Future plans for DANCE Act-1 / Automated alignment and mode-matching with machine learning

Hiroki Fujimoto

D1, Department of Physics, Ando Lab.

April 26, 2022, Ando Lab. Mid-term report meeting

Contents

- ◆ Future plans for DANCE Act-1
- Dark matter search and DANCE
- Principle and target sensitivity of DANCE
- Current status of DANCE Act-1
- Future plans / Research topics
 - 1) Improvement of shot noise limit
 - 2 Reduction of noise
 - ③ Automated cavity locking system
 - (4) Investigation of the resonant frequency difference
 - 5 Simultaneous resonance with wavelength tunable laser

Automated alignment and mode-matching with machine learning

Contents

◆ Future plans for DANCE Act-1

- Dark matter search and DANCE
- Principle and target sensitivity of DANCE
- Current status of DANCE Act-1
- Future plans / Research topics
 - 1 Improvement of shot noise limit
 - 2 Reduction of noise
 - 3 Automated cavity locking system
 - 4 Investigation of the resonant frequency difference
 - 5 Simultaneous resonance with wavelength tunable laser

Automated alignment and mode-matching with machine learning

Dark matter search and DANCE

- More than 80% of the universe's matter is unknown ⇒Dark matter
- Dark matter search experiment by interferometer
- DANCE searches for axion-like particle (ALP) dark matter

Axion-like particles (ALPs)

- Undiscovered particles predicted from string theory (originally predicted from QCD as QCD axion)
- One of the dark matter candidates
- Slightly interact with photon

DANCE aims to detect this interaction with laser

Previous researches

Contents

◆Future plans for DANCE Act-1

- Dark matter search and DANCE
- Principle and target sensitivity of DANCE
- Current status of DANCE Act-1
- Future plans / Research topics
 - 1 Improvement of shot noise limit
 - 2 Reduction of noise
 - 3 Automated cavity locking system
 - 4 Investigation of the resonant frequency difference
 - 5 Simultaneous resonance with wavelength tunable laser

Automated alignment and mode-matching with machine learning

Axion-photon interaction

Axion-photon interaction causes phase velocity difference

Principle of DANCE

• Rotational amplitude becomes large as light path increases

• Optical cavity can enhance the light path

Principle of DANCE

• Linear cavity

Plane of polarization flips by reflection \Rightarrow cancels rotation

• Bow-tie ring cavity [1]

Two reflections prevent polarization flip \Rightarrow enhances rotational angle

[1] I. Obata, T. Fujita, and Y. Michimura: Phys. Rev. Lett. 121, 161301 (2018).

Target sensitivity of DANCE

Contents

◆ Future plans for DANCE Act-1

- Dark matter search and DANCE
- Principle and target sensitivity of DANCE
- Current status of DANCE Act-1
- Future plans / Research topics
 - 1 Improvement of shot noise limit
 - 2 Reduction of noise
 - 3 Automated cavity locking system
 - (4) Investigation of the resonant frequency difference
 - 5 Simultaneous resonance with wavelength tunable laser

Automated alignment and mode-matching with machine learning

DANCE Act-1

- Prototype experiment for
 ➤ identifying technical issues ⇒ resonant frequency difference
 ➤ proof of principle
- Feasible parameters (Round-trip length = 1 m, Designed finesse = 3000, Input laser power = 1 W)
- DANCE Act-1 with auxiliary cavity \Rightarrow my master thesis

DANCE Act-1 @ B207

DANCE Act-1 with aux. cavity @ B111

Issue – Resonant frequency difference–

• There is resonant frequency difference between s-pol. and p-pol. (3 MHz in DANCE Act-1)

Reflective phase difference in oblique incidence seems the cause.

s-pol. and p-pol. can not resonate simultaneously

Degradation of sensitivity

Auxiliary cavity for simultaneous resonance

• Auxiliary cavity can control the phase difference between s- and p-pol. [2, 3]

Resonant frequency difference can be cancelled out

- Realized auxiliary cavity with PBS method for my master thesis
- Finesse : $\mathcal{F}_{s} = 1204 \pm 12$, $\mathcal{F}_{p} = 91 \pm 2$

Simultaneous resonance of s- and p-pol.

Transmitted light of main laser (s-pol.)

Transmitted light of auxiliary laser (p-pol.)

Power spectrum of polarization rotation

Measured the rotational angle of the transmitted light

• Current noise is larger than shot noise by $1 \sim 3$ orders of magnitude

Estimated sensitivity

- Axion dark matter with $m_a=10^{-14}{\sim}10^{-10}$ eV, $~g_{a\gamma}>{\sim}~10^{-5}~{\rm GeV^{-1}}$ can be detectable
- \sim 5 orders of magnitude larger than CAST limit

Contents

◆ Future plans for DANCE Act-1

- Dark matter search and DANCE
- Principle and target sensitivity of DANCE
- Current status of DANCE Act-1
- Future plans / Research topics
 - 1) Improvement of shot noise limit
 - 2 Reduction of noise
 - ③ Automated cavity locking system
 - (4) Investigation of the resonant frequency difference
 - **(5)** Simultaneous resonance with wavelength tunable laser

Automated alignment and mode-matching with machine learning

Future plans / Research topics

- Improvement of shot noise limit
 ▶ Replacement of PBS for higher finesse
 ▶ High power laser
- 2 Reduction of noise
 - ≻ Removal of p-pol. from input laser
 - Removal of parasitic resonance of actuator
- ③ Automated cavity locking system
- ④ Investigation of the resonant frequency difference
- (5) Simultaneous resonance with wavelength tunable laser

Future plans / Research topics

- Improvement of shot noise limit
 ▶ Replacement of PBS for higher finesse
 ▶ High power laser
- 2 Reduction of noise
 - ≻Removal of p-pol. from input laser
 - Removal of parasitic resonance of actuator
- 3 Automated cavity locking system
- 4 Investigation of the resonant frequency difference
- 5 Simultaneous resonance with wavelength tunable laser

1 Improvement of shot noise limit

Current shot noise is ~ 3 orders of magnitude larger than target sensitivity

1 Improvement of shot noise limit

\mathcal{F}_{s}	${\mathcal F}_P$	P _{in}
3000	3000	1 W
2985 ± 6	551 <u>+</u> 137	$21.4 \pm 0.9 \text{ mW}$
1204 ± 12	91 ± 2	$21.4 \pm 0.9 \text{ mW}$
	\mathcal{F}_{s} 3000 2985 ± 6 1204 ± 12	\mathcal{F}_s \mathcal{F}_P 3000 3000 2985 ± 6 551 ± 137 1204 ± 12 91 ± 2

Loss at auxiliary cavity degraded reflectivity of aux. cavity: $R_{aux,s} = 99.7 \pm 0.1\%$, $R_{aux,p} = 93.5 \pm 0.2\%$ (degrade sensitivity by ~2 orders of magnitude)

Incorrect incident angle for PBS

• No AR coating on PBS

Future improvements

➢ Input high power (2 W)
➢ Replace PBS (for 42° incidence with AR coating)
⇒ \mathcal{F}_s : 1204 ⇒ ~3000?, \mathcal{F}_p : 91 ⇒ ~600?

PBS Laser

Input power was limited

(degrade sensitivity by

 ~ 1 order of magnitude)

for ease

Future plans / Research topics

Improvement of shot noise limit
 ▶ Replacement of PBS for higher finesse
 ▶ High power laser

- ② Reduction of noise
 - ≻ Removal of p-pol. from input laser
 - Removal of parasitic resonance of actuator
- 3 Automated cavity locking system
- 4 Investigation of the resonant frequency difference
- 5 Simultaneous resonance with wavelength tunable laser

2 Reduction of noise

2 Reduction of noise

Mixed p-pol. interferes with local oscillator at detection port

 $P_{s}(t) = P_{t,s}(t)$ $P_{p}(t) = P_{t,s}(t)(4\theta_{\text{HWP}}^{2} + 4\theta_{\text{HWP}}\text{Re}[\delta\phi(t)]) + 4\theta_{\text{HWP}}\text{Re}[E_{t,s}^{*}E_{t,p}]$

 \Rightarrow Vibration of cavities couple to the mixed p-pol.

2 Reduction of noise

Coherence between error signal and polarization rotation

- Removal of mixed p-pol.
 - >Install high extinction ratio polarizer before the cavity
 - Align polarization plane of input s-pol. to that of cavity's eigenmode
 - ➤Need to deal with birefringence? or back scattering?
- Reduction of vibration noise
 Develop unified spacer including main and aux. cavity
 Suppress vibration noise with feedback control

Future improvements

2 Reduction of noise –parasitic resonance–

- Bandwidth of feedback control for p-pol. is narrow (UGF $\simeq 30$ Hz) \Rightarrow can not suppress vibration noise of aux. cavity
- Parasitic resonance of the actuator is limiting the bandwidth

2 Reduction of noise -parasitic resonance-

Piezo-actuated mirror can cause parasitic resonance

• 4 plans to remove parasitic resonance:

Plan A: Piezo-actuated mirror attached on heavy rigid mass

- Plan B: Piezo-actuated mirror mounted in soft materials
- ➢Plan C: Inverse transfer function implemented by digital filter
- Plan D: Robust control (Modern control)

2 Reduction of noise –parasitic resonance–

 $l_{1}/2$

Plan A: Piezo-actuated mirror attached on heavy rigid mass

Use heavy rigid mass as a holder

(Used in Ohmae-san's doctoral thesis)

We can't align piezo-mirror on a mass
 ⇒ Need an additional mirror

for alignment

2 Reduction of noise –parasitic resonance–

Plan B: Piezo-actuated mirror mounted in soft materials

- D. Goldovsky, V. Jouravsky, and A. Pe'er, Opt. Express 24, 28239-28246 (2016)
 - Soft materials (rubber or soft silicone gel pads) can isolate mechanical resonance
 - ≻Able to use knobs of the mount for alignment
 - \blacktriangleright Locked a cavity with UGF \simeq 200 kHz

Research topics

Understand this mechanism with a theoretical model

2 Reduction of noise -parasitic resonance-

➢Plan C: Inverse transfer function implemented by digital filter

- M. Okada et al., Review of Scientific Instruments 91, 055102 (2020)
 - Implement the inverse transfer function of parasitic resonance with IIR filter
 - FPGA is used (Moku:Lab or SEAGULL are also available for us)

- This is a feedforward method
- ⇒ unable to deal with temperature dependency of parasitic resonance

2 Reduction of noise -parasitic resonance-

Plan D: Robust control (Modern control)

- Parasitic resonance appear in engineering field (e.g. robotics)
- known as "resonance of 2-inertia system (2慣性系)"
- Application of robust control has been researched

able to deal with the change of the characteristics of the control target (e.g. temperature dependency)

• <u>K. Salkata, K. Saiki, and H. Fujimoto, Proc. IEE of Japan</u> <u>Technical Meeting Record, IIC-11- 065, 83–88, (2010)</u>

Fig. 1 Structure of XY gantry stage.

Air guide

Fig. 7 Frequency responses of closed loop (Model).

Future plans / Research topics

Improvement of shot noise limit
 ▶ Replacement of PBS for higher finesse
 ▶ High power laser

- 2 Reduction of noise
 - ≻Removal of p-pol. from input laser
 - Removal of parasitic resonance of actuator
- ③ Automated cavity locking system
- (4) Investigation of the resonant frequency difference
- 5 Simultaneous resonance with wavelength tunable laser

③ Automated cavity locking system

- SNR can be improved with observation time T_{obs} \Rightarrow need to lock the cavity for a long time
- Cavity can be inevitably unlocked by sudden shock or vibration

shock or vibration

(earthquake, human walking, etc.)

③ Automated cavity locking system

- SNR can be improved with observation time T_{obs} \Rightarrow need to lock the cavity for a long time
- Cavity can be inevitably unlocked by sudden shock or vibration

Cavity can be relocked automatically during long-term observation.

③ Automated cavity locking system

 Automated cavity locking for s-polarization has already developed (H. Fujimoto et al., <u>arXiv:2105.08347</u>)

 Automated cavity locking system for simultaneous resonance of s- and p-pol.

Future plans / Research topics

Improvement of shot noise limit
 ▶ Replacement of PBS for higher finesse
 ▶ High power laser

- 2 Reduction of noise
 - ≻Removal of p-pol. from input laser
 - Removal of parasitic resonance of actuator
- 3 Automated cavity locking system

④ Investigation of the resonant frequency difference

5 Simultaneous resonance with wavelength tunable laser

④ Investigation of the resonant frequency difference

• Resonant frequency difference can drift for some reason...

Research topics

Observed resonant frequency differences in DANCE Act-1 @ B207 are listed <u>here</u> by Oshima-san

- Investigation of the cause of the drift:
 - Property change of the mirror coating by high power?
 - ➤Temperature dependency?
 - ➤Tilt of the attached mirrors?
- Development of a new actuator of resonant frequency difference
 - ⇒Able to realize simultaneous resonance with only one cavity and reduce noise!

Future plans / Research topics

Improvement of shot noise limit
 ▶ Replacement of PBS for higher finesse
 ▶ High power laser

- 2 Reduction of noise
 - ≻Removal of p-pol. from input laser
 - Removal of parasitic resonance of actuator
- 3 Automated cavity locking system
- (4) Investigation of the resonant frequency difference
- (5) Simultaneous resonance with wavelength tunable laser

(5) Simultaneous resonance with wavelength tunable laser

• Reflective phase shift varies with wavelength

Reflective phase difference occurs in oblique incidence

- Research topics
 - Simultaneous resonance with wavelength tunable laser
 - Investigation of the property of mirror coating and wavelength tunable laser

⇒Able to realize simultaneous resonance with only one cavity and reduce noise!

Future plans / Research topics

1 Improvement of shot noise limit •----- Fujimoto

- Replacement of PBS for higher finesse
- ➤High power laser
- 2 Reduction of noise
 - ≻ Removal of p-pol. from input laser
 - ➢Removal of parasitic resonance of actuator ▲ B4
- ③ Automated cavity locking system
- ④ Investigation of the resonant frequency difference
- (5) Simultaneous resonance with wavelength tunable laser

If you are interested in these topics, please let me know!

Contents

- Future plans for DANCE Act-1
- Dark matter search and DANCE
- Principle and target sensitivity of DANCE
- Current status of DANCE Act-1
- Future plans / Research topics
 - 1 Improvement of shot noise limit
 - 2 Reduction of noise
 - 3 Automated cavity locking system
 - 4 Investigation of the resonant frequency difference
 - 5 Simultaneous resonance with wavelength tunable laser

 Automated alignment and mode-matching with Machine Learning

Experiments for B4 students

- B4 students chose two topics:
- Removal of parasitic resonance of piezo-actuated mirror
- Automated alignment with Machine Learning (ML)

D. Sorokin et al., arXiv:2006.02252

Automated alignment with Machine Learning

- Application of ML to alignment of interferometer:
 - Alignment of a Mach-Zehnder interferometer (<u>D. Sorokin et al., arXiv:2006.02252</u>)
 - Alignment of a ring cavity
 (Tahara-san's master thesis @ Mio Lab.)

Combination of ML and Wave Front Sensor (Tachihara-san's master thesis @ Somiya Lab.)

Automated alignment with Machine Learning

- These auto alignments for interferometer might be difficult for beginners...
 - Need to capture image data from CCD camera or profiler to PC
 Convolutional Neural Network (CNN) is required
 Reinforcement learning is needed in some cases

(Cited from Tahara-san's master thesis)

Automated alignment into optical fiber

- Automated alignment into fiber seems better for beginners
 - R. S. Mathew et al., Review of Scientific Instruments 92, 015117 (2021)
 - ► Use only laser power (1D data)
 - No need for CNN
 - M-LOOP (ML Package for controlling real devices) is effective

➤(This might be too easy...)

Automated alignment into optical fiber

- Automated alignment into fiber seems better for beginners
 - R. S. Mathew et al., Review of Scientific Instruments 92, 015117 (2021)
 - ➤Use only laser power (1D data)
 - ≻No need for CNN
 - M-LOOP (ML Package for controlling real devices) is effective
 - ➤(This might be too easy...)

Automated mode-matching machine

Study above did not consider mode-matching

If completed, we'll be free from the very stressful work!!

Automated mode-matching machine

PC

DAC

Tune focal length

Summary

Future plans for DANCE Act-1

- Improvement of shot noise limit
 ➢ Replacement of PBS for higher finesse
 ➢ High power laser
- ② Reduction of noise
 ➢ Removal of p-pol. from input laser
 ➢ Removal of parasitic resonance of actuator
- 3 Automated cavity locking system
- igae Investigation of the resonant frequency difference
- 5 Simultaneous resonance with wavelength tunable laser

 Automated alignment and mode-matching with Machine Learning