Stochastic fluctuation on vector DM search

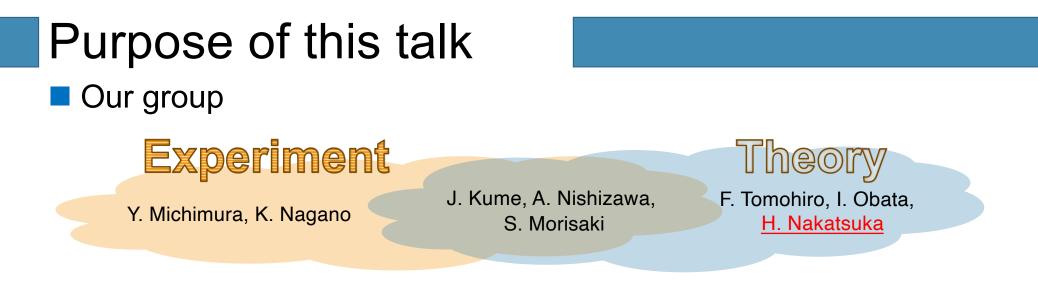
Collaborators

Fujita Tomohiro, Jun'ya Kume, Soichiro Morisaki, Yuta Michimura, Atsushi Nishizawa, Ippei Obata, Koji Nagano (in the KAGRA Collaboration)

Speaker:

Hiromasa Nakatsuka ICRR, The University of Tokyo 3rd year PhD student

SYRTE-Utokyo DM seminar 2021-06-25



What I want to do:

- To formulate a vector dark matter signal
- In axion DM, stochastic nature of amplitude weakens the constraints about factor 3.

Q: How large is the stochastic effect on vector DM signal ?

1. Vector DM searches

2. Stochastic effect of scalar DM

3. Stochastic effect of vector DM

4. Conclusion

Vector Dark Matter

- Theoretical motivation
 - U(1) extension of Standard model, e.g. $U_{B-L}(1)$ (Baryon-Lepton number)
 - As ultralight dark matter (DM):

$$n\lambda^{3} = \frac{\rho_{\rm DM}}{m^{4}v_{\rm vir}^{3}} = 8 \times 10^{3} \frac{\rho_{\rm DM}}{0.4 {\rm GeV/cm}^{3}} \left(\frac{1 \text{ eV}}{m}\right)^{4} \left(\frac{220 \text{ km/sec}}{v_{\rm vir}}\right)^{3}$$

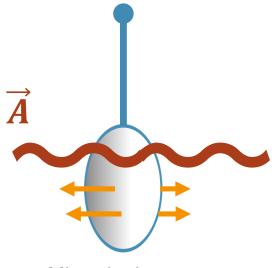
DM should be boson for $m \leq 1 \text{eV}$.

- Coupling to visible matter
 - $U_D(1)$ gauge field

$$\mathcal{L}_A = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 A_\mu A^\mu + g_D J_D^\mu A_\mu,$$

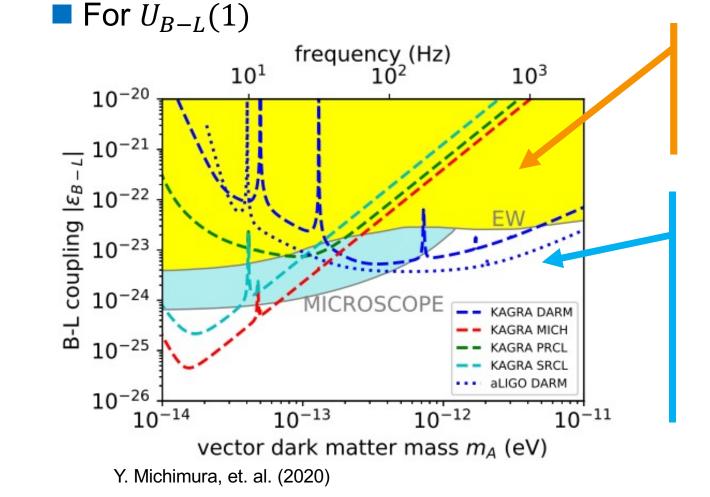
• Dark electric force

$$\vec{E}_{\rm D} = -g_{\rm D} \frac{\partial \vec{A}}{\partial t},$$



Mirror in detector

Sensitivity on coupling constant



Current constraints by "fifth force measurement"

Sensitivity by GW interferometer

Phase modulation of Laser induced from displacement of mirrors (KAGRA: design sensitivity)

Comparison btw scalar & vector DM

The signal of vector DM is same as that of scaler field ?

Criterion	Scalar	Vector
Туре	Bosonic field	
Wave form	Periodic oscillation within coherent time	
Amplitude	Stochastic variable: ϕ , $A_i \sim \sqrt{\rho_{\rm DM}/m^2}$	
Degree of freedom	1	3 (x,y,z-direction)
Coupling	$g\phi F_{\mu u} ilde{F}^{\mu u}$, $g\phi F_{\mu u}F^{\mu u}$	$g_D J_D^\mu A_\mu$
Signal dependence	$S \propto \phi(t)$	$S(\vec{A}(t), \vec{n}_{arm})$

1. Vector DM searches

2. Stochastic effect of scalar DM

3. Stochastic effect of vector DM

4. Conclusion

Stochastic effect on scalar DM

Superposition of waves

$$\begin{split} \Phi(t, \vec{x}) &= \sum_{i}^{N_{\phi}} \Phi_{i}(t, \vec{x}), \quad (i = 1, \ ..., \ N_{\phi}), \\ \Phi_{i}(t, \vec{x}) &= \sigma_{\phi} N_{\phi}^{-1/2} \cos\left(m(1 + v_{i}^{2}/2)t + m\vec{v}_{i} \cdot \vec{x} + \theta_{i}\right) \\ \sigma_{\phi} &\simeq \sqrt{\frac{2\rho_{\rm DM}}{m^{2}}}. \qquad \tau \equiv \frac{2\pi}{m(v_{\rm vir}^{2} + v_{\odot}^{2})}. \end{split}$$

Probability distribution

$$\Phi(0,\vec{0}) = \sigma_{\phi} \alpha_0 \operatorname{Re}[e^{i\theta_0}].$$

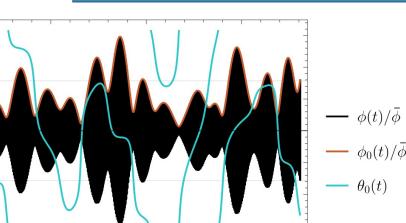
- phase θ_0 : Uniform distribution on $[0,2\pi]$
- amplitude α_0 : Rayleigh distribution

 $P_{\rm R}(\alpha_0) \mathrm{d}\alpha_0 = 2\alpha_0 \exp(-\alpha_0^2)$

-3

0

5



15

10

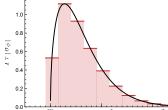
 T/τ

8

9

Stochastic effect on scalar DM

- Stochastic effect by phase
 - Frequency distribution of DM particles:



$$\Delta N_j = N_{\phi} \int_{\Delta f} \overline{f}_{\rm SHM}(v) \frac{\mathrm{d}v}{\mathrm{d}f} \mathrm{d}f$$

number of partial waves in frequency bin $\Delta f = 1/T$

• Field value summed in each bin: $\Phi(t) = \sum_{i} \sigma_{\phi} \sqrt{\Delta N_{j}/N_{\phi}} \alpha_{j} \operatorname{Re}[e^{i(2\pi f_{j}t + \theta_{j})}]$

Since the phase of partial waves are different, the total amplitude is proportional to $\sqrt{\Delta N_i}$, not to ΔN_i .

Foster, et.al. 2017

 $\sigma_{\phi} \simeq 1$

Power spectrum

$$\tilde{\Phi}(f_j) \equiv \int \mathrm{d}t e^{2\pi i f t} \Phi(t) \\ \left| \tilde{\Phi}(f_j) \right|^2 \propto T^2 \Delta N_j \propto T^2 \int_{f_j - \Delta f/2}^{f_j + \Delta f/2} \overline{f}_{\mathrm{SHM}}(v) \frac{\mathrm{d}v}{\mathrm{d}f} \mathrm{d}f$$

Stochastic effect on scalar DM

- Stochastic effect by phase
- The power spectrum:

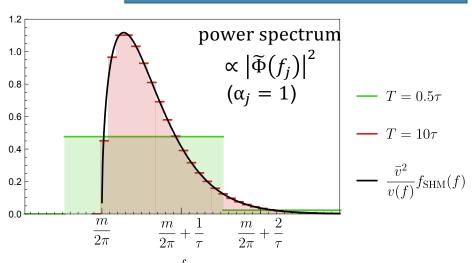
$$\left|\widetilde{\Phi}(f_j)\right|^2 \propto T^2 \Delta N_j \propto T^2 \int_{f_j - \Delta f/2}^{f_j + \Delta f/2} \overline{f}_{\rm SHM}(v) \frac{\mathrm{d}v}{\mathrm{d}f} \mathrm{d}f$$

- For $T < \tau$, one bin $(\Delta f = T^{-1})$ covers all DMs (Green). $\int_{f_j - \Delta f/2}^{f_j + \Delta f/2} \overline{f}_{SHM}(v) \frac{dv}{df} df \simeq 1 \quad , \quad |\widetilde{\Phi}(f_j)|^2 \propto T^2$
- For $T \gg \tau$, about $N_{\text{bin}} = 2T/\tau$ bins divide distribution (Red).

$$\int_{f_j - \Delta f/2}^{f_j + \Delta f/2} \overline{f}_{\rm SHM}(v) \frac{\mathrm{d}v}{\mathrm{d}f} \mathrm{d}f \simeq \overline{f}_{\rm SHM} \frac{\mathrm{d}v}{\mathrm{d}f} \Delta f = \overline{f}_{\rm SHM} \frac{\mathrm{d}v}{\mathrm{d}f} T^{-1} \qquad , \quad \left|\widetilde{\Phi}(f_j)\right|^2 \propto T^1$$

• The signal to noise ratio is (noise power spectrum: $P_{\text{noise}} \propto T^1$)

$$\frac{S}{N} \propto \frac{1}{\sqrt{N_{\text{bin}}}} \frac{\left|\tilde{\Phi}\right|^2}{P_{\text{noise}}} \propto \begin{cases} 1 \frac{T^2}{T} = T^1 & \text{for } T < \tau \\ \sqrt{T/\tau} \frac{T}{T} = \sqrt{T/\tau} & \text{for } T > \tau \end{cases}$$



SNR improves differently.

Stochastic effect on scalar DM

- Stochastic effect by amplitude
 - Power spectrum fluctuates by Rayleigh distribution.

$$\Phi(t) = \sum_{j} \sigma_{\phi} \sqrt{\Delta N_{j} / N_{\phi}} \alpha_{j} \operatorname{Re}[e^{i(2\pi f_{j}t + \theta_{j})}]$$

• When $\tilde{\Phi}(f_j)$ is accidentally small, the upper limit on coupling constant becomes loose.

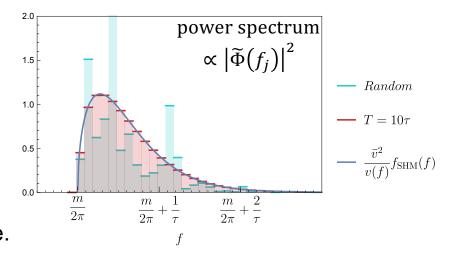
$$g_D^{(\text{upper})} \propto \widetilde{\Phi}^{-1}$$

• The uncertainty of amplitude loosens constraints.

$$\frac{g_{(\text{stocastic})}(T)}{g_{(\text{deterministic})}(T)} \sim 3 \quad \text{for } T < \tau \ (N_{\text{bin}} = 1) \text{ , 95\% C.L.}$$

Centers, et.al. (2019)

• For $N_{\rm bin} \gg 1$, randomness is averaged.



Is this the same for vector DM?

1. Vector DM searches

2. Stochastic effect of scalar DM

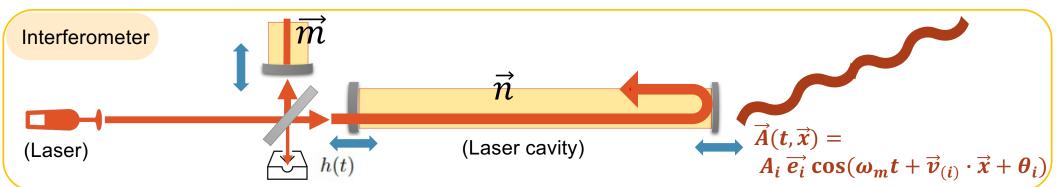
3. Stochastic effect of vector DM

4. Conclusion

Stochastic effect on vector DM

Observational signal

• $h(t) = \frac{\varphi(t; \mathbf{n}) - \varphi(t; \mathbf{m})}{4\pi\nu L}$, : the difference of laser phase btw two arms



1. Common motion (finite-time-traveling effect)

$$h_1 = -\frac{2g_D}{mL} \frac{Q_D}{M} \sin^2(mL/2) \sum_i A_{i,0} (\vec{n} \cdot \vec{e_i} - \vec{m} \cdot \vec{e_i}) \sin(\omega_m t + \theta_{i,0})$$

2. Differential motion

$$h_2 = -g_D \frac{Q_D}{M} \sin^2(mL/2) \sum_i A_{i,0}((\vec{n} \cdot \vec{e}_i)(\vec{n} \cdot \vec{v}_{i,0}) - (\vec{m} \cdot \vec{e}_i)(\vec{m} \cdot \vec{v}_{i,0})) \ \cos(\omega_m t + \theta_{i,0})$$

Q: What is the probability distribution of $h_1 \& h_2$?

S. Morisaki, et. al. (2020)

Probability distribution of h_1

Common motion:

$$h_1 = -\frac{2g_D}{mL} \frac{Q_D}{M} \sin^2(mL/2) \sum_i A_{i,0} (\vec{n} \cdot \vec{e_i} - \vec{m} \cdot \vec{e_i}) \sin(\omega_m t + \theta_{i,0})$$

A: h_1 follows the Rayleigh distribution like Axion case.

- Interferometer arms are fixed to x-, y-directions. $\vec{n} = \vec{e_x}, \ \vec{m} = \vec{e_y}$
- Vector DM oscillates coherently (T < τ). $A_i = A_{i,0} \cos(mt + \theta_{i,0})$

$$\left|\widetilde{h_{1}}\right| = \left|\int \mathrm{dt} h_{1}(t)\right| \propto \left|A_{x,0}e^{-i\theta_{x,0}} - A_{y,0}e^{-i\theta_{y,0}}\right|$$

Complex Gaussian variable

Sum of Gaussian variables also follows Gaussian distribution.

Probability distribution of h_2

Differential motion:

$$h_2 = -g_D \frac{Q_D}{M} \sin^2(mL/2) \sum_i A_{i,0}((\vec{n} \cdot \vec{e}_i)(\vec{n} \cdot \vec{v}_{i,0}) - (\vec{m} \cdot \vec{e}_i)(\vec{m} \cdot \vec{v}_{i,0})) \ \cos(\omega_m t + \theta_{i,0})$$

A: h_2 follows broader distribution than the Rayleigh distribution.

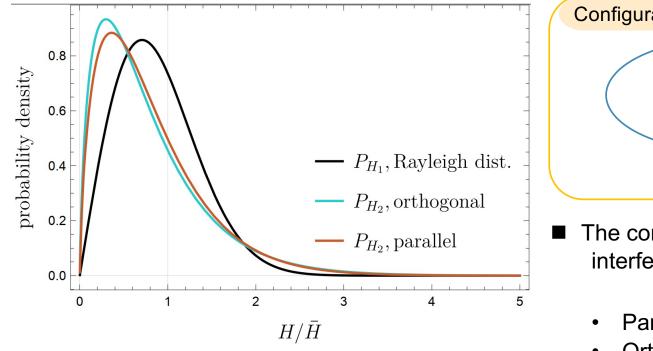
Assumptions:

- The change of solar velocity \vec{v}_{\odot} is ignored ($\tau < 1$ day)
- Halo velocity follows standard halo model:

$$f_{\rm SHM}(\vec{v}_h) \, \mathrm{d}^3 \vec{v}_h = \frac{1}{(\pi v_{\rm vir}^2)^{3/2}} \exp\left[-\frac{(\vec{v}_h)^2}{v_{\rm vir}^2}\right] \, \mathrm{d}^3 \vec{v}_h,$$

Probability distribution of h_2

We numerically calculate PDF of $H \equiv |\widetilde{h_2}|$



Configuration $\overrightarrow{v_{\odot}}$ $\overrightarrow{v_{\odot}}$ $\overrightarrow{v_{\odot}}$ The sun $\overrightarrow{e_y}$ $\overrightarrow{e_y}$ $\overrightarrow{e_x}$ The configuration of

interferometer arms and solar velocity.

• Parallel : $v_{\odot,x} = |\overrightarrow{v_{\odot}}|, v_{\odot,y} = 0$

• Orthogonal :
$$v_{\odot,x} = v_{\odot,y} = 0$$

A: h_2 follows broader distribution than the Rayleigh distribution.

Stochastic effect of vector DM

To put upper limit of coupling constant for $T < \tau$

1 Derive likelihood of data with signal: d (experimental data) = |n (noise) + s (signal)|

$$\mathcal{L}(d|s) \equiv \int \mathrm{d}^2 n \ P_n(n) \delta\left(d - \left|n + s \ e^{i\theta_0}\right|\right)$$
$$= 2de^{-d^2 - s^2} I_0(2ds),$$

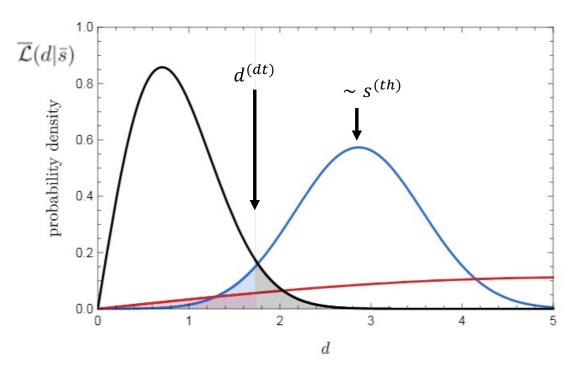
2 Marginalize over the stochastic variable of signal:

$$\begin{split} \overline{\mathcal{L}}(d|\overline{s}) &\equiv \int \mathrm{d}s \ P_s(s) \mathcal{L}\left(d|s\right) \\ &= \int \mathrm{d}\phi_0 \ P_{\phi}(\phi_0) \mathcal{L}\left(d|\frac{\phi_0}{\phi}\overline{s}\right). \end{split} \begin{array}{c} P_s(s): & \text{Probability distribution of signal,} \\ &\text{e.g. Rayleigh distribution for scalar field.} \\ &\overline{s}.: & \text{Mean value of signal} \end{split}$$

3 Determine the upper bound of signal based on frequentist's view.

Stochastic effect of vector DM

3 Determine the upper bound of signal based on frequentist's view.



 With background only hypothesis, we determine null-detection limit:

$$1 - \alpha = \int_{d^{(\mathrm{dt})}}^{\infty} \mathrm{d}d \ \overline{\mathcal{L}}(d|s=0)$$

(\alpha = 0.95)

 The upper bound of signal is determined so that to keep the false exclusion rate as 1 – β:

$$1 - \beta = \int_0^{d^{(dt)}} \mathrm{d}d\overline{\mathcal{L}}(d|s^{(th)}).$$

(\beta = 0.95)

Stochastic effect of vector DM Application on the sensitivity curve Mock data for h_1 signal: $\times 10^{-23}$ Deterministic • axion, vector $DM(h_1)$: uncertainty of amplitude 1.5Stochastic $\frac{g_{\text{stocastic}}(T)}{g_{\text{deterministic}}(T)} \sim 2.8 \quad (95\% \text{C. L.})$ factor 3 $^{1.0}_{\% 26} \eta$ 0.5uncertainty of amplitude & velocity • vector $DM(h_2)$: $\frac{g_{\text{stocastic}}(T)}{g_{\text{deterministic}}(T)} \sim 5$ (95%C.L.) 0.0 102 10^{3} Frequency (Hz)

The stochastic effect is about 70% larger for vector DM case !!

• For $T \to \infty$, the stochastic effect of amplitude vanishes since we can sample many realization of field value.

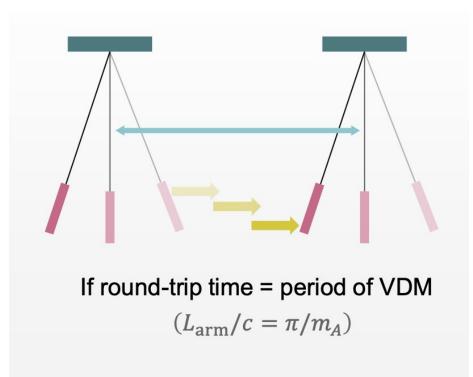
$$(A_i \rightarrow \overline{A_i})$$

Conclusion

• GW interferometer is a promising tool to search for vector DM.

- Stochastic nature of bosonic DM weakens the constraints.
- We estimate the probability distribution of signal of vector DM, which is more significant than that of axion DM.

• Our analysis will be used in vector DM search by KAGRA data in preparation.



Written by Fujita