Quantum decoherence caused by gravitons

Junsei Tokuda (Kobe U.)

In collaboration with Jiro Soda (Kobe U.), Sugumi Kanno (Kyushu U.)
Based on arXiv: 2007.09838, in progress
2020.12.04 Webinar @ GW group

Introduction (1/2)

- Quantum nature of gravity has been investigated.
E.g.) Newton gravity S. Bose et al.('17), A. Matsumura et al.('20), ...

(from S. Bose et al. PRL119, 240401(2017))

(from A. Matsumura et al. arXiv:2010.05161)
- We want to prove the presence of gravitons!
...dynamical component of gravity

Introduction (2/2)

- We consider the following two systems

(2)

Two test particles + gravitons

- We analyze (too) simplified toy model in order to find some potentially interesting setups.

Based on arXiv: 2007.09838, in progress

1. We analyze the model (1):

Based on arXiv: 2007.09838

16 pages
-Construct the action

- Compute the decoherence of superpositions of massive particles caused by gravitons

2. We analyze the model (2):

In progress.

- Compute the decoherence caused by gravitons

3. Summary

System

- The system: two test particles + gravitons.

$$
\begin{aligned}
& S=\frac{M_{\mathrm{pl}}^{2}}{2} \int \mathrm{~d}^{4} x \sqrt{-g} R+S_{\text {particle }} \\
& S_{\text {particle }}=\frac{M}{2} \int \mathrm{~d} t \sqrt{-g_{\mu v}\left(t, X^{i}\right) \dot{X}^{\mu} \dot{X}^{v}}+\frac{m}{2} \int \mathrm{~d} t \sqrt{-g_{\mu v}\left(t, Y^{i}\right) \dot{Y}^{\mu} \dot{Y}^{v}}
\end{aligned}
$$

$$
\left(t, X^{i}(t)\right)\left(t, Y^{i}(t)\right)
$$

Particle 1 Particle 2

- Suppose that particle 1 freely falls. $\rightarrow \gamma_{\tau}$: time-like geodesics

Interaction term (1/2)

- Fermi-normal coordinates: one of the local inertial frames
\checkmark Christoffel symbols vanish along γ_{τ}.
\checkmark given by $x^{\mu}=\left(t, s \alpha^{i}\right)$,
s : proper distance along a geodesics γ_{s}

$$
\left(\frac{\partial}{\partial S}\right)_{P(t)}=\alpha^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{P(t)}
$$

γ_{τ} : time-like geodesics
γ_{S} : space-like geodesics

- Action for particles is given by

$$
S_{\text {particle }}=\frac{m}{2} \int \mathrm{~d} t \sqrt{-g_{\mu \nu}\left(t, \xi^{i}\right) \dot{\xi}^{\mu} \dot{\xi}^{\nu}}
$$

$\left(t, \xi^{i}\right)$: location of particle 2.
$(t, \mathbf{0})$: location of particle 1 (origin)

Interaction term (2/2)

- Metric can be expanded as

$$
\begin{aligned}
g_{\mu \nu}\left(t, \xi^{i}\right)=\eta_{\mu \nu}+ & \frac{g_{\mu \nu, i j}(t, \mathbf{0})}{2} \xi^{i} \xi^{j}+O\left(\xi^{3}\right) . \quad \cdots \quad(\dot{\lambda}) \\
& \sim(\text { Riemann tensor })
\end{aligned}
$$

- Then, the action for particles reads

$$
\begin{aligned}
& S_{\text {particle }} \simeq \frac{m}{2} \int \mathrm{~d} t\left[\dot{\xi}^{i} \dot{\xi}_{i}-R_{0 i 0 j} \xi^{i} \xi^{j}\right] \simeq \frac{m}{2} \int \mathrm{~d} t\left[\dot{\xi}^{i} \dot{\xi}_{i}+\frac{1}{2} \check{h}_{i j} \xi^{i} \xi^{j}\right] \\
& R_{0 i 0 j}(t, \mathbf{0}) \\
&=-\left.\frac{\ddot{h}_{i j}(t, \mathbf{0})}{2}\right|_{\mathrm{TT} \text { gauge }}
\end{aligned}
$$

- The expansion ($\hat{\Sigma}$) is valid only for long-wavelength modes $k \leq \xi^{-1}$.
- We therefore introduce the UV cutoff $\Omega_{\mathrm{m}} \sim \xi^{-1}$ and neglect the contributions from short-wavelength modes.

Quantization of h

- Action for graviton in the TT gauge

$$
\begin{aligned}
& S_{\mathrm{GR}}[h] \simeq \frac{M_{\mathrm{pl}}^{2}}{8} \int \mathrm{~d}^{4} x\left[-\frac{1}{2}\left(\partial h_{i j}\right)^{2}\right]=\sum_{A=+, \times} \int \mathrm{d} t \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}}\left[\left|h^{A}(\boldsymbol{k}, t)\right|^{2}-k^{2}\left|h^{A}(\boldsymbol{k}, \boldsymbol{t})\right|^{2}\right] \\
& h_{i j}(t, \boldsymbol{x})=\frac{2}{M_{\mathrm{pl}}} \sum_{A=+, \times} \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} h^{A}(\boldsymbol{k}, t) e_{i j}^{A}(\hat{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \quad e_{i j}^{A^{*}}(\hat{k}) e_{i j}^{B}(\hat{k})=\delta^{A B}
\end{aligned}
$$

- Canonical quantization:

$$
\begin{aligned}
& \hat{h}^{A}(\boldsymbol{k}, t)=\hat{a}_{A}(\boldsymbol{k}) u_{k}(t)+\hat{a}_{A}^{\dagger}(-\boldsymbol{k}) u_{k}^{*}(t) \quad u_{k}(t) u_{k}^{*}(t)-u_{k}(t) u_{k}^{*}(t)=-i \text { (Normalization) } \\
& {\left[\hat{a}_{A}(\boldsymbol{k}), \hat{a}_{B}^{\dagger}\left(\boldsymbol{k}^{\prime}\right)\right]=\delta_{A B}(2 \pi)^{3} \delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right), \text { otherwise } 0}
\end{aligned}
$$

- Choice of mode function $u_{k}(t)$ determines the vacuum state e.g.) Minkowski vacuum state $\left|0_{\mathrm{M}}\right\rangle \quad \hat{a}(\boldsymbol{k})\left|0_{\mathrm{M}}\right\rangle=0, \quad u_{k}(t)=\frac{1}{\sqrt{2 k}} e^{-i k t}$

Concrete setup (1/2)

- Action of two test particles + gravitons

$$
\hat{S}[h, \xi]=\hat{S}_{\mathrm{GR}}[h]+\frac{m}{2} \int \mathrm{~d} t\left[\dot{\hat{\xi}}^{i}(t) \dot{\hat{\xi}}_{i}(t)+\frac{1}{2}{\left.\hat{h}_{i j}(t, 0) \hat{\xi}^{i}(t) \hat{\xi}^{j}(t)\right]}\right.
$$ $※$ high frequency modes $k \geq \Omega_{\mathrm{m}}$ is neglected.

- Specifically, we consider the following setup.
- Particle 1=time-like geodesics
- Particle $2=$ superposed state of a spatiallyseparated locations

Concrete setup (2/2)

- Superposition is created for $0<t<t_{\mathrm{f}}$

$$
\begin{aligned}
& \left|\Psi\left(t_{0}<0\right)\right\rangle \rightarrow|\Psi(t)\rangle=\left|\xi_{1}(t)\right\rangle+\left|\xi_{2}(t)\right\rangle \\
& \left|\xi_{a}\left(t_{0}<0\right)\right\rangle=c_{a}\left|\Psi\left(t_{0}\right)\right\rangle, \quad c_{1}+c_{2}=1 .
\end{aligned}
$$

$t_{0}<0$: initial time
$\left\langle\Psi\left(t_{0}\right) \mid \Psi\left(t_{0}\right)\right\rangle=1$: normalization

- $\left|\xi_{1}(t)\right\rangle$ and $\left|\xi_{2}(t)\right\rangle$ are eigenstates of $\hat{\xi}: \quad \hat{\xi}^{i}\left|\xi_{a}(t)\right\rangle=\xi_{a}^{i}(t)\left|\xi_{a}(t)\right\rangle$
- $\quad \xi_{1}^{i}(t) \neq \xi_{2}^{i}(t)$ only for $0<t<t_{\mathrm{f}}$

Influence functional (1/7)

- Coherence between superposed states $\propto\left|\left\langle\xi_{1}(t) \mid \xi_{2}(t)\right\rangle\right|$
- We want to evaluate how this coherence is lost by gravitons.
- We compute an influence functional

$\exp \left[-\Gamma\left(t_{\mathrm{f}}\right)\right]:=\left|\frac{\left\langle\xi_{1}\left(t_{\mathrm{f}}\right) \mid \xi_{2}\left(t_{\mathrm{f}}\right)\right\rangle}{\left\langle\xi_{1}\left(t_{0}\right) \mid \xi_{2}\left(t_{0}\right)\right\rangle}\right|$
$\checkmark \Gamma\left(t_{\mathrm{f}}\right) \ll 1 \rightarrow$ Coherence is maintained. $\quad \checkmark \Gamma\left(t_{\mathrm{f}}\right) \gtrsim 1 \rightarrow$ Decoherence!
- To compute $\Gamma\left(t_{\mathrm{f}}\right)$, it is convenient to make use of the path-integral.

Influence functional (2/7)

- Computation of $\Gamma\left(t_{\mathrm{f}}\right)$.

$$
\begin{aligned}
& \left|\xi_{a}(t)\right\rangle=c_{a} \widehat{U}\left(t, t_{0} ; \xi_{a}\right)\left|\Psi\left(t_{0}\right)\right\rangle \\
& \widehat{U}\left(t, t_{0} ; \xi_{a}\right)=T \exp \left[-i \int_{t_{0}}^{t} \mathrm{~d} s H\left(s ; \xi_{a}\right)\right]
\end{aligned}
$$

...Unitary time evolution

\checkmark Form of the action/Hamiltonian depend on $\xi_{a}(t)$, and hence the time evolution of the system is also affected by $\xi_{a}(t)$.

- Path-integral expression of $\widehat{U}\left(t, t_{0} ; \xi_{a}\right)$:

$$
\widehat{U}\left(t, t_{0} ; \xi_{a}\right)=\operatorname{Texp}\left[-i \int_{t_{0}}^{t} \mathrm{~d} s H\left(s ; \xi_{a}\right)\right]=\int \mathfrak{D} h e^{i S\left[h, \xi_{a}\right]}|h(t)\rangle\left\langle h\left(t_{0}\right)\right|
$$

- We will explain the derivation of eq. (\star) and how to utilize it to compute $\Gamma\left(t_{\mathrm{f}}\right)$.

Influence functional (3/7)

- Path-integral expression of the unitary evolution

$$
\widehat{U}\left(t, t_{0} ; \xi_{a}\right)=T \exp \left[-i \int_{t_{0}}^{t} \mathrm{~d} s H\left(s ; \xi_{a}\right)\right]=\int \mathfrak{D} h e^{i S\left[h, \xi_{a}\right]}|h(t)\rangle\left\langle h\left(t_{0}\right) \mid \Psi\left(t_{0}\right)\right\rangle
$$

- Simplest model: quantum mechanics

$$
\begin{array}{rlr}
H(p, q) & =\frac{p^{2}}{2 m}+V(q) \quad L(q, \dot{q})=[p \dot{q}-H(p, q)]_{p=m \dot{q}} & \\
\widehat{U}\left(t, t_{0}\right) & =\widehat{U}\left(t_{N}, t_{N-1}\right) \widehat{U}\left(t_{N-1}, t_{N-2}\right) \cdots \widehat{U}\left(t_{1}, t_{0}\right) & t_{j}=t_{0}+j \Delta t(j=0 \cdots N) \\
& =\prod_{0 \leq j \leq N} \int \mathrm{~d} q_{j}\left\langle q_{j+1}\right| \widehat{U}\left(t_{j+1}, t_{j}\right)\left|q_{j}\right\rangle\left|q_{N}\right\rangle\left\langle q_{0}\right| & t_{N}=t \\
\hat{q}\left|q_{j}\right\rangle & =q_{j}\left|q_{j}\right\rangle &
\end{array}
$$

Influence functional (4/7)

$$
\begin{aligned}
& \quad\left\langle q_{j+1}\right| \widehat{U}\left(t_{j+1}, t_{j}\right)\left|q_{j}\right\rangle=\left\langle q_{j+1}\right|[1-i \widehat{H} \Delta t]\left|q_{j}\right\rangle+O\left(\Delta t^{2}\right) \\
& \begin{aligned}
=\int \frac{\mathrm{d} p_{j}}{2 \pi}\left\langle q_{j+1}\right|[1-i \widehat{H} \Delta t]\left|p_{j}\right\rangle\left\langle p_{j} \mid q_{j}\right\rangle+O\left(\Delta t^{2}\right) & =\int \frac{\mathrm{d} p_{j}}{2 \pi} e^{i p_{j}\left(q_{j+1}-q_{j}\right)} e^{-i H\left[p_{j}, q_{j+1}\right] \Delta t}+O\left(\Delta t^{2}\right) \\
& =\int \frac{\mathrm{d} p_{j}}{2 \pi} e^{i\left[p_{j}\left(\frac{q_{j+1}-q_{j}}{\Delta t}\right)-H\left[p_{j}, q_{j+1}\right]\right] \Delta t}+O\left(\Delta t^{2}\right)
\end{aligned} \\
& \begin{aligned}
\therefore \widehat{U}\left(t, t_{0}\right)= & \prod_{0 \leq j \leq N} \int \mathrm{~d} q_{j}\left\langle q_{j+1}\right| \widehat{U}\left(t_{j+1}, t_{j}\right)\left|q_{j}\right\rangle\left|q_{N}\right\rangle\left\langle q_{0}\right|
\end{aligned} \\
& \quad=\prod_{0 \leq j \leq N} \int \mathrm{~d} q_{j} \int \frac{\mathrm{~d} p_{j}}{2 \pi} e^{i \sum_{j=0}^{N}\left[p_{j}\left(\frac{q_{j+1}-q_{j}}{\Delta t}\right)-H\left[p_{j}, q_{j+1}\right]\right] \Delta t}\left|q_{N}\right\rangle\left\langle q_{0}\right|+O\left(\Delta t^{2}\right)
\end{aligned}
$$

- In the limit $N \rightarrow \infty(\Leftrightarrow \Delta t \rightarrow 0)$, we have

$$
\widehat{U}\left(t, t_{0}\right)=\int \mathfrak{D} q \mathfrak{D} p \exp \left[i \int_{t_{0}}^{t} \mathrm{~d} t^{\prime}[p \dot{q}-H(p, q)]\right]\left|q_{t}\right\rangle\left\langle q_{0}\right|
$$

Influence functional (5/7)

- We can perform the integration over p !

$$
H(p, q)=\frac{p^{2}}{2 m}+V(q)
$$

$$
\begin{aligned}
& \widehat{U}\left(t, t_{0}\right)=\int \mathfrak{D} q \mathfrak{D} p \exp \left[i \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \underset{\text { Quadratic in } \boldsymbol{p}}{[p \dot{q}-H(p, q)]}\right]\left|q_{t}\right\rangle\left\langle q_{0}\right| \\
& p \dot{q}-H(p, q)=\frac{1}{2 m}(p-m \dot{q})^{2}-\frac{m \dot{q}^{2}}{2}-V(q) \\
& =\int \mathfrak{D} q \exp \left[i \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} L(q, \dot{q})\right]\left|q_{t}\right\rangle\left\langle q_{0}\right|=\int \mathscr{D} q e^{i S}\left|q_{t}\right\rangle\left\langle q_{0}\right|
\end{aligned}
$$

- Our case:
$\widehat{U}\left(t, t_{0} ; \xi_{a}\right)=T \exp \left[-i \int_{t_{0}}^{t} \mathrm{~d} s H\left(s ; \xi_{a}\right)\right]=\int \mathfrak{D} h e^{i S\left[h, \xi_{a}\right]}|h(t)\rangle\left\langle h\left(t_{0}\right)\right|$
$S[h, \xi]=S_{\mathrm{GR}}[h]+\frac{m}{2} \int \mathrm{~d} t\left[\dot{\xi}_{a}^{i} \dot{\dot{\xi}_{a}^{i}}+\frac{1}{2} \ddot{h}_{i j} \dot{\xi}_{a}^{i} \xi_{a}^{j}\right] \quad \begin{aligned} & \hat{h}_{i j}|h(t)\rangle=h_{i j}(t)|h(t)\rangle \\ & \hat{\xi}_{a}^{i}|h(t)\rangle=\xi_{a}^{i}(t)|h(t)\rangle\end{aligned}$

Influence functional (6/7)

- We want to compute $\Gamma\left(t_{\mathrm{f}}\right)$

$$
\exp \left[-\Gamma\left(t_{\mathrm{f}}\right)\right]:=\left|\frac{\left\langle\xi_{1}\left(t_{\mathrm{f}}\right) \mid \xi_{2}\left(t_{\mathrm{f}}\right)\right\rangle}{\left\langle\xi_{1}\left(t_{0}\right) \mid \xi_{2}\left(t_{0}\right)\right\rangle}\right|
$$

- So far, we obtained

$$
\widehat{U}\left(t, t_{0} ; \xi_{a}\right)=\int \mathfrak{D} h e^{i S\left[h, \xi_{a}\right]}|h(t)\rangle\left\langle h\left(t_{0}\right)\right|
$$

- We have

$$
\begin{aligned}
& \begin{array}{l}
\left|\xi_{a}(t)\right\rangle=c_{a} \widehat{U}\left(t, t_{0} ; \xi_{a}\right)\left|\Psi\left(t_{0}\right)\right\rangle=c_{a} \int \mathcal{D} h e^{i S\left[h, \xi_{a}\right]}|h(t)\rangle\left\langle h\left(t_{0}\right) \mid \Psi\left(t_{0}\right)\right\rangle \\
=: \Psi_{0}\left[h_{+}\right]
\end{array} \\
& \begin{array}{l}
\therefore\left\langle\xi_{1}\left(t_{f}\right) \mid \xi_{2}(t)\right\rangle=c_{1} c_{2} \int \mathfrak{D} h_{+} \int \mathfrak{D} h_{-} \delta\left(h_{+}\left(t_{f}\right)-h_{-}\left(t_{f}\right)\right) e^{i\left(S\left[h_{+}, \xi_{2}\right]-S\left[h_{-}, \xi_{1}\right]\right)} \Psi_{0}\left[h_{+}\right] \Psi_{0}^{*}\left[h_{-}\right] \\
=: Z\left[\xi_{1}, \xi_{2}\right]
\end{array} \\
& \therefore \exp \left[-\Gamma\left(t_{f}\right)\right]=\left|\frac{Z\left[\xi_{1}, \xi_{2}\right]}{Z[0]}\right|
\end{aligned}
$$

Influence functional (7/7)

 $\exp \left[-\Gamma\left(t_{\mathrm{f}}\right)\right]=\left|\frac{Z\left[\xi_{1}, \xi_{2}\right]}{Z[0]}\right|$- $Z\left[J_{2}, J_{1}\right]$: generating functional for gravitons.

$$
\begin{aligned}
& Z\left[\xi_{1}, \xi_{2}\right]=\int \mathfrak{D} h_{+} \int \mathfrak{D} h_{-} \delta\left(h_{+}\left(t_{f}\right)-h_{-}\left(t_{f}\right)\right) e^{i\left(S\left[h_{+}, \xi_{2}\right]-S\left[h_{-}, \xi_{1}\right]\right)} \Psi_{0}\left[h_{+}\right] \Psi_{0}^{*}\left[h_{-}\right] \\
& S[h, \xi]=S_{G R}[h]+\frac{m}{4} \int \ddot{h}_{i j} \xi^{\xi} \xi^{j}+\frac{m}{2} \int \dot{\xi}^{2} \\
& \sim \int \mathscr{D} h_{+} \int \mathscr{D} h_{-} \delta\left(h_{+}\left(t_{f}\right)-h_{-}\left(t_{f}\right)\right) e^{i\left(S_{\operatorname{GR}}\left[h_{+}\right]-S_{\mathrm{GR}}\left[h_{-}\right]\right)} \Psi_{0}\left[h_{+}\right] \Psi_{0}^{*}\left[h_{-}\right] e^{i \frac{m}{4} \int\left[\ddot{h}_{+} \xi_{2}^{2}-\ddot{h}_{-} \xi_{1}^{2}\right]} \\
& \text { "weight function" } \\
& =:\left\langle e^{i \frac{m}{4} \int\left[\ddot{h}_{+} \xi_{2}^{2}-\ddot{h}_{-} \xi_{1}^{2}\right]}\right\rangle \\
& \left.\rightarrow \frac{i \delta}{\delta\left(\xi_{1}^{2}(t)\right)} \frac{i \delta}{\delta\left(\xi_{1}^{2}\left(t^{\prime}\right)\right)} Z\left[\xi_{1}, \xi_{2}\right]\right|_{\xi_{1}=\xi_{2}=0}=\frac{m^{2}}{8}<\ddot{h}_{-}(t) \ddot{h}_{-}\left(t^{\prime}\right)>\text { etc. }
\end{aligned}
$$

- Generating functional can be written in terms of cumulants as

$$
Z\left[\xi_{1}, \xi_{2}\right]=\exp \left[\int d t\left(-i \xi_{1}^{2}(t)\right) \int d t^{\prime}\left(-i \xi_{1}^{2}\left(t^{\prime}\right)\right) \frac{m^{2}}{16}\left\langle\ddot{h}_{-}^{\prime}(t) \ddot{h}_{-}\left(t^{\prime}\right)>_{c}+\cdots\right]\right.
$$

Decoherence rate (1/2)

$$
\exp \left[-\Gamma\left(t_{\mathrm{f}}\right)\right]=\left|\frac{Z\left[\xi_{1}, \xi_{2}\right]}{Z[0]}\right|
$$

- We can obtain $\Gamma\left(t_{\mathrm{f}}\right)$ by computing the graviton 2-point functions and specifying the particle trajectories $\xi_{1}^{i}(t)$ and $\xi_{2}^{i}(t)$.

$$
\begin{aligned}
& \Gamma\left(t_{\mathrm{f}}\right)=\frac{m^{2}}{32} \int_{t_{0}}^{t_{\mathrm{f}}} \mathrm{~d} t \Delta\left(\xi^{i} \xi^{j}\right)(t) \int_{t_{0}}^{t_{\mathrm{f}}} \mathrm{~d} t^{\prime} \Delta\left(\xi^{k} \xi^{\ell}\right)\left(t^{\prime}\right)<\left\{\hat{h}_{i j}(t, \mathbf{0}), \hat{h}_{k \ell}\left(t^{\prime}, \mathbf{0}\right)\right\}>_{\mathrm{c}} \\
& \text { Anti-commutator symbol } \\
& \Delta\left(\xi^{i} \xi^{j}\right)(t):=\xi_{1}^{i}(t) \xi_{1}^{j}(t)-\xi_{2}^{i}(t) \xi_{2}^{j}(t) \\
& \{\hat{A}, \widehat{B}\}:=\frac{1}{2}(\hat{A} \widehat{B}+\widehat{B} \widehat{A})
\end{aligned}
$$

Decoherence rate $(2 / 2)$

- We consider the simplest model

$$
\begin{aligned}
& \Delta \xi(t)= \begin{cases}2 v t & \left(0<t<t_{f} / 2\right) \\
2 v\left(t_{f}-t\right) & \left(t_{\mathrm{f}} / 2<t<t_{\mathrm{f}}\right)\end{cases} \\
& (0<v<1)
\end{aligned}
$$

- In this setup, we have

$$
\Gamma\left(t_{\mathrm{f}}\right)=\frac{2}{5 \pi^{2}}\left(\frac{m v}{M_{\mathrm{pl}}}\right)^{2}\left(\Omega_{\mathrm{m}} \xi\right)^{2} G\left(\Omega_{\mathrm{m}} t_{\mathrm{f}}\right) \sim \frac{2}{5 \pi^{2}}\left(\frac{m v}{M_{\mathrm{pl}}}\right)^{2}
$$

- $m \gg M_{\mathrm{pl}}$ is required to realize the graviton-induced decoherence.

We should consider different setup.

- So far, we have considered spatial superpositions of particles.
$\checkmark m \gg M_{\mathrm{pl}}$ is required to realize the graviton-induced decoherence.
\checkmark It will be extremely difficult to realize such a setup, however.
- Let us briefly consider another setup (maybe more realistic?)

Summary

- We develop the method to compute the graviton-induced decoherence of superpositions of massive particles.
- We focus on two simple toy models. It seems extremely difficult to detect the zero-point fluctuation of gravitons, as expected.
- We will focus on the decoherence caused by primordial GWs.
- What is the detectable value of $\Gamma(t)$?
- Find similar setup and parameter search.
- More precise analysis. (opto-mech)

