Properties of dark matter with the Lyman-alpha forest The example of fuzzy dark matter

Eric Armengaud - CEA Saclay

Paris - Tokyo Dark Matter seminar online - 29/11/2021 https://granite.phys.s.u-tokyo.ac.jp/ja/?SYRTE-UTokyoDMSeminar

Dark matter in cosmological observation

Dynamics of large, gravitationally bound systems

Galaxies, clusters

Dark matter in cosmological observation

Dynamics of large, gravitationally bound systems

Galaxies, clusters

Distance ladders + BBN

 $\Omega_{M} = 0.25 \neq \Omega_{B} = 0.04$

Large-scale matter fluctuations, BAO

"Simple" physics, linear regime: precise predictions

Microphysical DM properties from cosmology ?

Small scales: optimise the impact of "microphysics" vs gravitational effects

But: must mitigate baryon physics

- Ex: search for high-energy photon fluxes, use dwarf galaxies

In this talk: search for statistical modifications of the matter distribution at small cosmological scales wrt CDM

- Lyman-alpha forest an efficient probe

The CDM « small-scale crisis »

10⁸

DM solutions to the « small-scale issues »

The Lyman-alpha forest

Measure fluctuations of Lyman-α flux transmitted by the neutral intergalactic medium

wavelength in visible $\Rightarrow z > 2$

The Lyman-alpha forest

Measure fluctuations of Lyman-a flux transmitted by the neutral intergalactic medium

wavelength in visible $\Rightarrow z > 2$

In order to precisely connect to matter power spectrum, need knowledge of :

- non-linear structure growth
- intrinsic source (quasar) emission
- IGM physics
 - instrumental response

The SDSS - BOSS redshift survey

Large-scale correlations in the Ly-alpha forest

Lyman-alpha forest: small-scale, 1D power spectrum

eBOSS DR14: 43,000 spectra out of 190,000

- select SNR, resolution
- remove high density absorbers

$$\delta(\lambda) = \frac{f(\lambda)}{C_q(\lambda)\overline{f}(z)} - 1$$

$$P_{1D}(k) = \langle (FFT(\delta))^2 \rangle$$

related to 3D matter P(k)

Lyman-a : P1D measurement

SDSS catalog

 \implies flux power spectra with near-% precision

- z=2.4-4.2
- scales down to ~ Mpc

High resolution spectra

(VLT/X-SHOOTER, Magellan/MIKE, Keck/HIRES)) Smaller scales, higher z

Yèche et al. JCAP2017

P1D measurement

Uncertainties in the eBOSS 1D Lya power spectrum

error bars near %-level latest measurement mostly systematics limited, except at high z

Modelling the small-scale Lyman-alpha forest

1) Linear matter power spectrum

Boltzmann solver [A_s, n_s , Ω_M ...]

2) Non-linear gravitational evolution + hydrodynamics :

cosmo-hydro simulation (GADGET, NYX, ...) gaz from SPH or grid method includes explicit model for gaz thermodynamics (heating rates) [Τ₀, **γ**]

3) Model Lya forest:

Draw « lines of sight », compute absorption Compute P_{1D}(k) Borde+ JCAP 2014

- Full computation for a few models
- Interpolate between models in parameter space (Taylor grid, bayesian emulator)

Modelling the small-scale Lyman-alpha forest

1) Linear matter power spectrum

Boltzmann solver [A_s, n_s , Ω_M ...]

2) Non-linear gravitational evolution + hydrodynamics :

cosmo-hydro simulation (GADGET, NYX, ...) gaz from SPH or grid method includes explicit model for gaz thermodynamics (heating rates) [Τ₀, **γ**]

3) Model Lya forest:

Draw « lines of sight », compute absorption Compute $P_{1D}(k)$

Lukic+ MNRAS 2015

- Full computation for a few models
- Interpolate between models in parameter space (Taylor grid, bayesian emulator)

Modelling the small-scale Lya forest: BOSS, <u>ΛCDM</u>

Parameter	Central value	Range
<i>n</i> _s	0.96	± 0.05
$\sigma_8 \ldots \ldots$	0.83	± 0.05
$\Omega_m \dots$	0.31	± 0.05
$H_0 \ldots \ldots$	67.5	±5
$T_0(z = 3)$	14000	± 7000
$\gamma(z=3)$.	1.3	±0.3
Α ^τ	0.0025	± 0.0020
n^{τ}	3.7	± 0.4

P(k)*k/π 10 z=2.2 z=3.4 z=2.4 7-3.6 ► z=2.6 z=3.8 ► z=2.8 z=4.0 z=3.0 z=4.2 z=3.2 z=4.4 0.01 0.012 0.014 0.018 0.004 0.006 0.008 0.016 k (km/s)-1

> **Overall good agreement with** simplest CDM scenario

Inference based on a GADGET grid

4 "cosmology" + 4 "IGM" parameters

Likelihood includes several other "nuisance" parameters (observational + modelling)

IGM effects

Cutoff @ high k: thermal broadening + Jeans smoothing Description depends on thermal model for IGM [T₀, **y**]

Other possible IGM effects not included in simulation grids:

- AGN / SN feedback
- Reionization (@ high z)
- Spatial fluctuations of the UV background
 => Impact estimated with dedicated simulations

keV sterile neutrinos

vMSM (and variants) [Shaposhnikov+ 2005] If $M(N_1) \sim \text{keV}$: possible DM window

Production by mixing with active v X-ray line $N_1 \rightarrow v \gamma$

50

Lyman- α bound

10

sterile neutrino

Lyman-alpha constraints on keV sterile neutrinos

7 keV scenario (marginally) disfavored by Lyman-alpha

"Warm" dark matter: velocity distribution smoothes structures (free streaming)

 \rightarrow Cut-off in linear P(k)

Impacts Lyman-alpha P1d @ high z, high k

Not fully settled yet: impact of IGM thermal modelling

Probes of very light DM bosons

D. Marsh, Phys. Rep. 2016

Fuzzy dark matter (FDM)

 $\begin{array}{l} \textbf{m} \sim \textbf{10}^{-\textbf{22}} \ \textbf{eV} & - \text{ lower bound on the mass of DM} \\ \text{quantum wave effects smooth density fluctuations on scales relevant to} \\ \text{structure formation or DM halo dynamics} \\ & \frac{\lambda_{\text{dB}}}{2 \, \text{kpc}} \sim \left(\frac{10^{-22} \, \text{eV}}{m} \right) \left(\frac{10 \, \text{km/s}}{v} \right) \end{array}$

Archetype : axion-like particles ==> misalignement mechanism

$$\phi = F \times a$$
high-energy scale angle

$$\mathcal{L} \sim \sqrt{g} \left[\frac{1}{2} F^2 g^{\mu\nu} \partial_\mu a \, \partial_\nu c - \mu^4 (1 - \cos a) \right]$$

effective potential from non-perturbative effects mass m=µ²/F

H > m_a : DE regime H < m_a : DM regime

$$\Omega_a = \frac{m^{1/2} F^2 T_{\rm CMB}^3}{\rho_c M_{\rm Pl}^{3/2}} \sim 0.1 \left(\frac{F}{10^{17} \,{\rm GeV}}\right)^2 \left(\frac{m}{10^{-22} \,{\rm eV}}\right)^{1/2}$$

Hui+ 2017

Structure formation in FDM

Linear perturbations : FDM ~ fluid with effective speed of sound

Related "Jeans" scale :

Constraints on FDM : linear perturbations

- Linear cosmology excludes $m_a \sim 10^{-24} \text{ eV}$

- Larger masses ~ 10^{-22} eV probed by eg. galaxy luminosity function, reionization, strong gravitational lensing, **Lyman-a forest**

FDM phenomenology: halos

Non-linear, non-relativistic : Schrödinger-Poisson system

$$\left[i\frac{\partial}{\partial\tau}+\frac{\nabla^2}{2}-aV\right]\psi=0$$

$$\nabla^2 V = |\psi|^2 - 1,$$

Dedicated simulations

Key prediction: solitonic core

May fit dwarf kinematics with $m_a \sim 10^{-22} \text{ eV}$

Schive et al. Nature Phys. 2014

Combine grid of CDM simulations + few simulations with FDM initial conditions Fair to use WDM - FDM mass scaling : $m_X = 0.79 \left(\frac{m_a}{10^{-22} \text{ eV}}\right)^{0.42} \text{ keV}$

 $m_a > 2.0 \times 10^{-21} - 2.9 \times 10^{-21} \text{ eV}$

Also Irsic+ 2017 m_a > 2.0x10⁻²¹ - 3.7x10⁻²¹ eV

Rogers+ 2020 m_a > 2x10⁻²⁰

Quantum pressure in cosmological simulations

Quantum pressure in cosmological simulations

→ "Usual" simulations expected to be ok for Lyman-alpha at least for m_a > 10⁻²² eV

Fuzzy Dark Matter with self-interactions

"Bump" in P(k):

existing Lya bounds not valid feature similar to that of ~ 100 M_{\odot} PBH

k (h/Mpc)

The future present : DESI survey

Scientific project

- 14000 deg² survey for 0<z<3.7
- Main scientific goals : Large Scale Structures (RSD and BAO)
- International collaboration
- 74 institutions (46 non-US)
- 650 members

Instrument

10 spectrographs

- 4-m telescope at Kitt Peak (Arizona)
- Wide FoV (~ 8 deg²)
- Robotic positioner with 5000 fibers
- 10 spectrographs x 3 bands (blue, visible, red-NIR) →360-1020 nm

DESI main survey started Spring 2021

DESI: expected impact for small-scale Lya / DM models

- Resolution R~4000

bridge the gap in "k" between SDSS and high-resolution observations

- 60 forest / deg2

dense set of lines of sight => measure P3D => break degeneracies in IGM thermal model

Fuzzy Dark Matter

a possible solution to the "small scale CDM issues" remarkable phenomenology interesting in itself (solitons, etc.)

Lya forest a major tool for observational cosmology:

- As of now a unique way to observe LSS (BAO, etc.) at z~ 2-5
- Unique probe of "small" scale primordial matter fluctuation

- Fits CDM + simple IGM model well => constraints several DM models

 $m_X > few keV$

m_a > ~ 10⁻²¹ eV

also: PBH, self-interacting DM (MeV - GeV)

Exact bounds should be taken with a grain of salt (many uncertainties...) !!

Future:

new-generation simulations and inference tools

DESI + high-resolution data

other probes: strong lensing, 21cm, high-redshift galaxy counts (JWST)