# An auto-alignment strategy despite the existence of ITM birefringence

Haoyu Wang Ando lab seminar 20 Jan 2023

### Contents

- Description of cavity misalignments
- Detecting misalignments with quadrant photodetectors (QPDs)
- Influence of ITM birefringence on auto-alignment system
- A tabletop experiment

#### Beam distortions and higher-order mode (HOM)

- Beam distortion: any deviation of a wavefront from the ideal Gaussian wavefront
- Modal model: the shape of a field is not given as a function of x, y coordinates but by a sum of Gaussian modes of different orders. In other words, beam distortions can be described by HOMs.



#### Beam distortions and higher-order mode (HOM)

• Simple distortions: Misalignment and mode-mismatch

Misalignment: Mismatch of optical axis between two beams



Mode-mismatch: Mismatch of waist size or position between two beams

#### Scan of a misaligned cavity



Scan of a mode-mismatched cavity

10

15

LG00 LG10 LG00 + LG10



$$u_{nm}(x, y, z) = u_n(x, z) \cdot u_m(y, z)$$
  
= $(2^{n+m-1}n!m!\pi)^{-1/2} \frac{1}{w(z)} \exp\left[i(n+m+1)\Psi(z)\right]$   
 $\cdot H_n(\frac{\sqrt{2}x}{w(z)}) H_m(\frac{\sqrt{2}y}{w(z)}) \exp\left[-i\frac{k(x^2+y^2)}{2R_C(z)} - \frac{x^2+y^2}{w^2(z)}\right]$ 

with

$$u_n(x,z) = \left(\frac{2}{\pi}\right)^{1/4} \left[\frac{\exp\left[i(2n+1)\Psi(z)\right]}{2^n n! w(z)}\right]^{1/2} H_n\left(\frac{\sqrt{2}x}{w(z)}\right) \exp\left[-i\frac{kx^2}{2R_C(z)} - \frac{x^2}{w^2(z)}\right]$$





At beam waist position where z=0

Fundamental mode

$$u_0(x) = \left(\frac{2}{\pi w_0^2}\right)^{1/4} \exp\left(-\frac{x^2}{w_0^2}\right)$$

First order mode

$$u_1(x) = \left(\frac{2}{\pi w_0^2}\right)^{1/4} \frac{2x}{w_0} \exp\left(-\frac{x^2}{w_0^2}\right)$$

#### Cavity misalignments

#### Effect of cavity axis translation

$$u_0(x - \Delta x) = \left(\frac{2}{\pi w_0^2}\right)^{1/4} \exp\left[-\frac{(x - \Delta x)^2}{w_0^2}\right]$$
  

$$\approx \left(\frac{2}{\pi w_0^2}\right)^{1/4} \exp\left(-\frac{x^2}{w_0^2} + \frac{2x\Delta x}{w_0^2}\right)$$
  

$$\approx \left(\frac{2}{\pi w_0^2}\right)^{1/4} \left(1 + \frac{2x\Delta x}{w_0^2}\right) \exp\left(-\frac{x^2}{w_0^2}\right)$$
  

$$= u_0(x) + \frac{\Delta x}{w_0} u_1(x)$$

- The offset between the cavity axis and the input beam axis will result in a first order mode.
- The first order mode has the same phase as the input beam.



#### Effect of cavity axis tilt

$$u(x)_{\text{tilt}} = u_0(x) \exp(i\varphi) = u_0(x) \exp\left(\frac{i2\pi x \sin\theta}{\lambda}\right)$$
  
=  $u_0(x) \left[\cos\left(\frac{2\pi x \sin\theta}{\lambda}\right) + i \sin\left(\frac{2\pi x \sin\theta}{\lambda}\right)\right]$   
 $\approx u_0(x) \left(1 + \frac{i\pi w_0 \theta}{\lambda} \frac{2x}{w_0}\right)$   
=  $u_0(x) + \frac{i\pi w_0 \theta}{\lambda} u_1(x)$   
=  $u_0(x) + i \frac{\theta}{\theta_{\text{div}}} u_1(x)$   
Directly reflected beam  
  
- The tilt between the cavity axis a beam axis will result in a first order  
- The resultant first order mode has 90° relative to the original beam  
-  $u_0(x) + i \frac{\theta}{\theta_{\text{div}}} u_1(x)$   
-  $u_0(x) + i \frac{\theta}{\theta_{\text{div}}} u_1(x)$   
-  $u_0(x) + i \frac{\theta}{\theta_{\text{div}}} u_1(x)$ 

- y axis and the input irst order mode.
- ode has a phase shift of beam.

 $U_0'(x)$ 

U<sub>a</sub>(x)

 $U_1(\mathbf{x}) = U_0(\mathbf{x})^{-1}$ 

х



#### Auto-alignment control system

Error signal

$$S'_{\rm QPD, \, DC} = -E_0^2 m \omega_0 \left(\frac{\Delta x}{\omega_0} \sin \psi + \frac{\theta}{\theta_{\rm div}} \cos \psi\right) \cos \varphi_{\rm dem}$$

Laser

EOM

 $\sim$ 

LO

We use two QPDs as a group:

$$S'_{\text{QPD1}} = -E_0^2 m \omega_0 \left( \frac{\Delta x}{\omega_0} \sin \psi_1 + \frac{\theta}{\theta_{\text{div}}} \cos \psi_1 \right)$$
$$S'_{\text{QPD2}} = -E_0^2 m \omega_0 \left( \frac{\Delta x}{\omega_0} \sin \psi_2 + \frac{\theta}{\theta_{\text{div}}} \cos \psi_2 \right)$$

If we choose  $\psi_1 = 0$  and  $\psi_2 = 90^\circ$ ,

- QPD1 will only see cavity axis tilt
- QPD2 will only see cavity axis offset



#### Beam distortion due to birefringence

Birefringence coupling in ITM substrate











#### Alignment error signal when there is birefringence





The ASC offset error mainly comes from the beat between the fundamental mode and 1<sup>st</sup> mode from RF

#### A scheme to extract birefringence effect: heterodyne scheme



Signal



#### A tabletop experiment (NAOJ)



#### Polarization plate

| Custom Capability           | Custom Specification                                        |
|-----------------------------|-------------------------------------------------------------|
| Patterned Retarder Size     | Ø100 µm to Ø2"                                              |
| Patterned Retarder Shape    | Any                                                         |
| Microretarder Size          | ≥Ø30 µm                                                     |
| Microretarder Shape         | Round or Square                                             |
| Retardance Range @ 632.8 nm | 50 to 550 nm                                                |
| Substrate                   | N-BK7, UV Fused Silica, or Other Glass                      |
| Substrate Size              | Ø5 mm to Ø2"                                                |
| AR Coating                  | -A: 350 - 700 nm<br>-B: 650 - 1050 nm<br>-C: 1050 - 1700 nm |

180.0

157.5

135.0

112.5

90.00

67.50

45.00

22.50

0.000



We are going to use customized polarization plate from Thorlabs.



We have ordered a quarter wave plate and a half wave plate with gradient of fast axis.

#### Tabletop experiment status

• All optics are ready now. The installation has started.

- RFQPDs modification on-going.
  - KAGRA RFQPDs only have 2 demodulation frequencies.
  - Our tabletop setup demodulations are 88 MHz, 48 MHz and 40 MHz.
  - We are going to make the circuit resonant at 88 MHz and 44 MHz.



## Thank you for listening!