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Introduction (1/2)

• Quantum nature of gravity has been investigated. 

• We want to prove the presence of gravitons! 
…dynamical component of gravity

E.g.) Newton gravity

(from S. Bose et al. PRL119, 240401(2017))

S. Bose et al.(‘17),  A. Matsumura et al.(‘20), … 

(from A. Matsumura et al. arXiv:2010.05161)



Introduction (2/2)

• We consider the following two systems

Two test particles + gravitons 

𝛾

1 2

• We analyze (too) simplified toy model in order to find some 

potentially interesting setups.
Based on arXiv: 2007.09838, in progress



Plan

1. We analyze the model (1):

・Compute the decoherence of superpositions of massive particles

caused by gravitons

・Construct the action

2. We analyze the model (2):

𝛾

Based on arXiv: 2007.09838

In collaboration with S. Kanno＆ J. Soda

In progress.

・Compute the decoherence caused by gravitons

3. Summary

16 pages

4pages



System

• The system: two test particles + gravitons.

𝑆particle =
𝑀

2
නd𝑡 −𝑔𝜇𝜈 𝑡, 𝑋𝑖 ሶ𝑋𝜇 ሶ𝑋𝜈 +

𝑚

2
නd𝑡 −𝑔𝜇𝜈 𝑡, 𝑌𝑖 ሶ𝑌𝜇 ሶ𝑌𝜈

𝑆 =
𝑀pl

2

2
නd4𝑥 −𝑔𝑅 + 𝑆particle

• Suppose that particle 1 freely falls. → 𝛾𝜏: time-like geodesics

𝛾𝜏 𝛾𝜏′

𝑡, 𝑋𝑖 𝑡 𝑡, 𝑌𝑖 𝑡

Particle 1 Particle 2



Interaction term (1/2)

• Fermi-normal coordinates: one of the local inertial frames

✓ Christoffel symbols vanish along 𝛾𝜏.

✓ given by 𝑥𝜇 = 𝑡, 𝑠𝛼𝑖 ,

𝑠: proper distance along a geodesics 𝛾𝑠

𝜕

𝜕𝑠
𝑃(𝑡)

= 𝛼𝑖
𝜕

𝜕𝑥𝑖
𝑃(𝑡)

𝑆particle =
𝑚

2
නd𝑡 −𝑔𝜇𝜈 𝑡, 𝜉𝑖 ሶ𝜉𝜇 ሶ𝜉𝜈 𝑡, 𝜉𝑖 : location of particle 2.

𝑡, 𝟎 : location of particle 1 (origin)

𝛾𝜏: time-like geodesics

𝛾𝜏

𝛾𝑠

𝜕

𝜕𝑠

𝑃(𝑡)

𝜕

𝜕𝑡

𝛾𝑠: space-like geodesics

• Action for particles is given by



Interaction term (2/2)

𝑔𝜇𝜈 𝑡, 𝜉𝑖 = 𝜂𝜇𝜈 +
𝑔𝜇𝜈,𝑖𝑗(𝑡, 𝟎)

2
𝜉𝑖𝜉𝑗 + 𝑂 𝜉3 .

∼ (Riemann tensor)

• Metric can be expanded as

• Then, the action for particles reads

𝑆particle ≃
𝑚

2
නd𝑡 ሶ𝜉𝑖 ሶ𝜉𝑖 − 𝑅0𝑖0𝑗𝜉

𝑖𝜉𝑗 ≃
𝑚

2
නd𝑡 ሶ𝜉𝑖 ሶ𝜉𝑖 +

1

2
ሷℎ𝑖𝑗𝜉

𝑖𝜉𝑗

𝑅0𝑖0𝑗 𝑡, 𝟎 = −
ሷℎ𝑖𝑗 𝑡, 𝟎

2
ቚ
TT 𝑔𝑎𝑢𝑔𝑒

• The expansion (☆) is valid only for long-wavelength modes 𝑘 ≤ 𝜉−1.

⋯ (☆)

• We therefore introduce the UV cutoff Ωm ∼ 𝜉−1 and neglect the 

contributions from short-wavelength modes.



Quantization of ℎ

• Action for graviton in the TT gauge

𝑆GR[ℎ] ≃
𝑀pl

2

8
නd4𝑥 −

1

2
𝜕ℎ𝑖𝑗

2
= 

𝐴=+,×

නd𝑡න
d3𝑘

2𝜋 3
ሶℎ𝐴 𝒌, 𝑡

2
− 𝑘2 ℎ𝐴 𝒌, 𝒕

2

ℎ𝑖𝑗 𝑡, 𝒙 =
2

𝑀pl


𝐴=+,×

න
d3𝑘

2𝜋 3 ℎ
𝐴 𝒌, 𝑡 𝑒𝑖𝑗

𝐴 𝑘 𝑒𝑖𝒌⋅𝒙 𝑒𝑖𝑗
𝐴∗ 𝑘 𝑒𝑖𝑗

𝐵 𝑘 = 𝛿𝐴𝐵

• Canonical quantization:

ℎ𝐴 𝒌, 𝑡 = ො𝑎𝐴 𝒌 𝑢𝑘 𝑡 + ො𝑎𝐴
† −𝒌 𝑢𝑘

∗ 𝑡

ො𝑎𝐴 𝒌 , ො𝑎𝐵
† 𝒌′ = 𝛿𝐴𝐵 2𝜋 3𝛿(𝒌 − 𝒌′)

ሶ𝑢𝑘 𝑡 𝑢𝑘
∗ 𝑡 − 𝑢𝑘 𝑡 ሶ𝑢𝑘

∗ 𝑡 = −𝑖 (Normalization)

e.g.) Minkowski vacuum state 0M

• Choice of mode function 𝑢𝑘 𝑡 determines the vacuum state

, otherwise 0

ො𝑎 𝒌 0M = 0, 𝑢𝑘 𝑡 =
1

2𝑘
𝑒−𝑖𝑘𝑡



Concrete setup (1/2)

• Action of two test particles +  gravitons

መ𝑆[ℎ, 𝜉] = መ𝑆GR[ℎ] +
𝑚

2
නd𝑡 ሶመ𝜉𝑖 𝑡 ሶመ𝜉𝑖 𝑡 +

1

2
ሷℎ𝑖𝑗 𝑡, 𝟎 መ𝜉𝑖 𝑡 መ𝜉𝑗 𝑡

※high frequency modes 𝑘 ≥ Ωm is neglected.

• Particle 1=time-like geodesics

• Particle 2=superposed state of a spatially-

separated locations

• Specifically, we consider the following setup.



Concrete setup (2/2)

𝜉𝑎(𝑡0 < 0) = 𝑐𝑎 Ψ(𝑡0) , 𝑐1 + 𝑐2 = 1.

• Superposition is created for 0 < 𝑡 < 𝑡f

⟨Ψ 𝑡0 Ψ 𝑡0 = 1: normalization

Ψ(𝑡0 < 0) → Ψ(𝑡) = 𝜉1(𝑡) + 𝜉2(𝑡)

𝑡0 < 0: initial time

• 𝜉1(𝑡) and 𝜉2(𝑡) are eigenstates of መ𝜉:    መ𝜉𝑖 𝜉𝑎(𝑡) = 𝜉𝑎
𝑖 𝑡 𝜉𝑎(𝑡)

• 𝜉1
𝑖 𝑡 ≠ 𝜉2

𝑖 (𝑡) only for 0 < 𝑡 < 𝑡f



Influence functional (1/7)

• We compute an influence functional

exp −Γ 𝑡f ≔
𝜉1 𝑡f 𝜉2 𝑡f ⟩

𝜉1 𝑡0 𝜉2 𝑡0 ⟩

✓ Γ 𝑡f ≪ 1 → Coherence is maintained. ✓ Γ 𝑡f ⪆ 1 → Decoherence!

• To compute Γ 𝑡f , it is convenient to make use of the path-integral.

• Coherence between superposed states 

∝ 𝜉1 𝑡 𝜉2 𝑡 ⟩

• We want to evaluate how this coherence 

is lost by gravitons.



Influence functional (2/7)

• Computation of Γ 𝑡f .

𝜉𝑎 𝑡 = 𝑐𝑎 𝑈 𝑡, 𝑡0; 𝜉𝑎 Ψ(𝑡0)

𝑈 𝑡, 𝑡0; 𝜉𝑎 = 𝑇exp −𝑖 න
𝑡0

𝑡

d𝑠 𝐻 𝑠; 𝜉𝑎

✓ Form of the action/Hamiltonian depend on 𝜉𝑎(𝑡), and hence 

the time evolution of the system is also affected by 𝜉𝑎(𝑡).

…Unitary time evolution

• Path-integral expression of 𝑈 𝑡, 𝑡0; 𝜉𝑎 :

• We will explain the derivation of eq. (★) and how to utilize it to compute Γ 𝑡f .

𝑈 𝑡, 𝑡0; 𝜉𝑎 = 𝑇exp −𝑖 න
𝑡0

𝑡

d𝑠 𝐻 𝑠; 𝜉𝑎 = න𝔇ℎ 𝑒𝑖𝑆 ℎ,𝜉𝑎 ℎ 𝑡 ℎ 𝑡0 ・・・ (★)



Influence functional (3/7)

• Path-integral expression of the unitary evolution

𝑈 𝑡, 𝑡0; 𝜉𝑎 = 𝑇exp −𝑖 න
𝑡0

𝑡

d𝑠 𝐻 𝑠; 𝜉𝑎 = න𝔇ℎ 𝑒𝑖𝑆 ℎ,𝜉𝑎 ℎ 𝑡 ℎ 𝑡0 Ψ(𝑡0)⟩

𝐻 𝑝, 𝑞 =
𝑝2

2𝑚
+ 𝑉(𝑞)

• Simplest model: quantum mechanics

𝐿 𝑞, ሶ𝑞 = 𝑝 ሶ𝑞 − 𝐻 𝑝, 𝑞 𝑝=𝑚 ሶ𝑞

𝑈 𝑡, 𝑡0 = 𝑈 𝑡𝑁, 𝑡𝑁−1 𝑈 𝑡𝑁−1, 𝑡𝑁−2 ⋯ 𝑈(𝑡1, 𝑡0) 𝑡𝑗 = 𝑡0 + 𝑗Δ𝑡 𝑗 = 0⋯𝑁

𝑡𝑁 = 𝑡

= ෑ

0≤𝑗≤𝑁

නd𝑞𝑗 𝑞𝑗+1 𝑈 𝑡𝑗+1, 𝑡𝑗 𝑞𝑗 𝑞𝑁 𝑞0

ො𝑞 𝑞𝑗 = 𝑞𝑗 𝑞𝑗



Influence functional (4/7)

𝑞𝑗+1 𝑈 𝑡𝑗+1, 𝑡𝑗 𝑞𝑗 = 𝑞𝑗+1 1 − 𝑖 𝐻Δ𝑡 𝑞𝑗 + 𝑂 Δ𝑡2

= න
d𝑝𝑗

2𝜋
𝑞𝑗+1 1 − 𝑖 𝐻Δ𝑡 𝑝𝑗 ⟨𝑝𝑗 𝑞𝑗 + 𝑂 Δ𝑡2 = න

d𝑝𝑗

2𝜋
𝑒𝑖𝑝𝑗 𝑞𝑗+1−𝑞𝑗 𝑒−𝑖𝐻 𝑝𝑗,𝑞𝑗+1 Δ𝑡 + 𝑂 Δ𝑡2

∴ 𝑈 𝑡, 𝑡0 = ෑ

0≤𝑗≤𝑁

නd𝑞𝑗 𝑞𝑗+1 𝑈 𝑡𝑗+1, 𝑡𝑗 𝑞𝑗 𝑞𝑁 𝑞0

= න
d𝑝𝑗

2𝜋
𝑒
𝑖 𝑝𝑗

𝑞𝑗+1−𝑞𝑗
Δ𝑡 −𝐻 𝑝𝑗,𝑞𝑗+1 Δ𝑡

+ 𝑂 Δ𝑡2

= ෑ

0≤𝑗≤𝑁

නd𝑞𝑗න
d𝑝𝑗

2𝜋
𝑒
𝑖 σ𝑗=0

𝑁 𝑝𝑗
𝑞𝑗+1−𝑞𝑗

Δ𝑡
−𝐻 𝑝𝑗,𝑞𝑗+1 Δ𝑡

𝑞𝑁 𝑞0 + 𝑂 Δ𝑡2

• In the limit 𝑁 → ∞ (⇔ Δ𝑡 → 0), we have

𝑈 𝑡, 𝑡0 = න𝔇𝑞𝔇𝑝 exp 𝑖 න
𝑡0

𝑡

d𝑡′ 𝑝 ሶ𝑞 − 𝐻 𝑝, 𝑞 𝑞𝑡 𝑞0



Influence functional (5/7)

• We can perform the integration over 𝑝 !

𝑈 𝑡, 𝑡0 = න𝔇𝑞𝔇𝑝 exp 𝑖 න
𝑡0

𝑡

d𝑡′ 𝑝 ሶ𝑞 − 𝐻 𝑝, 𝑞 𝑞𝑡 𝑞0

= න𝔇𝑞 exp 𝑖 න
𝑡0

𝑡

d𝑡′ 𝐿(𝑞, ሶ𝑞) 𝑞𝑡 𝑞0

𝑝 ሶ𝑞 − 𝐻 𝑝, 𝑞 =
1

2𝑚
𝑝 −𝑚 ሶ𝑞 2 −

𝑚 ሶ𝑞2

2
− 𝑉(𝑞)

𝐻 𝑝, 𝑞 =
𝑝2

2𝑚
+ 𝑉(𝑞)

Quadratic in 𝒑

= න𝔇𝑞 𝑒𝑖𝑆 𝑞𝑡 𝑞0

• Our case:

𝑈 𝑡, 𝑡0; 𝜉𝑎 = 𝑇exp −𝑖 න
𝑡0

𝑡

d𝑠 𝐻 𝑠; 𝜉𝑎 = න𝔇ℎ 𝑒𝑖𝑆 ℎ,𝜉𝑎 ℎ 𝑡 ℎ 𝑡0

𝑆[ℎ, 𝜉] = 𝑆GR[ℎ] +
𝑚

2
නd𝑡 ሶ𝜉𝑎

𝑖 ሶ𝜉𝑎
𝑖 +

1

2
ሷℎ𝑖𝑗𝜉𝑎

𝑖 𝜉𝑎
𝑗

ℎ𝑖𝑗 ℎ(𝑡) = ℎ𝑖𝑗 𝑡 ℎ(𝑡)

መ𝜉𝑎
𝑖 ℎ(𝑡) = 𝜉𝑎

𝑖 (𝑡) ℎ(𝑡)



Influence functional (6/7)

• We want to compute Γ(𝑡f)

𝑈 𝑡, 𝑡0; 𝜉𝑎 = න𝔇ℎ 𝑒𝑖𝑆 ℎ,𝜉𝑎 ℎ 𝑡 ℎ 𝑡0

exp −Γ 𝑡f ≔
𝜉1 𝑡f 𝜉2 𝑡f ⟩

𝜉1 𝑡0 𝜉2 𝑡0 ⟩

• So far, we obtained

𝜉𝑎 𝑡 = 𝑐𝑎 𝑈 𝑡, 𝑡0; 𝜉𝑎 Ψ(𝑡0) = 𝑐𝑎න𝔇ℎ 𝑒𝑖𝑆 ℎ,𝜉𝑎 ℎ 𝑡 ℎ 𝑡0 Ψ(𝑡0)⟩

• We have

∴ ⟨𝜉1(𝑡f) 𝜉2 𝑡 = 𝑐1𝑐2න𝔇ℎ+න𝔇ℎ− 𝛿 ℎ+ 𝑡f − ℎ− 𝑡f 𝑒𝑖 𝑆 ℎ+,𝜉2 −𝑆 ℎ−,𝜉1 Ψ0 ℎ+ Ψ0
∗[ℎ−]

=:Ψ0 ℎ+

∴ exp −Γ 𝑡f =
𝑍 𝜉1, 𝜉2
𝑍[0]

=: 𝑍[𝜉1, 𝜉2]



Influence functional (7/7)

• 𝑍 𝐽2, 𝐽1 : generating functional for gravitons.

exp −Γ 𝑡f =
𝑍 𝜉1, 𝜉2
𝑍[0]

𝑍 𝜉1, 𝜉2 = න𝔇ℎ+න𝔇ℎ− 𝛿 ℎ+ 𝑡f − ℎ− 𝑡f 𝑒𝑖 𝑆 ℎ+,𝜉2 −𝑆 ℎ−,𝜉1 Ψ0 ℎ+ Ψ0
∗[ℎ−]

𝑆 ℎ, 𝜉 = 𝑆𝐺𝑅 ℎ +
𝑚

4
න ሷℎ𝑖𝑗𝜉

𝑖𝜉𝑗 +
𝑚

2
න ሶ𝜉2

∼ න𝔇ℎ+න𝔇ℎ− 𝛿 ℎ+ 𝑡f − ℎ− 𝑡f 𝑒𝑖 𝑆GR ℎ+ −𝑆GR ℎ− Ψ0 ℎ+ Ψ0
∗ ℎ− 𝑒𝑖

𝑚
4  ሷℎ+𝜉2

2− ሷℎ−𝜉1
2

=:< 𝑒𝑖
𝑚
4  ሷℎ+𝜉2

2− ሷℎ−𝜉1
2

>

“weight function”

→
𝑖𝛿

𝛿(𝜉1
2(𝑡))

𝑖𝛿

𝛿(𝜉1
2 𝑡′ )

𝑍 𝜉1, 𝜉2 ȁ𝜉1=𝜉2=0 =
𝑚2

8
< ሷℎ− 𝑡 ሷℎ− 𝑡′ > etc.

• Generating functional can be written in terms of cumulants as

𝑍 𝜉1, 𝜉2 = exp  𝑑𝑡 −𝑖𝜉1
2 𝑡  𝑑𝑡′ −𝑖𝜉1

2 𝑡′
𝑚2

16
< ሷℎ− 𝑡 ሷℎ− 𝑡′ >c +⋯



Decoherence rate (1/2)

• We can obtain Γ 𝑡f by computing the graviton 2-point functions 

and specifying the particle trajectories 𝜉1
𝑖(𝑡) and 𝜉2

𝑖 (𝑡) .

exp −Γ 𝑡f =
𝑍 𝜉1, 𝜉2
𝑍[0]

Γ 𝑡f =
𝑚2

32
න
𝑡0

𝑡f

d𝑡 Δ 𝜉𝑖𝜉𝑗 𝑡 න
𝑡0

𝑡f

d𝑡′ Δ 𝜉𝑘𝜉ℓ 𝑡′ < ℎ𝑖𝑗 𝑡, 𝟎 , ℎ𝑘ℓ(𝑡
′, 𝟎) >c

Δ 𝜉𝑖𝜉𝑗 𝑡 ≔ 𝜉1
𝑖 𝑡 𝜉1

𝑗
𝑡 − 𝜉2

𝑖 𝑡 𝜉2
𝑗
𝑡

{ መ𝐴, 𝐵} ≔
1

2
መ𝐴B + BA

Anti-commutator symbol



Decoherence rate (2/2)

• We consider the simplest model

Γ 𝑡f =
2

5𝜋2
𝑚𝑣

𝑀pl

2

Ωm𝜉
2𝐺 Ωm𝑡f

=const.
Δ𝜉 𝑡 =

2𝑣𝑡

2𝑣(𝑡f − 𝑡)

(0 < 𝑡 < 𝑡𝑓/2)

(𝑡f/2 < 𝑡 < 𝑡f)

• In this setup, we have 

∼
2

5𝜋2
𝑚𝑣

𝑀pl

2

(0 < 𝑣 < 1)

• 𝑚 ≫ 𝑀pl is required to realize the 

graviton-induced decoherence.



We should consider different setup.

• So far, we have considered spatial superpositions of particles.

• Let us briefly consider another setup (maybe more realistic?)

✓ 𝑚 ≫ 𝑀pl is required to realize the graviton-induced decoherence.

✓ It will be extremely difficult to realize such a setup, however.

𝛾

On-going work



Summary

• We develop the method to compute the graviton-induced decoherence of 

superpositions of massive particles.

• We will focus on the decoherence caused by primordial GWs.

• We focus on two simple toy models. It seems extremely difficult to detect 

the zero-point fluctuation of gravitons, as expected.

• What is the detectable value of Γ 𝑡 ?

• More precise analysis. (opto-mech)

• Find similar setup and parameter search.


