Hilbert Transform and its Application to Laser Interferometry

D1 Hiroki Fujimoto 2022/11/11 @Ando Lab Seminar

1

Overview

Hilbert Transform

- An analytical method to obtain the amplitude A(t)and the phase $\theta(t)$ from a signal x(t)
- Usually used in offline analysis based on FFT
- Easy to implement (<u>scipy.signal.hilbert</u>)
- Application to laser interferometry
 - Analysis of the nonlinearity and the hysteresis of piezo actuators

Reference

• "Random Data: Analysis and Measurement Procedures, 4th Edition"

- Introduction of Hilbert Transform
- Application to simulated chirp signal
- Application to analysis of nonlinearity and hysteresis of piezo actuators
- Comparison with quadrature phase interferometer
- Introduction of papers
- Summary

- Introduction of Hilbert Transform
- Application to simulated chirp signal
- Application to analysis of nonlinearity and hysteresis of piezo actuators
- Comparison with quadrature phase interferometer
- Introduction of papers
- Summary

Motivation

• Consider a signal x(t) with time-varying amplitude A(t) and phase $\theta(t)$:

• We want to know A(t) and $\theta(t)$ from a given signal x(t):

A(t): instantaneous amplitude $x(t) = A(t) \cos \theta(t) \qquad \qquad \theta(t): \text{ instantaneous phase}$ $\frac{1}{2\pi} \frac{d\theta(t)}{dt}: \text{ instantaneous frequency}$

How can we obtain A(t) and $\theta(t)$ individually?

Analytic signal

• If we have the analytic signal z(t) of x(t), A(t) and $\theta(t)$ can be obtained:

original signal
(real function)

$$z(t) = x(t) + i\tilde{x}(t) = A(t)\cos\theta(t) + iA(t)\sin\theta(t)$$

Analytic signal of $x(t)$
(complex function)
 $Analytic signal of x(t)$
 $Analytic signal of x(t$

$$\Rightarrow \begin{cases} A(t) = \sqrt{x^2(t) + \tilde{x}^2(t)} \\ \theta(t) = \tan^{-1}\left(\frac{\tilde{x}(t)}{x(t)}\right) \end{cases}$$

At this moment, analytic signal z(t) has not been defined yet How should we define z(t)? (How can we obtain analytic signal z(t) from x(t)?)

Construction of z(t) from x(t)

• There are infinite ways to construct a complex function z(t)from x(t) satisfying $\operatorname{Re}[z(t)] = x(t)$:

Example) $x(t) = \cos \omega_0 t$ $\succ z(t) = e^{i\omega_0 t} \Rightarrow \begin{cases} A(t) = 1\\ \theta(t) = \omega_0 t \end{cases}$ $\succ z(t) = \cos \omega_0 t + iB \sin \omega_0 t \Rightarrow \begin{cases} A(t) = \sqrt{\cos^2 \omega_0 t + B^2 \sin^2 \omega_0 t}\\ \theta(t) = \tan^{-1}(B \tan \omega_0 t) \end{cases}$

Instantaneous amplitude A(t) and phase $\theta(t)$ can change with how to construct z(t)

What is the best definition of analytic signal z(t)?

Requirement for the definition of z(t)

• With the natural definition of the analytic signal z(t), we want

$$\begin{aligned} x(t) &= \cos \omega_0 t \ \mapsto \ z(t) = e^{i\omega_0 t} \\ &\Rightarrow \begin{cases} A(t) = 1 \\ \theta(t) = \omega_0 t \end{cases} \end{aligned}$$

The natural definition of analytic signal z(t) lies in Fourier transform

Definition of analytic signal z(t)

 $x(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} X(\omega) e^{i\omega t}$: Inverse Fourier transform

$$\begin{aligned} x(t) &= \int_0^\infty \frac{d\omega}{2\pi} \left[X(\omega) e^{i\omega t} + X(-\omega) e^{-i\omega t} \right] \\ X(\omega) &= X^*(-\omega) \\ &= \int_0^\infty \frac{d\omega}{2\pi} 2\operatorname{Re} \left[X(\omega) e^{i\omega t} \right] \\ &= \operatorname{Re} \left[\int_0^\infty \frac{d\omega}{2\pi} 2X(\omega) e^{i\omega t} \right] \end{aligned}$$

Considering $\operatorname{Re}[z(t)] = x(t)$, the definition of the analytic signal z(t) of x(t) should be

$$z(t) \equiv \int_0^\infty \frac{d\omega}{2\pi} 2X(\omega) e^{i\omega t} \quad \begin{array}{l} \text{Analytic signal} \\ \text{of } x(t) \end{array}$$

Hilbert transform

• Let's calculate $z(t) = x(t) + i\tilde{x}(t)$ from its definition:

We can obtain analytic signal z(t) by calculating Hilbert transform $\tilde{x}(t)$ $(x(t) \mapsto z(t)$ is also called Hilbert transform in practice)

Practical derivation of analytic signal

• Calculating $\tilde{x}(t)$ is sometimes troublesome

$$z(t) = x(t) + i \int_{-\infty}^{\infty} dt' \frac{x(t')}{t - t'} \qquad \tilde{x}(t)$$

• More practical method to obtain the analytic signal z(t): Use inverse Fourier transform

$$z(t) \equiv \int_0^\infty \frac{d\omega}{2\pi} 2X(\omega) e^{i\omega t} \qquad X'(\omega) \equiv \begin{cases} 2X(\omega) \ (\omega > 0) \\ 0 \ (\omega < 0) \end{cases}$$
$$= \mathcal{F}^{-1}[X'(\omega)]$$

$$\begin{aligned} x(t) & \xrightarrow{\mathcal{F}} X(\omega) \\ & \downarrow & \stackrel{\times 2 \ (\omega > 0)}{\downarrow & \times 0 \ (\omega < 0)} \\ z(t) &= x(t) + i \tilde{x}(t) \xleftarrow{\mathcal{F}^{-1}} X'(\omega) \end{aligned}$$

In practice, FFT are applied to finite time series data of x(t)

Summary of Hilbert transform

• The amplitude A(t) and the phase $\theta(t)$ of x(t) can be obtained by calculating the analytic signal z(t) (Hilbert transform)

$$\begin{aligned} z(t) &= x(t) + i\tilde{x}(t) \\ &= A(t)e^{i\theta(t)} \end{aligned} \qquad \begin{aligned} & x(t) \xrightarrow{\mathcal{F}} X(\omega) \\ z(t) &= x(t) + i\tilde{x}(t) \xleftarrow{\mathcal{F}^{-1}} X'(\omega) \\ \end{aligned}$$

 $A(t) = \sqrt{x^2(t) + \tilde{x}^2(t)}$: instantaneous amplitude

$$\theta(t) = \tan^{-1}\left(\frac{\tilde{x}(t)}{x(t)}\right)$$
: instantaneous phase

 $\frac{1}{2\pi} \frac{d\theta(t)}{dt}$: instantaneous frequency

Examples of Hilbert transform

• Examples)

$$> x(t) = \cos \omega_0 t \Rightarrow z(t) = \cos \omega_0 t + i \sin \omega_0 t A(t) = 1, \ \theta(t) = \omega_0 t$$

 $> x(t) = e^{-c|t|} \cos \omega_0 t \Rightarrow z(t) = e^{-c|t|} \cos \omega_0 t + i e^{-c|t|} \sin \omega_0 t$ $A(t) = e^{-c|t|}, \ \theta(t) = \omega_0 t$

(Quoted from "Random Data: Analysis and Measurement Procedures, 4th Edition")

13

- Introduction of Hilbert Transform
- Application to simulated chirp signal
- Application to analysis of nonlinearity and hysteresis of piezo actuators
- Comparison with quadrature phase interferometer
- Introduction of papers
- Summary

Application to simulated chirp signal

• Apply Hilbert transform to a simulated chirp signal

Chirp signal: Time duration: 1 s
 Frequency: 10 Hz ⇒ 25Hz in 1 s
 Amplitude: 1 ⇒ 2 in 1s

Function for Hilbert transform: <u>scipy.signal.Hilbert</u> *There is no option for window functions

Result

- Obtained amplitude and phase are consistent with the theoretical curve without the edge of the data
- At the edge, Hilbert transform is not going well (maybe due to the edge effect in the FFT process)

- Introduction of Hilbert Transform
- Application to simulated chirp signal
- Application to analysis of nonlinearity and hysteresis of piezo actuators
- Comparison with quadrature phase interferometer
- Introduction of papers
- Summary

Michelson interferometer with piezo actuator

Nonlinearity and hysteresis of piezo actuator

 Actual fringes in reality (ELOG) : nonlinearity -0.5 $\sum_{i=1.0}^{i=1.0}$ The second secon d. V_{PZT} Laser -2.0 $P_{\rm PD}$ Piezo -2.5 actuator PD 1.8 2.0 0.6 140 asymmetry (hysteresis) 120 ≥₁₀₀ oltage to PZT 80 60 40 20 triangle Generally, piezo actuators 0.6 0.8 1.0 1.2 time [s] 1.4 1.6 1.8 2.0 have nonlinearity and hysteresis -25

Hysteresis model of piezo actuator

M. Riepold *et al.*: *Vibroengineering PROCEDIA*, Vol. 22, pp. 47–52, Mar. 2019 -M. Altaher and S. S. Aphale: *Computers* **2018**, 7, 10

Measurement of hysteresis curve

• If we measure the phase $\theta(t)$ of the PD output, we can obtain its hysteresis curve:

- Two methods for the measurement of $\theta(t)$:
 - 1. Apply curve-fitting to the measured PD output
 - 2. Use Hilbert transform to the measured PD output

I tested the both methods and compared the results

1. Curve-fitting method

Fitting model: sine wave with cubic polynomial phase

$$V(t) = V_{\rm DC} + V_0 \sin \theta(t)$$

$$\theta(t) = at^3 + bt^2 + ct + d$$

➤ Applied voltage: 0 V \leftrightarrow 50 V, 0 V \leftrightarrow 100 V, 0 V \leftrightarrow 150 V,

1. Curve-fitting method: Result

- Hysteresis curves were obtained for three applied voltage ranges
- The edge of (0 V \leftrightarrow 100 V) curve is not consistent with other curves for some reason...

2. Hilbert transform method

- 1. Subtract dc offset: $V'_{PD} = V_{PD} \frac{V_{PD,max} + V_{PD,min}}{2}$
- 2. Apply Hilbert transform with scipy.signal.hilbert:

$$z(t) = \mathcal{H}[V'_{PD}] = V'_{PD} + i\widetilde{V}'_{PD}$$

3. Obtain phase and amplitude: $\theta(t) = \tan^{-1}\left(\frac{\widetilde{V'}_{PD}}{V'_{PD}}\right)$, $A(t) = \sqrt{V'_{PD}^2 + \widetilde{V}^2}_{PD}$

2. Hilbert transform method: Result

 Not so good especially around the edges compared to the curvefitting method

• Reason for the inaccuracy (my guess):

Hilbert transform can't distinguish whether the amplitude is decreasing or only the phase is changing around the edges

Summary: Hilbert transform vs. curve-fitting

• My feeling through this experiment:

	Hilbert transform	Curve-fitting
Accuracy	Bad around the edges of the data	Good
Difficulty in implementation	Very easy with a few lines in code	A little difficult to choose the initial value of fitting parameters

Hilbert transform can be used for rough analysis or finding the initial values of fitting parameters

If you come up with good uses of Hilbert transform, please let me know!

- Introduction of Hilbert Transform
- Application to simulated chirp signal
- Application to analysis of nonlinearity and hysteresis of piezo actuators
- Comparison with quadrature phase interferometer
- Introduction of papers
- Summary

Comparison with quadrature phase interferometer

• In laser interferometry, $A \cos \theta(t)$ and $A \sin \theta(t)$ can be measured simultaneously with quadrature phase interferometer (e.g., HoQI)

- Introduction of Hilbert Transform
- Application to simulated chirp signal
- Application to analysis of nonlinearity and hysteresis of piezo actuators
- Comparison with quadrature phase interferometer
- Introduction of papers
- Summary

Introduction of papers

- Papers on the applications of Hilbert transform to laser interferometry
- Nonlinear frequency sweep in high-speed tunable laser <u>T.J. Ahn and D. Y. Kim: Appl. Opt. 46, 2394-2400 (2007)</u>
- Vibration measurement for self-mixing interferometer
 <u>Z. Zhang et al.</u>: Optics Communications 436, 192-196 (2019)
 <u>Z. Zhang et al.</u>: Opt Rev 27, 90–97 (2020)
- High-speed absolute distance measurement with frequency scanning interferometry
 X. Li et al,: Appl. Opt. 61, 3150-3155 (2022)

- Introduction of Hilbert Transform
- Application to simulated chirp signal
- Application to analysis of nonlinearity and hysteresis of piezo actuators
- Comparison with quadrature phase interferometer
- Introduction of papers
- Summary

Summary

Hilbert Transform

- A method to obtain the analytic signal $z(t) = x(t) + i\tilde{x}(t)$ = $A(t)e^{i\theta(t)}$ from a signal x(t)
- From z(t), the amplitude A(t) and the phase $\theta(t)$ can be obtained
- Usually used in offline analysis based on FFT
- Easy to implement (scipy.signal.hilbert)

Application to analyzing hysteresis curve of piezo actuators

It worked. But has inaccuracy around the edges of the data
 Might be useful for instant rough analysis