Review of the PVLAS experiment

D2 Hiroki Fujimoto 2024/2/16 @Ando Lab Seminar

1

PVLAS experiment

- Searches for the vacuum magnetic birefringence (VMB) using a linear cavity and rotating magnets
- Analyzes the ellipticity of the transmitted polarization

A factor of 7 worse than the QED prediction: $\Delta n^{(EK)} = 2.5 \times 10^{-23} @ 2.5 T$ Limiting noise source: thermal birefringence noise of mirror coatings(?)

Reference

Review article on the PVLAS experiment

A. Ejilli et al. Physics Reports 871, 1-74 (2020)

Physics Reports 871 (2020) 1-74

The PVLAS experiment: A 25 year effort to measure vacuum magnetic birefringence

A. Ejlli^a, F. Della Valle^{b,c}, U. Gastaldi^d, G. Messineo^e, R. Pengo^f, G. Ruoso^f, G. Zavattini^{d,g,*}

- ^a School of Physics and Astronomy, Cardiff University, Queen's Building, The Parade, Cardiff CF24 3AA, United Kingdom
- ^b Dip. di Scienze Fisiche della Terra e dell'Ambiente, via Roma 56, I-53100 Siena, Italy
- ^c INFN Sez. di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- ^d INFN Sez. di Ferrara, Via G. Saragat 1, I-44100 Ferrara, Italy
- ^e Department of Physics, University of Florida, Gainesville, FL 32611, USA
- ^f INFN Laboratori Nazionali di Legnaro, Viale dell'Università 2, I-35020 Legnaro, Italy
- ^g Dip. di Fisica e Scienze della Terra, Via G. Saragat 1, I-44100 Ferrara, Italy

- Vacuum Magnetic Birefringence and Axion
- Principle of PVLAS experiment
- PVLAS-FE: experimental setup
- PVLAS-FE: commissioning
 - Resonant frequency difference in linear cavity
 - ➤Spurious peak by scattered light
 - >Unidentified wide band noise
- PVLAS-FE: results
- Summary

- Vacuum Magnetic Birefringence and Axion
- Principle of PVLAS experiment
- PVLAS-FE: experimental setup
- PVLAS-FE: commissioning
 - Resonant frequency difference in linear cavity
 - Spurious peak by scattered light
 - >Unidentified wide band noise
- PVLAS-FE: results
- •Summary

Lagrangian density in QED

• Lagrangian density for electromagnetic fields in classical vacuum:

$$\mathcal{L}_{Cl} = \frac{1}{2\mu_0} \left(\frac{E^2}{c^2} - B^2 \right) \quad \Longrightarrow \quad \text{Maxwell eqs. in} \quad \begin{cases} \vec{\nabla} \cdot \vec{E} = 0 & \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \cdot \vec{B} = 0 & \vec{\nabla} \times \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \end{cases}$$

 \blacktriangleright No polarization nor magnetization: $\vec{D} = \varepsilon_0 \vec{E}$, $\vec{B} = \mu_0 \vec{H}$

- In QED, vacuum has virtual electron-positron pairs
- Lagrangian density with electron-positron fluctuations:

$$\mathcal{L}_{EK} = \mathcal{L}_{CI} + \frac{A_e}{\mu_0} \left[\left(\frac{E^2}{c^2} - B^2 \right)^2 + 7 \left(\frac{\vec{E}}{c} \cdot \vec{B} \right)^2 \right] \qquad A_e = \frac{2}{45\mu_0} \frac{\hbar^3}{m_e^4 c^5} \alpha^2 = 1.32 \times 10^{-24} \, \mathrm{T}^{-2}$$

$$\begin{cases} \vec{D} = \varepsilon_0 \vec{E} + 4A_e \left(\frac{E^2}{c^2} - B^2 \right) \varepsilon_0 \vec{E} + 14\varepsilon_0 A_e \left(\vec{E} \cdot \vec{B} \right) \vec{B} \\ \text{Polarization: } \vec{P} \\ \mu_0 \vec{H} = \vec{B} + 4A_e \left(\frac{E^2}{c^2} - B^2 \right) \vec{B} - 14A_e \left(\frac{\vec{E}}{c} \cdot \vec{B} \right) \frac{\vec{E}}{c} \end{cases} \qquad \text{Vacuum in QED can be "polarized" or "magnetized"}$$

Magnetization: $-\mu_0 M$

Vacuum Magnetic Birefringence (VMB)

• Consider an external magnetic field \vec{B}_{ext} perpendicular to a linear polarized beam \vec{k} Bext

$$= \begin{cases} \vec{D}_{\gamma} = \varepsilon_0 \left[\vec{E}_{\gamma} - 4A_e B_{\text{ext}}^2 \vec{E}_{\gamma} + 14A_e \left(\vec{E}_{\gamma} \cdot \vec{B}_{\text{ext}} \right) \vec{B}_{\text{ext}} \right] & \vec{E}_{\parallel} \\ \vec{H}_{\gamma} = \frac{1}{\mu_0} \left[\vec{B}_{\gamma} - 4A_e B_{\text{ext}}^2 \vec{B}_{\gamma} - 8A_e \left(\vec{B}_{\gamma} \cdot \vec{B}_{\text{ext}} \right) \vec{B}_{\text{ext}} \right] & \vec{E}_{\perp} \end{cases}$$

$$\mathbf{F}\vec{B} = \mu_0 \mu(\vec{E},\vec{B})\vec{H}, \ \vec{D} = \epsilon_0 \epsilon(\vec{E},\vec{B})\vec{E} \Rightarrow \text{refractive index:} \ n = \sqrt{\epsilon\mu}$$

permeability

Relative magnetic Relative dielectric constant

$$= \begin{cases} n_{||} = 1 + 7A_e B_{ext}^2 \\ n_{\perp} = 1 + 4A_e B_{ext}^2 & A_e = \frac{2}{45\mu_0} \frac{\hbar^3}{m_e^4 c^5} \alpha^2 = 1.32 \times 10^{-24} \, \mathrm{T}^{-2} \end{cases}$$

Vacuum Magnetic Birefringence (VMB): $\Delta n^{(EK)} = 3A_e B_{ext}^2$

$$= 3.96 \times 10^{-24} @ B_{ext} = 1 \text{ T}$$

Axion-photon interaction in external field

Axion-photon interaction: Chern-Simons interaction term

$$\mathcal{L} \supset \frac{1}{4} g_{a\gamma} a(t) F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma} a(t) \underline{\vec{E} \cdot \vec{B}}$$

Electric field parallel to external magnetic field \vec{B}_{ext} can interact with axion

⇒ Difference in the complex refractive indices $\tilde{n}_{||/\perp} = n_{||/\perp} + i\kappa_{||/\perp}$ for the two polarizations in \vec{B}_{ext} Refractive index Absorption index

 $\gg \hbar \omega \gg m_a c^2 \Rightarrow \text{Real production of axion} \\ \text{causes photon absorption} \\ \Rightarrow \text{Dichroism } \Delta \kappa$

Axion-photon interaction in external field

• Birefringence and dichroism by axion in external field \vec{B}_{ext} :

$$\begin{cases} |\Delta n| \simeq \frac{1}{2} \left(\frac{g_{a\gamma} B_{ext}}{2m_a}\right)^2 \left(1 - \frac{\sin 2\chi}{2\chi}\right)^2 & \chi \equiv \frac{L_B m_a^2}{4\omega} \\ |\Delta \kappa| \simeq \frac{2}{\omega L_B} \left(\frac{g_{a\gamma} B_{ext} L_B}{4}\right)^2 \left(\frac{\sin \chi}{\chi}\right)^2 & L_B: \text{ optical path inside } \vec{B}_{ext} \end{cases}$$

Photon energy: small ($\chi \gg 1$) ⇒ Δn : large, $\Delta \kappa$: small
Photon energy: large ($\chi \ll 1$) ⇒ Δn : small, $\Delta \kappa$: large

Important notes

Axion needs not to be the dark matter Static signals for any axion mass m_a Signal $\propto g_{a\gamma}^2$

- Vacuum Magnetic Birefringence and Axion
- Principle of PVLAS experiment
- PVLAS-FE: experimental setup
- PVLAS-FE: commissioning
 - Resonant frequency difference in linear cavity
 - Spurious peak by scattered light
 - >Unidentified wide band noise
- PVLAS-FE: results
- •Summary

Effect of birefringence Δn and dichroism $\Delta \kappa$

• Consider pure birefringence Δn and input s-pol.:

$$\vec{E}_{in} = E_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \implies \vec{E}_{out} = E_0 \begin{bmatrix} 1 + i\frac{\pi}{\lambda}\Delta D\cos 2\theta \\ i\frac{\pi}{\lambda}\Delta D\sin 2\theta \end{bmatrix} \qquad \Delta D \equiv \int \Delta n(z)dz$$

p-pol. in phase quadrature \Rightarrow Elliptical polarization

Ellipticity:
$$\psi = \frac{\pi}{\lambda} \Delta D \cos 2\theta$$

Effect of birefringence Δn and dichroism $\Delta \kappa$

• Consider pure dichroism $\Delta \kappa$ and input s-pol.:

$$\vec{E}_{in} = E_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \implies \vec{E}_{out} = E_0 \begin{bmatrix} 1 - \frac{\pi}{\lambda} \Delta A \cos 2\theta \\ -\frac{\pi}{\lambda} \Delta A \sin 2\theta \end{bmatrix} \qquad \Delta A \equiv \int \Delta \kappa(z) dz$$

p-pol. in amplitude quadrature \Rightarrow Rotated linear polarization

Rotation:
$$\phi = -\frac{\pi}{\lambda} \Delta A \cos 2\theta$$

Effect of birefringence Δn and dichroism $\Delta \kappa$

• Important notes on birefringence Δn and dichroism $\Delta \kappa$:

 \succ Birefringence $\Delta n \Rightarrow$ Ellipticity ψ

 \succ Dichroism $\Delta \kappa \Rightarrow$ Rotation ϕ

 \blacktriangleright VMB signal $\Delta n^{(EK)}$ appears as Ellipticity

Scheme of PVLAS experiment

- Important components:
 - ➢Rotating permanent magnet
 - ➤Linear cavity
 - Ellipticity modulator
 - >QWP for switching ellipticity/rotation measurements
 - ➢ PBS and PDs at detection port

Rotating permanent magnet

- Used to generate VMB signal ($\Delta n^{(EK)} = 3A_e B_{ext}^2$)
- Rotated to modulate VMB signal :

 \succ rotation at $\nu_B \Rightarrow$ VMB signal appears at $2\nu_B$

Linear cavity

- Ellipticity ψ and Rotation ϕ inside the cavity can be amplified when simultaneous resonance

$$\vec{E}_{out} = E_0 \frac{T}{1-R} \begin{bmatrix} 1+N(i\psi+\phi)\cos 2\theta \\ N(i\psi+\phi)\sin 2\theta \end{bmatrix}$$
$$N \equiv \frac{2\mathcal{F}}{\pi}$$
: Amplification factor by finesse

*Birefringence of the mirror coatings can cause the resonant frequency difference between s/p-pols.

Ellipticity modulator

• Transmitted light from the cavity:

$$\vec{E}_{out} = E_0 \frac{T}{1-R} \begin{bmatrix} 1 + N(i\psi + \phi)\cos 2\theta \\ N(i\psi + \phi)\sin 2\theta \end{bmatrix}$$

VMB signal

 \Rightarrow need local an oscillator to detect the VMB signal in p-pol (phase)

• Use ellipticity modulator:

$$MOD = \begin{bmatrix} 1 & i\eta_0 \sin 2\pi \nu_m t \\ i\eta_0 \sin 2\pi \nu_m t & 1 \end{bmatrix}$$

 \succ Able to periodically change the ellipticity at u_m

➤Using photo-elastic effect

$$\vec{E}_{out} = E_0 \frac{T}{1-R} \begin{bmatrix} 1+N(i\psi+\phi)\cos 2\theta\\ i\eta_0 \sin 2\pi\nu_m t + N(i\psi+\phi)\cos 2\theta \end{bmatrix}$$

LO in phase quadrature (heterodyne detection)

QWP for switching ellipticity/rotation measurements

 By inserting QWP before ellipticity modulator, we can switch the measurement modes

➤w/o QWP: Ellipticity measurement (without)

$$\vec{E}_{out} = E_0 \frac{T}{1-R} \left[\frac{1+N(i\psi+\phi)\cos 2\theta}{i\eta_0 \sin 2\pi\nu_m t + N(i\psi+\phi)\cos 2\theta} \right]$$

>w/ QWP: Rotation measurement (without)

$$\vec{E}_{out} = E_0 \frac{T}{1-R} \begin{bmatrix} 1+N(i\psi+\phi)\cos 2\theta \\ i\eta_0\sin 2\pi\nu_m t + N(-\psi+i\phi)\cos 2\theta \end{bmatrix}$$

PDs at detection port

- Transmitted light is split to s- and p- pols. by a PBS
- By demodulating the PD outputs with v_m , ellipticity signal can be obtained:
- VMB signal peak appears at $2\nu_B$

- Vacuum Magnetic Birefringence and Axion
- Principle of PVLAS experiment
- PVLAS-FE: experimental setup
- PVLAS-FE: commissioning
 - Resonant frequency difference in linear cavity
 - Spurious peak by scattered light
 - >Unidentified wide band noise
- PVLAS-FE: results
- Summary

PVLAS-FE

• PVLAS-FE: Final phase of the PVLAS experiment
 > Location: University of Ferrara, Italy

Optical system

Input optical system

≻Laser: Mephisto 2W (1064 nm)

≻Input power: 50 mW at the maximum

Cavity

≻Length: 3.3 m (FSR~ 45 MHz)

➢ Finesse: 777,000 ± 6000 (Linewidth~59 Hz)

Mirror: $T = 2.4 \pm 0.2$ ppm, $Loss = 1.7 \pm 0.2$ ppm

Mirror mount can move in pitch, yaw and roll (for the alignment of the birefringent axis)

Mount for cavity mirrors

Cavity locking and data acquisition

- PDH method was used for the cavity locking
 ▶718 kHz sidebands were generated using the PZT inside the laser
- Photo-elastic ellipticity modulator (PEM) for the local oscillator
 ➢ Modulation depth η₀: 3×10⁻³ − 1×10⁻²
 ➢ Modulation frequency ν_m: 50 kHz
- Outputs of the PD at the detection port were sent to the lock-in amplifier

Rotating permanent magnets

- Nd-Fe-B sintered magnet: 2.5 T
- Halbach configuration
 ⇒ able to cancel the stray magnetic field
- Length: $L_B = 0.82 \text{ m}$

- Rotation frequency: $v_B \sim 8$ Hz (depending on the run)
- Used two rotating magnets for the counter for each magnet)

Optical bench and vibration isolation

- Stray magnetic field can produce magnetic force to optical components through eddy current
 - \Rightarrow Used a granite optical bench
- Commercial active vibration isolation is used for the legs
 BiAir[®] membrane spring air legs
 - \blacktriangleright Maintained the position of the bench within 10 μ m

Granite bench

Vacuum tubes

- Gas in the magnetic field can exhibit birefringence: Cotton-Mouton effect (can be used for the calibration)
 - \Rightarrow Need vacuum to reduce the noise

>Achieved pressure: 2×10^{-6} Pa

- Two tubes inside the magnets
 - Made of non-magnetic materials (borosilicate glass, silicon nitride ceramics)
 - ➢Diameter: ~18 mm

- Vacuum Magnetic Birefringence and Axion
- Principle of PVLAS experiment
- PVLAS-FE: experimental setup
- PVLAS-FE: commissioning
 - Resonant frequency difference in linear cavity
 - Spurious peak by scattered light
 - >Unidentified wide band noise
- PVLAS-FE: results
- •Summary

Resonant frequency difference of linear cavity

• Birefringence of mirror coating causes resonant frequency difference even in a linear cavity

▷ Birefringence of M_1 and $M_2 \Rightarrow$ wave plates: WP_1 and WP_2

 \gg WP₁ and WP₂ \Rightarrow an effective WP: WP_{EQ}

- α_{EQ} causes resonant frequency difference
- θ_{EQ} defines the angle of the eigen linear polarizations in front of M1
- θ_{WP} determines the eigen polarization modes inside the cavity (Linear for $\theta_{WP} = 0, \pi/2, \pi, 3\pi/2$, Elliptic for other values)

Issues on resonant frequency difference

- Polarization inside cavity needs to be linear to interact with the VMB
- Resonant frequency difference degrades the signal amplification by the cavity like DANCE
 Carrier (s-pol.)

Align the slow axis of M1 to the **fast** axis of M2 to cancel out the phase difference α_{EQ} $\Leftrightarrow \theta_{WP} = \pi/2, 3\pi/2$

How can we align it?

- α_{EQ} causes resonant frequency difference
- θ_{EQ} defines the angle of the eigen linear polarization in front of M1
- θ_{WP} determines the eigen polarization modes inside the cavity (Linear for $\theta_{WP} = 0, \pi/2, \pi, 3\pi/2$, Elliptic for other values)

How to align birefringent axis

• Resonant frequency difference also causes the signal mixing of ellipticity ψ and rotation ϕ due to the detuned cavity:

Measured "Ellipticity":
$$i\Psi = i \frac{N}{1+N^2 \sin^2 \alpha_{EQ}/4} \begin{bmatrix} \sqrt{Actual ellipticity} \\ \sqrt{4} + \frac{N \frac{\alpha_{EQ}}{2} \phi}{2} \end{bmatrix}$$

Actual rotation Mixed rotation
Measured "Rotation": $\Phi = \frac{N}{1+N^2 \sin^2 \alpha_{EQ}/4} \begin{bmatrix} \phi - N \frac{\alpha_{EQ}}{2} \psi \end{bmatrix}$
Mixed ellipticity
We can use this mixing to measure α_{EQ}
1. Prepare intentional birefringence with gas
(Cotton-Mouton effect)
2. Measure its ellipticity and rotation
and take their ratio:

$$R_{\Phi',\Psi} = \Phi/\Psi = \frac{N}{2} \alpha_{EQ}$$

3. Measure α_{EQ} changing birefringent axis of one of the cavity mirrors

N T

Carrier

Blue: p-pol.

Red: s-pol.

How to align birefringent axis

- Results: α_{EQ} = 0.6 µrad 4.3 µrad
 ▶ DANCE: ~ 10 mrad / mirror (*mechanism is different)
- α_{EQ} was set to 0.6 µrad during the VMB measurement

- Vacuum Magnetic Birefringence and Axion
- Principle of PVLAS experiment
- PVLAS-FE: experimental setup
- PVLAS-FE: commissioning
 - Resonant frequency difference in linear cavity
 - Spurious peak by scattered light

>Unidentified wide band noise

• PVLAS-FE: results

• Summary

Baffles for prevention of scattered light

 Inserted baffles inside the vacuum tubes \Rightarrow Spyrious peaks disappeared greatly except for remaining peak Tube wi Tube without o-rings Tube with o-rings O-ring **Remaining peak** Integration time T = 5600 s, $v_B = 5 \text{ Hz}$ Integration time T = 6464 s, $v_B = 5$ Hz 10⁻⁶ 10^{-6} 10^{-7} Integration time T = 6464 s, $v_B = 5$ Hz 0⁻⁶ tegration time T = 5600 s, $v_{\rm B}$ = 5 H 10⁻⁸ ' Ellipticity Elliptucity 10⁻⁸ 10 10⁻¹⁰ 10^{-9`I}L 0 10⁻⁹ 5 10 Frequency [Hz] Frequency [Hz] 10⁻¹⁰ 10⁻¹⁰ 5 25 5 10 15 20 25 10 15 20 Frequency [Hz] Frequency [Hz]

Ellipticity

34

25

Remaining peak: Faraday rotation by mirror coating

- Remaining peak at 5 Hz does not affect the VMB signal at 10 Hz
- This peak was caused by the Faraday rotation on the mirror coating induced

Remaining peak

- Vacuum Magnetic Birefringence and Axion
- Principle of PVLAS experiment
- PVLAS-FE: experimental setup
- PVLAS-FE: commissioning
 - Resonant frequency difference in linear cavity
 - >Spurious peak by scattered light
 - >Unidentified wide band noise
- PVLAS-FE: results

•Summary

Design and final sensitivities

• Design and final sensitivities at 16 Hz:

- A factor of \sim 50 times worse than the design sensitivity
- Remaining wide band noise is not fully understood
 Possible cause: Birefringence noise of the mirror coatings induced by thermal fluctuations (Thermoelastic noise)

Thermoelastic noise

- Mechanism and calculation of the thermoelastic noise:
 - 1. Small volume elements of the mirror coatings have temperature fluctuations, and it causes stress fluctuations
 - 2. Stress fluctuations causes birefringence fluctuations through photo-elastic effect
 - 3. Average birefringence fluctuations over the whole volume defined by the beam diameter and the optical depth

$$S_{\Delta D} = 2d_e \sqrt{2}C_{SO}Y\alpha_{\rm T}S_T = d_e C_{SO}Y\alpha_{\rm T} \sqrt{\frac{8k_{\rm B}T^2}{\pi r_0^2 \sqrt{\pi \rho C_T \lambda_T \nu}}} \propto \nu^{-1/4}$$

Fused silica $S_{\Delta D}^{(FS)} \simeq 4 \times 10^{-21} \text{m}/\sqrt{\text{Hz}}$ Tantala $S_{\Delta D}^{(Ta)} \simeq (1-5) \times 10^{-19} \text{m}/\sqrt{\text{Hz}}$ Plausible compared with $S_{\Delta D}^{(\text{final})} \simeq 3.5 \times 10^{-19} \text{m}/\sqrt{\text{Hz}}$

- Vacuum Magnetic Birefringence and Axion
- Principle of PVLAS experiment
- PVLAS-FE: experimental setup
- PVLAS-FE: commissioning
 - Resonant frequency difference in linear cavity
 - Spurious peak by scattered light
 - >Unidentified wide band noise
- PVLAS-FE: results
- Summary

Limit on VMB

- PVLAS-FE conducted observation runs from 2014 to 2016
 ▶ Total observation time: T_{obs} ~ 5×10⁶ s ~ 2 months
- Set the best limit on VMB:

 $\begin{cases} \Delta n^{(\text{PVLAS-FE})} \simeq (12 \pm 17) \times 10^{-23} @ B = 2.5 \text{ T} \\ |\Delta \kappa|^{(\text{PVLAS-FE})} \simeq (10 \pm 28) \times 10^{-23} @ B = 2.5 \text{ T} \end{cases}$

* QED prediction: $\Delta n^{(EK)} = 2.5 \times 10^{-23} @ B = 2.5 T$

 \Rightarrow A factor of 7 worse than the QED prediction

- Although longer observation time can improve the SNR, 50 times longer integration (~8 years) is needed to reach SNR=1
- PVLAS-FE ended in 2017 due to the practical impossibility to decrease the wide band noise (thermoelastic noise?)

Limit on Axion Like Particles

• Axion Like Particles produce the birefringence and the dictive similar in the presence of external magnetic field:

$$\begin{cases} |\Delta n| \simeq \frac{1}{2} \left(\frac{g_{a\gamma}B_{ext}}{2m_a}\right)^{\frac{3}{2}} \left(1^{0^{-23}}_{10^{-24}} + \frac{\sin 2\chi}{2\chi}\right)^{\frac{2}{Predicted QED value}} \\ |\Delta \kappa| \simeq \frac{2}{\omega L_B} \left(\frac{g_{a\gamma}B_{ext}L_B}{4}\right)^{\frac{2}{2}} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2}} & \frac{2000}{Y_{ear}} + \frac{L_B m_a^2}{4\omega} \\ \frac{1}{2} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2}} & \frac{1}{2} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2}} & \frac{1}{2} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2}} \\ \frac{1}{2} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2}} & \frac{1}{2} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2}} & \frac{1}{2} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2}} & \frac{1}{2} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2}} \\ \frac{1}{2} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2}} & \frac{1}{2} \left(\frac{\sin \chi}{\chi}\right)^{\frac{2}{2$$

- PVLAS-FE VMB limits \Rightarrow Upper limit on axion-photon coupling constant: $g_{a\gamma}$
- Worse than CAST (~ 10^{-10} GeV⁻¹), but best model-independent limit

∆n > 0

OVAL

- Vacuum Magnetic Birefringence and Axion
- Principle of PVLAS experiment
- PVLAS-FE: experimental setup
- PVLAS-FE: commissioning
 - Resonant frequency difference in linear cavity
 - Spurious peak by scattered light
 - >Unidentified wide band noise
- PVLAS-FE: results
- •Summary

Summary

• PVLAS: experiment for the vacuum magnetic birefringence (VMB) using a linear cavity and rotating magnets

Limiting noise source: thermal birefringence noise of mirror coatings(?)

