⇒ 
Madelung equation 

Use standard N-body 
⟺ neglect ∇Q wrt 
gravitation force ∇ɸ
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Quantum pressure in cosmological simulations
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→ "Usual" simulations expected to be ok for 
Lyman-alpha at least for ma > 10-22 eV

Schrödinger ⇒ 
Madelung equation 

Use standard N-body 
⟺ neglect ∇Q wrt 
gravitation force ∇ɸ



Fuzzy Dark Matter with self-interactions
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Linares Cedeño et al. PRD 2017

Rich landscape of models 

Self-interactions may 
completely change the 
phenomenology 

"Bump" in P(k):  
existing Lya bounds not valid 
feature similar to that of ~ 100 M☉ PBH
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The future present : DESI survey
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DESI main survey started Spring 2021

Quasars

Emission line 
galaxies
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DESI: expected impact for small-scale Lya / DM models

Work ongoing - Very preliminary 

SV data

- Resolution R~4000 
bridge the gap in "k" between SDSS and high-resolution observations

- 60 forest / deg2 
dense set of lines of sight => measure P3D 
=> break degeneracies in IGM thermal model



Summary
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Fuzzy Dark Matter 
  a possible solution to the "small scale CDM issues" 
  remarkable phenomenology interesting in itself (solitons, etc.) 

Lya forest a major tool for observational cosmology: 
- As of now a unique way to observe LSS (BAO, etc.) at z~ 2-5 
- Unique probe of "small" scale primordial matter fluctuation 
- Fits CDM + simple IGM model well => constraints several DM models 
	 mX > few keV 

ma > ~ 10-21 eV 
	 also: PBH, self-interacting DM (MeV - GeV) 
Exact bounds should be taken with a grain of salt (many uncertainties...) !! 

Future: 
  new-generation simulations and inference tools 
  DESI + high-resolution data 
  other probes: strong lensing, 21cm, high-redshift galaxy counts (JWST)


