Hunting Axion Dark Matter with

Protoplanetary Disk Polarimetry

TF, Tazaki & Toma PRL122,191101(2019)

10th, Feb, 2022. @Online

早稲田大学高等研究所 Waseda Institute for Advanced Study

Protoplanetary Disk

Protoplanetary Disk

Main Message

Protoplanetary Disk polarimetry provides a new great method to search for axion dark matter!

New obs this spring best Sensitivity

Plan of Talk

- 1. Introduction
- 2. ADM Birefringence
- 3. Protoplanetary Disk
- 4. New observation
- 5. Summary

Plan of Talk

- 1. Introduction
- 2. ADM Birefringence
- 3. Protoplanetary Disk
- 4. New observation
- 5. Summary

PRESENTATION

Who is Dark Matter?

PRESENTATION

DM candidates

The second secon

PRESENTATION

DM candidates

Scalar Dark Matter (∋Axion & ALPs)

Different from particle DMs: production & evolution

In this talk, we make no assumption on its production & evolution.

Oscillating Scalar Field: $m \gg H$

 $\phi = (a/a_0)^{-\frac{3}{2}}\phi_0\cos(mt+\delta)$

 $\rho_{\phi} \propto a^{-3}, \ \delta_m \propto \text{amplitude pert. } \delta\phi(t, \mathbf{x})$

What characterizes ADM?

• ADM can be very light. $(10^{-22} \text{eV} \le m \le 10^3 \text{eV})$

What characterizes ADM?

ADM can be very light. $(10^{-22} \text{eV} \leq m \leq 10^3 \text{eV})$

Fuzzy DM

(cf. Lyman- α limit)

Decay into $\boldsymbol{\gamma}$

(hopeless to detect)

What characterizes ADM?

ADM can be very light. $(10^{-22} \text{eV} \lesssim m \lesssim 10^3 \text{eV})$

What characterizes ADM?

ADM can be very light. $(10^{-22} \text{eV} \lesssim m \lesssim 10^3 \text{eV})$

ADM may be coupled to photon!!

What characterizes ADM?

ADM can be very light. $(10^{-22} \text{eV} \leq m \leq 10^3 \text{eV})$

ADM breaks parity

ADM may be coupled to photon!!

Interaction term: $\mathcal{L}_{\phi\gamma} = \frac{1}{4}g\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$

Interaction term: $\mathcal{L}_{\phi\gamma} = \frac{1}{4}g\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$

Photon: $\left[\partial_t^2 - \partial_i^2\right] A = -g\dot{\phi} \nabla \times A$

Axion: $[\partial_t^2 - \partial_i^2 + m^2]\phi = -g\dot{A}\cdot\nabla \times A$

Interaction term: $\mathcal{L}_{\phi\gamma} = \frac{1}{4}g\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$

 $[\partial_t^2 - \partial_i^2] \mathbf{A} = -g \dot{\phi} \nabla \times \mathbf{A}$ Photon:

Axion: $\left[\partial_t^2 - \partial_i^2 + m^2\right]\phi = -g\dot{A}\cdot\nabla\times A$

New terms!

Conventionally constant magnetic field is introduced

Axion-Photon Conversion

Assume constant Magnetic Field B_0

Photon: $[\partial_t^2 - \partial_i^2] \mathbf{A} = -g \mathbf{B}_0 \dot{\phi}$

Axion: $\left[\partial_t^2 - \partial_i^2 + m^2\right]\phi = -g\boldsymbol{B_0}\cdot\dot{\boldsymbol{A}}$

Experiments with AP conversion

Axion Helioscope

Current constraint

Interaction term: $\mathcal{L}_{\phi\gamma} = \frac{1}{4}g\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$

 $[\partial_t^2 - \partial_i^2] \mathbf{A} = -g \dot{\phi} \nabla \times \mathbf{A}$ Photon:

Axion: $\left[\partial_t^2 - \partial_i^2 + m^2\right]\phi = -g\dot{A}\cdot\nabla\times A$

New terms!

Anything other than magnetic fields?

Plan of Talk

- 1. Introduction
- 2. ADM Birefringence
 - 3. Protoplanetary Disk
 - 4. New observation
- 5. Summary

New experiment

What if Axion is Dark Matter?

Assume background DM axion: $\phi(t) = \phi_0 \cos(mt)$

 $-m\phi_0\sin(mt)$

Photon EoM: $\left[\partial_t^2 - \partial_i^2\right] \mathbf{A} = -g\dot{\phi}\nabla \times \mathbf{A}$

[No superluminality: 1201.4935]

 $i\widehat{k} \times e_{L,R} = \pm e_{L,R}$

Birefringence

Assume background DM axion: $\phi(t) = \phi_0 \cos(mt)$

 $-m\phi_0\sin(mt)$

Photon EoM:
$$[\partial_t^2 - \partial_i^2] \mathbf{A} = -g \dot{\phi} \nabla \times \mathbf{A}$$

Dispersion relations of Left/Right Pol. are modified

Speed of light changes depending on polarization!

Another consequence: Rotation of liner pol. Plane

Linear pol. Photon can be $\begin{pmatrix} 1\\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1\\ i \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1\\ -i \end{pmatrix}$, decomposed into circular pol.

With ADM BG
phase velocity
are different,
plane rotates $\frac{e^{ikT}}{2} \left[e^{i \int_t^{t+T} \delta \omega dt} \begin{pmatrix} 1\\i \end{pmatrix} + e^{-i \int_t^{t+T} \delta \omega dt} \begin{pmatrix} 1\\-i \end{pmatrix} \right]$ $e^{ikT} \left(\cos(\int_t^{t+T} \delta \omega dt) \\ -\sin(\int_t^{t+T} \delta \omega dt) \end{pmatrix} \right).$

Rotation angle depends on Axion at boundaries

$$\theta(t,T) = \int_t^{t+T} \delta\omega(t) \,\mathrm{d}t = -\frac{g_{a\gamma}}{2} \left[\phi(t+T) - \phi(t)\right],$$

Motion of the linear polarization plane

Rotation angle depends on Axion at boundaries

$$\theta(t,T) = \int_t^{t+T} \delta\omega(t) \,\mathrm{d}t = -\frac{g_{a\gamma}}{2} \left[\phi(t+T) - \phi(t)\right],$$

Motion of the linear polarization plane

Rotation angle depends on Axion at boundaries

$$\theta(t,T) = \int_t^{t+T} \delta\omega(t) \,\mathrm{d}t = -\frac{g_{a\gamma}}{2} \left[\phi(t+T) - \phi(t)\right],$$

Motion of the linear polarization plane

Rotation angle is $\sim 10^{-2}$ for largest coupling g

 $\rho_{\rm DM} = m^2 \phi_0^2 / 2 \approx 0.3 \ {\rm GeV/cm^3}$

 $g_{12} \equiv g_{a\gamma}/(10^{-12} \text{GeV}^{-1}),$

 $m_{22} \equiv m/(10^{-22} \text{eV})$

 $\theta(t,T) \approx 2 \times 10^{-2} \sin \Xi \sin(mt + \Xi + \delta) g_{12} m_{22}^{-1}$

 $\Xi \equiv mT/2 \approx 10^2 (T/10 \text{pc}) m_{22}$

How can we observe this?

In astro, we don't know the initial polarization plane. Can't measure θ ...

Plan of Talk

- 1. Introduction
- 2. ADM Birefringence
- 3. Protoplanetary Disk
 - 4. New observation
- 5. Summary

ProtoPlanetary Disk

Observations of PPD can be used!

PPD is a flattened gaseous object surrounding a young star.

PPDs are bright simply by scattering the central star's light.

Real data

Polarization of PPD

Scattered light should be polarized perpendicular to the scattering plane (=this monitor).

Initial polarization Plane is known!!

Obsevation of PPD [Hashimoto et al. APJL729:L17(2011)]

We expect a concentric pattern of linear polarization.

Our Simulation without Axion DM

New Observation

Axion DM rotates pol. plane?

New Observation

Axion DM rotates pol. plane?

Is this angle 90° or not?

Obsevation of PPD [Hashimoto et al. APJL729:L17(2011)]

²olarized Intensity [mJy/(arcsec)²

We expect a concentric pattern of linear polarization.

Our Simulation without Axion DM

Observation by SUBARU

AB Aurigae (160pc away)

[Hashimoto et al. APJL729:L17(2011)]

Obsevation of PPD

The observation data reveals

[TF. Tazaki & Toma (2018)]

New constraint

Compared to the prediction, we obtain the best constraint on g of ultralight ADM ($m \sim 10^{-22} \text{eV}$)

[TF. Tazaki & Toma (2018)]

New constraint

Compared to the prediction, we obtain the best constraint on g of ultralight ADM ($m \sim 10^{-22}$ eV)

Plan of Talk

- 1. Introduction
- 2. ADM Birefringence
- 3. Protoplanetary Disk
- 4. New observation
- 5. Summary

Fedderke, Graham & Rajendran: 1903.02666

The constraint on ADM is

Different from `cosmic birefringence' α

CB α : polarization planes rotated (homogeneously) on full-sky

Physical motivation: e.g. axionic quintessence (dark energy)

Oscillating ADM does not produce CB α !!

Search for α never discovers ADM

Rotation angle depends on Axion at boundaries

$$\theta_{\text{CMB}} = -\frac{g}{2} [\phi(t_{\text{obs}}) - \phi(t_{\text{LSS}})]$$

ADM causes cosmic birefringence??

[Finelli & Galaverni (2009)]

Rotation angle depends on Axion at boundaries

Pol. plane oscillates in phase

Washout: $C_{TT} \propto J^0$, $C_{TE} \propto J^1$, $C_{EE} \propto J^2$.

Standard MCMC puts a constraint on g from map data

Oscillating PP: needs non-public time series data Planck $\Delta \alpha_{stat} \approx 0.05^{\circ}$ may imply 0.01° sensitivity in future??

Fedderke, Graham & Rajendran: 1903.02666

Short Summary on CMB

- Prediction of ADM is distinct from cosmic biref. α Quite interesting and strong motivation!
- 2 effects: (i) washout from thickness of LSS (ii) oscillating pol. plane during obs.
- (ii) extracted from time-varying part of time series data Not so bothered by calibration!!??
 - Observe many² oscillations for higher mass region Doesn't it improve the sensitivity??

Pol. plane oscillates in phase

Repeated obs may find it!

Long-term Obs of PPD

If we observe a PPD for longer time than m^{-1} , the periodic shift of θ should be detected.

Chigusa, Moroi & Nakayam: 1911.09850

PPD has the biggest potential

New Observation

Never give up! We should pursue our approach.

We used old data (Hashimoto+ 2011) whose exposure time was 3mins.

Now Subaru's detector is upgraded! Many PPDs have been found.

Let's make our own observations of PPDs!

Applied for 萌芽 to hire postdoc analyzing data

New Observation

Accepted!

Dear Dr. Kenji Toma,

We are pleased to inform you that <u>1 night with FPDI+SCExAO+NGS was</u> awarded to your proposal S22A0049N entitled with "Polarimetry of a Protoplanetary Disk to Search for Axion Dark Matter".

We originally got two half nights of April 7th and 19th.

Additionally, Feb. 25th and 26th (this month!) are also accepted.

We also got a grant(萌芽)and will hire a postdoc from Thai. He will work on the data analysis.

Plan of Talk

- 1. Introduction
- 2. ADM Birefringence
- 3. Protoplanetary Disk
- 4. New observation
- 5. Summary

Summary

Axion has been constrained by $a \leftrightarrow \gamma$ conversion

The same coupling causes **Birefringence** with ADM

Observations of protoplanetary disks are useful to search for ultralight ADM ($m \sim 10^{-22} \text{eV}$)

(CMB polarization is also powerful. cf. LiteBIRD)

We'll make our own observation this spring. Stay tuned!

Thank you !

فلدوا والمحصوص والمراجع المروك وعادي المحاجل

Bounds on Axion-Photon Coupling

Extracted experiments to be reviewed here

