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Dark matter search and DANCE

* More than 80% of the universe’s matter is unknown
=Dark matter
* Dark matter search experiment by interferometer

* DANCE searches for axion-like particle (ALP) dark matter
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Axion-like particles (ALPs)

- Undiscovered particles predicted from string theory
(originally predicted from QCD as QCD axion)

* One of the dark matter candidates

* Slightly interact with photon

*

DANCE aims to detect this interaction with laser



Previous researches
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Axion-photon interaction

Axion-photon interaction causes phase velocity difference

cL/R = |1 -I_/\ »\ sm(mat + 0;)
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Principle of DANCE

* Rotational amplitude becomes large as light path increases
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Need to enhance the light path for sensitive search

* Optical cavity can enhance the light path
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Principle of DANCE

* Linear cavity
Plane of polarization flips by reflection = cancels rotation

Flip Laser

* Bow-tie ring cavity [1]
Two reflections prevent polarization flip = enhances rotational angle

lllllll

Preserves E‘\f, i Amp"fl'ed |
T ~ ~ ~, rotational angle
olarization * ) .
pl Q ' ’\l/ é}’ (ALP signal)
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[1] I. Obata, T. Fujita, and Y. Michimura: Phys. Rev. Lett. 121, 161301 (2018).



Target sensitivity of DANCE

Parameters
of DANCE

axion-photon coupling |gay| (GeV™1)

* L: Round-trip length ————————p
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DANCE Act-1

* Prototype experiment for
»identifying technical issues = resonant frequency difference
» proof of principle

* Feasible parameters (Round-trip length =1 m,
Designed finesse = 3000, Input laser power =1 W)

* DANCE Act-1 with auxiliary cavity = my master thesis

DANCE Act-1 @ B207 ~ DANCE Act-1 with aux. CaVIty @ B111




Issue —Resonant frequency difference-

* There is resonant frequency difference between |:|<
s-pol. and p-pol. (3 MHz in DANCE Act-1) reflective phase difference

in oblique incidence seems
the cause.

s-pol. and p-pol. can not resonate simultaneously
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Degradation of sensitivity

Simultaneous resonance Target sensitivity of DANCE Act-1
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Auxiliary cavity for simultaneous resonance

- Auxiliary cavity can control the phase difference between

s- and p-pol. [2, 3] ‘

Resonant frequency difference can be cancelled out

* Realized auxiliary cavity with PBS method for my master thesis
* Finesse : 7, = 1204 + 12, ?p =91 +2

-’

4
AN A
€ s-pol. (carrier)

.

~--/  p-pol. generated by axion
P SN (side-band]

[2] D. Martynov and H. Miao: Phys. Rev. D 101, 095034 (2020)  [3] H. Fujimoto et al.: arXiv:2110.12023 16



Simultaneous resonance of s- and p-pol.
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*Measured the rotational angle of the transmitted light
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Estimated sensitivity
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Future plans / Research topics
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Future plans / Research topics

O Improvement of shot noise limit
» Replacement of PBS for higher finesse
»High power laser



(D Improvement of shot noise limit

axion-photon coupling |gay| (GeV™1)

Current shot noise is ~3 orders of magnitude larger than target sensitivity
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(D Improvement of shot noise limit

:Fs TP Pin
Target value 3000 3000 1w
Design value 2985 + 6 551 + 137 214+ 0.9 mW
Measured value 1204 + 12 91 + 2 214+ 0.9 mW
|\ v J t
S » Input power was limited
Loss at auxiliary cavity degraded reflectivity of aux. for ease
cavity: Rauxs = 99.7 £ 0.1%, Rauxp=93.5+0.2%  (degrade sensitivity by
(degrade sensitivity by ~2 orders of magnitude) ~1 order of magnitude)

“Incorrect incident angle for PBS
"No AR coating on PBS

Future improvements

»Input high power (2 W) y
>Replace PBS (for 42° incidence with AR coating) ™
= F; : 1204 = ~3000?, F, : 91 = ~6007? =

24



Future plans / Research topics

2 Reduction of noise
»Removal of p-pol. from input laser
»Removal of parasitic resonance of actuator



(2) Reduction of noise

Current noise sources:
* p-pol. mixed in with the s-pol. input
* Vibration noise of cavities
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(2) Reduction of noise

Mixed p-pol. interferes with local oscillator at detection port
Ps(t) = P, s(1)
Py(t) = Pp o(t)(405wp + 40mwpRe [0¢(t)]))+40wpRe[Ef Ey ]

=Vibration of cavities couple to the mixed p-pol.

Vpps(t)

§)

\NL-s

€< s-pol. (carrier)

<-::--- p-pol. sidebands generated
by axion
p-pol. generated from s-pol.

by HWP (local oscillator)

<€ Mixed p-pol. 27



(2) Reduction of noise

Coherence between

and polarization rotation
s-pol.

voltage spectrum [V/Hz]
[P
z]

voltage spectrum [V/VH:
"

“'Coherence
> Coherence oe

"« Removal of mixed p-pol.

Future

» Install high extinction ratio polarizer before the cavity
» Align polarization plane of input s-pol. to that of

improvements < cavity’s eigenmode

»Need to deal with birefringence? or back scattering?

* Reduction of vibration noise

» Develop unified spacer including main and aux. cavity
. »Suppress vibration noise with feedback control

28



(2 Reduction of noise —parasitic resonance-

- Bandwidth of feedback control for p-pol. is narrow (UGF = 30 Hz)
= can not suppress vibration noise of aux. cavity

* Parasitic resonance of the actuator is limiting the bandwidth
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(2 Reduction of noise —parasitic resonance-

* Piezo-actuated mirror can cause parasitic resonance

103

Mirror £ | Phase delay
& —100f s
R - Mirror %‘450} “ | =limits UGF
Piezo-actuated mirror for Holder _
= Ol. Of DANCE ACt'l 40 0 frequesr?gy (Hz) 520 540
P-p

(cited from Takano-san’s awesome note on parasitic resonance:
https://granite.phys.s.u-tokyo.ac.jp/takano/documents/ParasticResonance.pdf )

* 4 plans to remove parasitic resonance:

»Plan A: Piezo-actuated mirror attached on heavy rigid mass
»Plan B: Piezo-actuated mirror mounted in soft materials
»Plan C: Inverse transfer function implemented by digital filter

»Plan D: Robust control (Modern control)
30


https://granite.phys.s.u-tokyo.ac.jp/takano/documents/ParasticResonance.pdf

(2 Reduction of noise —parasitic resonance-

»Plan A: Piezo-actuated mirror attached on heavy rigid mass

108
- Larger reduced mass (& & =) of the holder ‘°2J S
. [0 101 ....... A
= Smaller peak, dip and phase delay N LY\ |
: g _——
Use heavy rigid mass as a holder I e T
0 Hf
" h“
E; 2
Y s | Largerreduced
é—wo .:. | mass
lﬁnf?lfjrigironal 460 480 frequ(?r?(?y(Hz) 520 540
n :i-.'"
* We can’t align piezo-mirror on a mass % .
= Need an additional mirror Wah N ENE s _ _ _
for alignment ;1 & New configuration with

an additional mirror
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(2 Reduction of noise —parasitic resonance-

> Plan B: Piezo-actuated mirror mounted in soft materials

* D. Goldovsky, V. Jouravsky, and A. Pe’er, Opt. Express 24, 28239-28246 (2016)

» Soft materials (rubber or soft silicone gel pads) can isolate mechanical
resonance

» Able to use knobs of the mount for alighment
» Locked a cavity with UGF = 200 kHz

soft back padding

piezo
\ — Frequency and Time Response
o 30 T T
\__\ 2 2 (a)
[
®  10F ! 1
O 208.8 KHz
soft front v 0 *
positioning ring 5 -10{[— Pi30KHz T~ /
& —20 I L
:c 30 10! 102
o T — —
S - mA R ()]
‘® 10} ! I .
(U]
v 0 ——tg. /\/‘
% -10{[ — PI300KHz 106.4 KHZ ~~_—~"
Q
: x —20 . .
mount pressure mirror 10! 102

mount pressure

| Research topics |

* Understand this mechanism with a theoretical model
32


https://opg.optica.org/oe/fulltext.cfm?uri=oe-24-25-28239

(2 Reduction of noise —parasitic resonance-

»Plan C: Inverse transfer function implemented by digital filter

« M. Okada et al., Review of Scientific Instruments 91, 055102 (2020)

» Implement the inverse transfer function of parasitic resonance

with IIR filter System gain(dB)
20 A
»FPGA is used
ku: °]
(Moku:Lab or SEAGULL AFi
. L= uncompensated system \\ /'I ¥
are also available for us) =201} 2 inversafiter S
—— cencelled system
—40 I I I I T . : -
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& = 5 IMH, C(s): 0 A LAnS A
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: PDHOP PZT'& ' —=—- uncompensated system 4 ,' "
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d -3001+ —— cencelled system S

0 20 40 60 80 100 120 140 160 180
Frequency(kHz)

* This is a feedforward method
= unable to deal with temperature dependency of parasitic resonance


https://aip.scitation.org/doi/10.1063/1.5143477

(2 Reduction of noise —parasitic resonance-

»Plan D: Robust control (Modern control)

* Parasitic resonance appear in engineering field (e.g. robotics)
* known as “resonance of 2-inertia system (2[&1£3&)”
* Application of robust control has been researched

*

able to deal with the change of the characteristics of the control target
(e.g. temperature dependency) e e e o i

20

10

o

—10

Magnitude]dB]

—20

» K. Salkata, K. Saiki, and H. Fujimoto, Proc. IEE of Japan of
Technical Meeting Record, IIC-11- 065, 83—88, (2010) il

(a) Nominal

Frequency response of closed loop (S[z], TIzD

Carriage Table =

Magniude]dB]

e B

Linear motor

)

MegniudeldB]

eeeeeeeeeeeee

Air guide (¢) In =50J
Fig. 7 Frequency responses of closed loop (Model).

Fig. 1 Structure of XY gantry stage.
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http://hflab.k.u-tokyo.ac.jp/papers/2011/sakataIIC11.pdf

Future plans / Research topics

O Improvement of shot noise limit
» Replacement of PBS for higher finesse
»High power laser

2) Reduction of noise
»Removal of p-pol. from input laser
»Removal of parasitic resonance of actuator

3 Automated cavity locking system
@ Investigation of the resonant frequency difference

® Simultaneous resonance with wavelength tunable
laser

35



voltage [V]
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(3 Automated cavity locking system

* SNR can be improved with observation time T,
=need to lock the cavity for a long time

* Cavity can be inevitably unlocked by sudden shock or vibration

Transmitted light

shock or vibration
( (earthquake, human walking, etc. )

AL AL AL b e

Locked
to resonance

.
T PT Ry f

unlocked

™

1

1.01 1.02 1.03 1.04 1.05
time [hour]
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voltage [V]
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(3 Automated cavity locking system

* SNR can be improved with observation time T,
=need to lock the cavity for a long time

* Cavity can be inevitably unlocked by sudden shock or vibration

shock or vibration
( (earthquake, human walking, etc. )
A

Transmitted light

Ak it el L i s b i I b |
- Locked ) \

to resonance

Locked again
automatically

unlocked

™

98 0.99 1 1.01 1.02 1.03 1.04 1.05
time [hour]

\ 4
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(3 Automated cavity locking system

* Automated cavity locking for s-polarization has already developed
(H. Fujimoto et al., arXiv:2105.08347)

Transmitted light .

6 .
= 4l Locked \
v
=
& Laser 52t Locked again
[/& g Unlogked automaticall
To laser piezo A Tolaser 0 | ‘ y
‘ actuator temperature 20 30 40 50 60 70 80
Transmitted

Error Filter

Output of DSP
light X 0.2 : : : ;
signal
‘ Digital S 0.15

Signal

a Sweep laser temperature
Processor 8 0.1r \
Monitor transmitted light L) Sweep laser temperature S0.05+
until cavity is locked again 0 ' : : : :
20 30 40 50 60 70 80
time [s]

| Research topics |

« Automated cavity locking system for simultaneous resonance
of s- and p-pol.

38


https://arxiv.org/abs/2105.08347

Future plans / Research topics

@ Investigation of the resonant frequency difference



@ Investigation of the resonant frequency difference

* Resonant frequency difference can drift for some reason...

=
o

10

S-pol. P-pol. S | ~3 MHz
< 7.5] go-s
8 5 » g o]
= 3 P-POJ.
S 2s5] ’g“
502
0 | =
2 02 46 R SN A R
frequency [MHz] Frequency [MHz]
, Observed resonant frequency differences in DANCE
Research topics Act-1 @ B207 are listed here by Oshima-san

* Investigation of the cause of the drift:
» Property change of the mirror coating by high power?
» Temperature dependency?
»Tilt of the attached mirrors?

* Development of a new actuator of resonant frequency difference

=Able to realize simultaneous resonance with only one cavity
and reduce noise! 10


https://granite.phys.s.u-tokyo.ac.jp/elog/?p=6378

Future plans / Research topics

B Simultaneous resonance with wavelength tunable
laser



(5 Simultaneous resonance with wavelength tunable laser

- Reflective phase shift varies with wavelength

Reflectivity
of s-pol.

Reflectivity of p-pol.

|

Reflective phase
} difference occurs in
oblique incidence

Phase shift of p-pol.

Phase shift of s-pol.

Wavelength [nm]

Research topics

* Simultaneous resonance with wavelength tunable laser
» Investigation of the property of mirror coating and wavelength
tunable laser

=Able to realize simultaneous resonance with only one cavity
and reduce noise!
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Future plans / Research topics

(D Improvement of shot noise limit < Fujimoto
» Replacement of PBS for higher finesse
»High power laser

2 Reduction of noise
»Removal of p-pol. from input laser
»Removal of parasitic resonance of actuator < B4

3 Automated cavity locking system
@ Investigation of the resonant frequency difference

B Simultaneous resonance with wavelength tunable
laser

If you are interested in these topics, please let me know!
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Experiments for B4 students

* B4 students chose two topics:

»Removal of parasitic resonance of piezo-actuated mirror

» Automated alighment with Machine Learning (ML)

laser Mirror 2 BS Zﬂ camera
I State: IBS
C w
a
irror 1

BS 1 b Agent
(Interferobot)

m

T

D. Sorokin et al., arXiv:2006.02252
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https://arxiv.org/abs/2006.02252

Automated alighment with Machine Learning

* Application of ML to alignment of interferometer:

» Alignment of a Mach-Zehnder interferometer
(D. Sorokin et al., arXiv:2006.02252)
Ando Lab. Seminar

» Alignment of a ring cavity given by me
(Tahara-san’s master thesis @ Mio Lab.)

»Combination of ML and Wave Front Sensor
(Tachihara-san’s master thesis @ Somiya Lab.)

> etc.
mm Beam profiler 2
| Cavity
laser Mirror2  BS 2{\ camera g \ Transmitted

C I tate: PDyans ight o \ Alignment mirror 2

a . - Yaw : a,, Pitch :

Reflected eam profiler
BS 1 b mirror 1 Agent light™ I =

& & (Interferobot) Alignment mirror 1

Incident laser beam ,/Yaw - 2. Pitch :

(Cited from Tahara-san’s master thesis)
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https://arxiv.org/abs/2006.02252
https://granite.phys.s.u-tokyo.ac.jp/fujimoto/seminar/seminar20201002.pdf

Automated alighment with Machine Learning

* These auto alignments for interferometer might be difficult

for beginners...

»Need to capture image data from CCD camera or profiler to PC

» Convolutional Neural Network (CNN) is required

» Reinforcement learning is needed in some cases

mm Beam profiler 2
T Cavity

Transmitted
PDyans { ght oy \ Alignment mirror 2
Yaw : a,, Pitch : 2,

Beam profiler 1
r 4

/Alignment mirror 1
, Yaw : a,, Pitch : 2,

Reflected
light ™~

Incident laser beam

. 4
position2 pixel 1—>
pixel 2—

* ’ .
70%68 pixel 4760—

b SRS /
- OPrans
Classifier of 3
¥ I
|

Structure of each network
2856

position1 pixel 1— 250 250
o
o
@
g
@
I g

pixel 2—>
»
(Cited from Tahara-san’s master thesis)

56x51
1 pixel 2856—
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Automated alighment into optical fiber

* Automated alignment into fiber seems better for beginners

®R. S. Mathew et al., Review of Scientific Instruments 92,
015117 (2021)
»Use only laser power (1D data) -- > - n >.
> No need for CNN TR B T Rappeny Driver
»M-LOOP (ML Package for controlling | \ StcppﬂMGT
gy

real devices) is effective

» (This might be too easy...)

Mirror Mount
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https://aip.scitation.org/doi/10.1063/5.0032588

Automated alighment into optical fiber

* Automated alignment into fiber seems better for beginners

@®R. S. Mathew et al., Review of Scientific Instruments 92,

015117 (2021)
> Use only laser power (1D data) -~ - n >.
> No need for CNN - ACD'g”tnﬁ Rty Deiver

> M-LOOP (ML Package for controlling L/l;t | (ADC) N
real devices) is effective JN\ cmitr w

» (This might be too easy...)

¥

e o — e e— — e — o — — — —

Automated mode-matching machine

» Study above did not consider preision
mode-matching Mirtor Moun

\
- Pedestal Post

»|f completed, we’ll be free from the very stressful work!!
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https://aip.scitation.org/doi/10.1063/5.0032588

Automated mode-matching machine

* |dea: Use focus tunable lenses

> Tune two focus tunable lenses

» Optimize the beam waist and the
waist position

(https://www.optotune.com/focus-tunable-lenses)

Able to change the focal

Auto alignment
€ length by electric signal

Collimator Focal length:
—77 mm ~ 77 mm,

—667 mm ~ 286 mm, etc.

Optical
fiber

Laser

L
L

——————————————————
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https://www.optotune.com/focus-tunable-lenses

Summary
& Future plans for DANCE Act-1

Q) Improvement of shot noise limit
» Replacement of PBS for higher finesse
»High power laser

2) Reduction of noise
»Removal of p-pol. from input laser
»Removal of parasitic resonance of actuator

3 Automated cavity locking system
@ Investigation of the resonant frequency difference

® Simultaneous resonance with wavelength tunable
laser

& Automated alignment and mode-matching with
Machine Learning



