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9.3. DEGREES OF FREEDOM

Figure 9.4: Technical drawing of the triple pendulum suspension including di-
mensions. The upper mass is attached to cantilevers at the top, which
provide a vertical isolation stage. A second vertical isolation stage is
located inside the upper mass. The centre of mass of the lower mass
is not identical with the suspension point, which is desired to ensure
a suitable restoring force, although it introduces coupling between
modes.
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� On application of modern control for gravitational    
wave detectors and quantum optical experiments

nApplication for a three-mirror ring cavity
ØCavity locking with linear LQG control
ØAutolocking with non-linear control

nApplication for a suspension system
ØDesign of active damping for triple pendulum          

suspension with ℋ! controller synthesis technique
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7.4. CONTROL IMPLEMENTATION
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Figure 7.3: Schematic of the cavity locking experiment, including the combina-
tion of a time-varying Kalman filter and a linear quadratic regulator.
The dashed lines depict electronic links.

guarantee a sufficient bandwidth. The result was a highly robust controller that
successfully achieved frequency lock of the optical cavity to the laser from any
initial operating point. While a twelfth-order polynomial is solved in the sim-
ulation [91], we chose to implement a simpler fourth-order model (third-order
plant model and an additional integrator), which did not include mode-splitting.
We were able to safely neglect mode-splitting, because the gradients of the error
signals corresponding to the non-degenerate s/p-polarised cavity modes differ in
sign, as shown in Fig. 7.4. Hence it is only possible to lock to one mode at a time;
in our case we chose to lock to the p-polarisation. A schematic of the closed-loop
system is depicted in Fig. 7.3.
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https://www.repo.uni-hannover.de/bitstream/handle/123456789/8910/865636915.pdf?sequence=1
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EquaSon of moSon of a pendulum:
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Classical control considers only input/output in frequency domain

⇒ Modern control treats all internal states (#, #̇) in time domain
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State-space model
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State-space representa7on

We can treat internal information #, not only input/output

Classical control:
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Any linear time-invariant system can be represented as

7

Generalized state-space model
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#̇ = 5# + 67
8 = 9# + :7

# ∈ ℝ) : internal states

7 ∈ ℝ* : inputs

8 ∈ ℝ+ : outputs

5 ∈ ℝ)×) : system matrix 6 ∈ ℝ)×* : input matrix

9 ∈ ℝ+×) : output matrix : ∈ ℝ+×* : direct feedthrough

-

+

Multiple-input
multipule-output
system
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Advantages of state-space model 

�What are the advantages of state-space model?
ØAble to deal with multiple-input multiple-output(MIMO) 

system

ØFeedback control with internal state # (State feedback)

ØAble to obtain optimal filters for feedback control 
mathematically
(with no need  for professional tuning technique)  

Disadvantages are menSoned in the last of this seminar
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System poles

1 2 =
3 2

4 2
= . 25 − / #$0 + 6

=
#

∏#$%
& (3'4#)

. 789 25 − / 0 + 6

0
= > = 0=

:%: Eigenvalue of system matrix /

Eigenvalues of 5 = poles of the system 0(?)
(if the system is controllable and observable)

� State-space ⇒ Transfer funcSon 

� Transfer funcSon ⇒ State-space transform is also possible

(infinite number of expressions)

&'( ) : adjugate
matrix of M
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Sta:c state feedback

0
= > = 0=

@

Target value: 5

Controller (filter and actuator)
� State feedback

ØUse internal state # for feedback control
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/̇ / 0

-

+

/.

Target 
value: 5+

−

+
−

Here, let’s assume 
we have access to /

� Classical control

ØUse output > for feedback control
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Static state feedback

� Closed-loop system with state feedback

#̇ = 5# + 67
8 = 9# + :7

#̇ = (5 − 6@)#
8 = (9 − :@)#

w/o state feedback w/ state feedback

/ = −.2

Theorem:
Any arrangement of eigenvalues of (5 − 6@) can be obtained 
by choosing @ (if the  system is controllable)

System matrix: 5 ⇒ (5 − 6@)

We can arbitrarily  place closed-loop poles (eigenvalues)!!
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Op:miza:on problem

� PracScally, it’s impossible to arrange poles arbitrarily 
due to limitaSon of control energy

Performance of closed-loop system

Control energy
Trade-off

� To optimize the controller @, quadratic cost function H is used:

H = ∫!
3
#%J# + 7%K7 LM 7, 9: Matrix of design

parameters
Error Control energy

OpSmized @ (that minimizes H) can 
be obtained by solving RiccaS eq.

CHAPTER 5. CONTROL THEORY

where u = −Kx has been substituted into Eq. (5.22). One of the fundamen-
tal results in modern control theory is that it is possible to arbitrarily place the
closed-loop eigenvalues (or closed-loop poles) of A − BK via selection of K
if the system is fully controllable. The previously defined concept of stability
is also applicable in the closed-loop case; the system is exponentially stable if
all eigenvalues of A − BK have negative real parts. It is worth mentioning that
even if the system is not fully controllable, it may still be possible to achieve the
design objectives, but there are certain features of the system which cannot be
modified.
The previous result suggests that we have unlimited flexibility in enhancing the
system performance, however there are practical limitations. To move the sys-
tem poles significantly often requires large control energy and this is not always
feasible. There are physical limitations on the actuators. While the mathematical
result holds true, often we must find a compromise between system performance
and control energy. This compromise between the system performance and the
required control energy can be formulated as an optimisation problem. The cost
function is typically defined as a quadratic function; in optimal control the fol-
lowing cost function is used extensively

J =
∫ ∞

0
xT Qx + uT Ru dt, (5.36)

where Q ∈ Rn×n and R ∈ Rm×m are design parameters. The Q term penalises
the speed of convergence and the R term regulates the applied control energy.
This form of optimisation is known as the linear quadratic regulator (LQR) prob-
lem and has been well studied. For a more in-depth treatment see [60, 70]. Solu-
tion of this problem yields an interesting result: the optimal control law is static
state feedback

u = −Kx. (5.37)

The full derivation has not been included here as this is a standard result in opti-
mal control theory; the interested reader is referred to [71]. The static feedback
gainK is computed by

K = (BT SB + R)−1BT SA, (5.38)

where S satisfies the algebraic Riccati equation [59]

AT [S − SB(BT SB + R)−1BS]A − S + Q = 0. (5.39)

56 We can obtain optimized @ mathematically!
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Issue with state feedback

We need all the internal
states # = ##, #", ⋯ , #)

%

How can we obtain all the internal information? 
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Issue with state feedback

We need all the internal
states # = ##, #", ⋯ , #)

%

How can we obtain all the internal information? 

⇒ EsSmate internal states by observing inputs/outputs 

EsFmaFon of /
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Kalman filter
� Kalman filter

ØPrac%cal observer 
ØRobust to process noise % and measurement noise &
ØUse feedback of outputs es%ma%on error (( − *() for es%ma%on of 

internal states ,
ØFeedback gain -: Kalman gain (op%mized - from Ricca% eq.)
ØWe need precise state-space model (., 0, 1)

Feedback in 
estimation process

State feedback w/ Kalman filter = Linear Quadratic Gaussian (LQG) controller

Able to obtain from 
theore9cal model or 
measured transfer func9on 
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Application for three-mirror ring cavity

CHAPTER 6. LINEAR QUADRATIC GAUSSIAN CONTROL FOR A
THREE-MIRROR RING CAVITY
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Figure 6.1: Schematic of the optical plant including the optical fields bi, the con-
trol input to the piezoelectric actuator u and the measured outputs y1

and y2 corresponding to the error signal and the transmitted signal re-
spectively. HD, PD, λ/2 and λ/4 refer to homodyne detector, single
photodetector, half-wave and quarter-wave waveplate respectively.

6.1 Experimental Setup

We set up an impedance-matched three-mirror ring cavity as shown schemati-
cally in Fig. 6.1 to demonstrate operation of a modern controller. The length
control of an optical cavity can be realised by controlling a piezoelectric trans-
ducer (PZT), which is attached to one of the cavity mirrors. The parameters of
the optical resonator (given in Table 6.1) were chosen to provide easy and conve-
nient handling of the system to test new locking schemes. For this reason, a cav-
ity with a low finesse of F ≈ 10 and a correspondingly large spectral linewidth
of∆ν ≈ 65MHz (equivalent to a decay rate κ ≈ 410 · 106 rad

s ) was constructed.
This results in a small power build-up within the optical resonator and a suitably
large linear region of the error signal, which simplifies the locking procedure.
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� For practice, application for three-mirror ring cavity is tested:

ØCavity locking with linear LQG control

ØAutolocking with non-linear control

6.2. STATE SPACE REPRESENTATION OF CAVITY DYNAMICS

Table 6.1: Parameters of the optical ring cavity.
Parameter Value
Wavelength 1550 nm
Finesse ≈ 10
Spectral linewidth ≈ 65MHz
Waist 453µm

Furthermore a ring cavity setup was chosen to simplify the implementation of
the homodyne locking scheme [46], since the incoming light field is spatially
separated from the reflected light field. Homodyne locking [46] generates the er-
ror signal via polarisation spectroscopy of the system. Hence, the two measured
output signals are y1, the phase quadrature of the reflected beam measured via a
HD, and y2, the intensity of the transmitted beam measured by a single PD. Sig-
nal y2 is not required for the design process of a feedback control loop, however
it is convenient to verify that the system is in lock via the maximised transmitted
power. The light source for our test bed was a fibre-coupled diode laser with a
wavelength of λ = 1550 nm. Since a systematic control approach is based on
a model describing the system dynamics, we derived a state-space model, see
Chap. 5, describing the equations of motion for an optical cavity.

6.2 State Space Representation of Cavity
Dynamics

With the introduction of quantised electromagnetic fields and coherent states,
see Chap. 2, and the derivation of the field amplitudes for an optical cavity, see
Chap. 4, we were able to formulate the quantum equations of motion for our
system in the Heisenberg picture [82]. The quantum equations of motion for the
intracavity field represented by the annihilation operator â and the equation for
the reflected field b̂out are given by [34], whereby for simplicity reasons the ’hat

63

4!: Error signal from 
balanced homodyne 
detec9on

1: Input voltage to PZT
System of the cavity 
(linear around resonance)

s-pol.(LO)/p-pol.
p-pol.

System of the cavity 
(non-linear outside resonance)

4": Transmitted power
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Implementa:on steps of locking

6.6. RESULTS
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Figure 6.5: Schematic of the cavity locking experiment, including the combina-
tion of a time-invariant Kalman filter and a linear quadratic regulator.
The dashed lines depict electronic links.
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Figure 6.6: Loop gain of the three-mirror ring cavity test bed systemwith integral
LQG control. The cross sections of the dashed lines denote the gain
and phase margin. The gain margin is 20.2 dB at 251Hz and the
phase margin is 47◦ at 61Hz. [31]
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① Measure the transfer func7on of the cavity: 1 2 = 3$(2)/4(2)

② Transform 1(2) to state-space representa7on (/, 0, ., 6)

③ Calculate op7mized controller: ? with LQG method

④ Implement (/, 0, ., 6) and ? on a Digital signal processing (DSP) 
system

DSP system

System of the cavity

-! (transmi<ed power) 
is not used here 
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①Measurement of transfer function

� Measured the transfer func7on of the cavity: 1 2 = 3$(2)/4(2)
with PI control

6.3. FREQUENCY RESPONSE AND SYSTEM IDENTIFICATION
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Figure 6.3: Bode plot of the experimentally acquired frequency response of the
plant in comparison to two simulated models. [31]

is essential to guarantee that the range of the output y corresponds to its linear
region. This was essential to ensure the applicability of linear control techniques.
The Bode plot illustrating the frequency response of the plant and two plant mod-
els are shown in Fig. 6.3. For the control design process we took the frequency
data up to the first resonance into account. This was done since usually it is only
necessary to suppress the first resonant mode, as the primary mode of the opti-
cal cavity/PZT combination should have the strongest impact on the dynamics
[84, 85], although this was not the case for our setup (third mode was dominant).
We used truncated frequency response data, regarding a range from 100Hz to
400Hz, for the subspace system identification. We fitted a third-order model to
the data, which was then used for the controller design. We computed the model
with the help of the iterative prediction error minimisation (PEM) method from
Matlab’s system identification toolbox [86]. We also fitted a 20th-order model,
incorporating the complete frequency data. We could have used the 20th-order
model for the controller design as well, but the third-order model was compu-
tationally more convenient. The third-order model describing the input/output
relation of the plant was used to construct a state-space model of the well-known

67

� FiUed with 3rd-order model and 20th-order model

⇒Used 3rd-order model (up to first resonance) for easy computa7on
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② Transform!(#) to state-space model
� Transformed 0(?) to state-space representaSon (5, 6, 9, :)

with Matlab funcSons (d2ss?)

0(?)
=(?) >#(?)

CHAPTER 6. LINEAR QUADRATIC GAUSSIAN CONTROL FOR A
THREE-MIRROR RING CAVITY

form, see Chap. 5,

ẋ = Ax + Bu,

y = Cx + Du,

where

A = 104 ·







−0.0180 −0.2865 0.0573

0.1693 −0.0157 0.2339

0.0446 0.1109 −1.1449







B =







2.8394

4.2852

−24.9287





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C =







24.0014

37.3086

−34.4903







T

D = 0. (6.9)

6.4 Controller Design

The control objective is to drive the detuning ∆ to zero. Since we cannot mea-
sure the state of the intracavity field directly an observer/estimator was required.
This lead to a LQG control approach, presented in detail in Chap. 5, which was
augmented due to several limitations of static state feedback control. Firstly,
feedforward control is required to eliminate steady state tracking error, and there-
fore perfect knowledge of the plant model is required. Secondly, with static state
feedback, the states cannot converge in the presence of constant input/output
disturbances. To regulate the detuning ∆ to 0 in the presence of unmodelled
external disturbances, such as 1/f laser phase noise, integral control must be
included. Integral action can be built into the LQG problem by adding another
system state, qk+1 = qk + yk, which integrates the system output. The discrete-
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plant in comparison to two simulated models. [31]

is essential to guarantee that the range of the output y corresponds to its linear
region. This was essential to ensure the applicability of linear control techniques.
The Bode plot illustrating the frequency response of the plant and two plant mod-
els are shown in Fig. 6.3. For the control design process we took the frequency
data up to the first resonance into account. This was done since usually it is only
necessary to suppress the first resonant mode, as the primary mode of the opti-
cal cavity/PZT combination should have the strongest impact on the dynamics
[84, 85], although this was not the case for our setup (third mode was dominant).
We used truncated frequency response data, regarding a range from 100Hz to
400Hz, for the subspace system identification. We fitted a third-order model to
the data, which was then used for the controller design. We computed the model
with the help of the iterative prediction error minimisation (PEM) method from
Matlab’s system identification toolbox [86]. We also fitted a 20th-order model,
incorporating the complete frequency data. We could have used the 20th-order
model for the controller design as well, but the third-order model was compu-
tationally more convenient. The third-order model describing the input/output
relation of the plant was used to construct a state-space model of the well-known
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③Calculation of optimized controller: %
� To deal with unmodelled external disturbance (e.g. 1/f laser phase 

noise), integral control is introduced:

6.5. CONTROLLER IMPLEMENTATION

time augmented state-space model then becomes
[

x
q

]

k+1

=

[

A 0
C I

] [

x
q

]

k

+

[

B
0

]

ũk + w̃k (6.10)

ỹk =
[

C 0
]
[

x
q

]

k

+ ṽk, (6.11)

with ṽ = [v1v2]T . The LQG control design can be performed on the augmented
system

{

Ã, B̃, C̃
}

where

Ã =

[

A 0
C I

]

; B̃ =

[

B
0

]

; C̃ =
[

C 0
]

; x̃ =

[

x
q

]

.

We chose the following weighting factors for the implementation of the LQG
controller. The weighting matrices for the LQR and Kalman filter cost functional
were

QL = σ2
1 = 1, RL =

[

σ2
2 0

0 σ2
3

]

=

[

1 0
0 10−7

]

,

QK = q = 5 · 105, RK = r = 0.5. (6.12)

σ1 is the standard deviation related to the process noise w̃, σ2 and σ3 are the
measurement noises associated with the HD and the augmented integral output,
respectively. The noise covariances and weighting parameters were considered
to be design parameters and do not need to reflect physical covariances of the
system [87]. We determined the above stated values to generate a controller with
a sufficient bandwidth [88]. The resulting controller was robust to errors in plant
modelling, was able to reject constant disturbances and was able to drive the
detuning to 0. A Bode plot of the LQG controller, defined by the ratio between
the controller output u and controller input (error signal) e, is shown in Fig. 6.4.

6.5 Controller Implementation
We implemented the discretised state-space model for the LQG controller includ-
ing integral action with a DS1104 dSPACE DSP system. The dSpace board con-
sists of 8 Digital-to-Analog-Converter (DAC) channels and 16 Analog-to-Digital-
Converter (ADC) channels with a sampling rate of 300 kHz. The board is fully
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form, see Chap. 5,

ẋ = Ax + Bu,

y = Cx + Du,

where

A = 104 ·







−0.0180 −0.2865 0.0573

0.1693 −0.0157 0.2339

0.0446 0.1109 −1.1449







B =







2.8394

4.2852

−24.9287







C =







24.0014

37.3086

−34.4903







T

D = 0. (6.9)

6.4 Controller Design

The control objective is to drive the detuning ∆ to zero. Since we cannot mea-
sure the state of the intracavity field directly an observer/estimator was required.
This lead to a LQG control approach, presented in detail in Chap. 5, which was
augmented due to several limitations of static state feedback control. Firstly,
feedforward control is required to eliminate steady state tracking error, and there-
fore perfect knowledge of the plant model is required. Secondly, with static state
feedback, the states cannot converge in the presence of constant input/output
disturbances. To regulate the detuning ∆ to 0 in the presence of unmodelled
external disturbances, such as 1/f laser phase noise, integral control must be
included. Integral action can be built into the LQG problem by adding another
system state, qk+1 = qk + yk, which integrates the system output. The discrete-
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Addi9onal internal state: 5
at 9me instant k

Integral of output 4
(error signal)

*State-space model 
in discrete time 

CHAPTER 6. LINEAR QUADRATIC GAUSSIAN CONTROL FOR A
THREE-MIRROR RING CAVITY
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Figure 6.4: Bode plot of the LQG controller. [31]

programmable via Matlab’s Simulink toolbox and possesses a 12-bit resolution.
With the help of this hardware we were able to successfully implement a LQG
controller based on a third-order model. The controller was capable of achiev-
ing lock and its bandwidth was not limited by the hardware. A schematic of the
closed loop system is depicted in Fig. 6.5.

6.6 Results

The LQG controller state feedback gain was computed to obtain appropriate val-
ues for the gain crossover frequency, gain margin, and phase margin of the loop
gain corresponding to the product of the augmented plant transfer function and
the integral LQG controller transfer function. We achieved suitable margins by
tuning the weighting parameters. Furthermore we used the loop gain transfer
function to characterise the designed feedback control loop [62]. The simulated
frequency response for the corresponding loop gain transfer function is shown
in Fig. 6.6, which has a gain margin of 20.2 dB at 251Hz, a phase margin of
47◦ at 61Hz, and a gain crossover frequency of 61Hz. We chose these robust-
ness margin values in order to ensure closed-loop stability of the system. A
guide to adequate robustness margins for LQG controllers is described in [89].
We evaluated the performance of the closed-loop system with the integral LQG
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Modified state-space model

� Calculated optimized controller: ? with LQG (cost function) method

Design parameters for cost func9on

Obtained transfer function of the 
controller (4! ⇒ /)
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④Implementation

6.6. RESULTS
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Figure 6.5: Schematic of the cavity locking experiment, including the combina-
tion of a time-invariant Kalman filter and a linear quadratic regulator.
The dashed lines depict electronic links.
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Figure 6.6: Loop gain of the three-mirror ring cavity test bed systemwith integral
LQG control. The cross sections of the dashed lines denote the gain
and phase margin. The gain margin is 20.2 dB at 251Hz and the
phase margin is 47◦ at 61Hz. [31]
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� Implemented the observer and the controller on DSP system

� DS1104 dSPACE DSP system

Ø8 DAC channels (12-bit, 300kHz)

Ø16 DAC channels (12-bit, 300kHz)

ØProgrammable with Simulink
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6.6. RESULTS
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Result

� Succeeded in locking the cavity

� UGF≃61 Hz, phase margin≃47°

Error signal and transmiPed power 
during lock

Open-loop transfer function� Is this really optimized?

� Large phase delay ⇐ due to 
computation? 

I’m not sure…
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� Introduction of modern control
ØState-space representation
ØState feedback
ØState observer (Kalman-filter)

�Application for three-mirror ring cavity
ØCavity locking with linear LQG control
ØAutolocking with non-linear control

�Application for suspension damping system
ØSystem identification of triple pendulum suspension
ØDesigning optimal filters with ℋ! controller synthesis

�Advantage/disadvantage of modern control
�Summary
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Autolocking with non-linear control
7.5. RESULTS
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Figure 7.4: Frequency response of the optical cavity, showing the error signal
from the homodyne detector y1 (top) and the transmitted signal y2

(bottom). The main Airy peak/error signal at ∆ = 0 MHz corre-
sponds to the p-polarised cavity input, whereas the Airy peak/error
signal at ∆ ≈ −230 MHz belong to the s-polarised field utilised as
local oscillator of our homodyne locking scheme.
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� With linear control, cavity lock can be unlocked due to large 
disturbance (goes out of linear range of the error signal)

Linear range

Transmitted 
power

resonance unlocked

locked

Large disturbance

Error signal 
from 
balanced 
homodyne
4! = 9! Δ

Transmitted 
power 
4" = 9" Δ

Δ
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Autolocking with non-linear control
7.5. RESULTS
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local oscillator of our homodyne locking scheme.
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� With linear control, cavity lock can be unlocked due to large 
disturbance (goes out of linear range of the error signal)

Linear range

Transmitted 
power

resonance unlocked

locked

Large disturbance

� If we can obtain the detuning Δ in outside of the linear range, we 
can realize autolocking

w/ autolocking

Use non-linear signal 8# = +# Δ , 8" = +"(Δ) to obtain 
detuning Δ

Error signal 
from 
balanced 
homodyne
4! = 9! Δ

Transmitted 
power 
4" = 9" Δ

Δ
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Obtaining detuning Δ from non-linear signal 7.4. CONTROL IMPLEMENTATION

HV Amplifier

λ/2
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LQR

Time-varying
Kalman filter

y

1
y

2

Intensity

Phase

u

Set Membership 
Block

Figure 7.3: Schematic of the cavity locking experiment, including the combina-
tion of a time-varying Kalman filter and a linear quadratic regulator.
The dashed lines depict electronic links.

guarantee a sufficient bandwidth. The result was a highly robust controller that
successfully achieved frequency lock of the optical cavity to the laser from any
initial operating point. While a twelfth-order polynomial is solved in the sim-
ulation [91], we chose to implement a simpler fourth-order model (third-order
plant model and an additional integrator), which did not include mode-splitting.
We were able to safely neglect mode-splitting, because the gradients of the error
signals corresponding to the non-degenerate s/p-polarised cavity modes differ in
sign, as shown in Fig. 7.4. Hence it is only possible to lock to one mode at a time;
in our case we chose to lock to the p-polarisation. A schematic of the closed-loop
system is depicted in Fig. 7.3.
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� We want to know detuning Δ from observed ,$ and ,"

CHAPTER 7. AUTOLOCKING AN OPTICAL CAVITY USING A
TIME-VARYING KALMAN FILTER

7.2 Singular Perturbation Method
Until now all of the applied techniques correspond to linear control techniques,
although we consider a non-linear control problem. We tackled this issue by
simplifying the system via the singular perturbation method [92] and implement-
ing the TVKF. This ensured that a linear control approach can still be applied.
The singular perturbation method decomposes the plant, consisting of the opti-
cal cavity and the two readouts, into two subsystems which differ by their time
constants. This technique is known as separation of time-scales. For our case
the dynamics of the light fields are fast compared to the mechanical assembly.
The slow mechanical block whose output is the detuning ∆ is the dominant ef-
fect. It is followed by a fast block representing a discrepancy from the dominant
behaviour. This discrepancy can be modelled as a static sensor non-linearity ap-
plied to the output. This approach enabled the use of linear control techniques.
Static non-linearities imply that the time derivatives q̇ = ṗ = 0. With the help of
this relation we determined the behaviour of the static non-linearity

[

q
p

]

=
−1

(κ
2

)2 + ∆2

[

κβ
√
κ0

2β
√
κ0∆

]

. (7.7)

For the homodyne locking scheme [46] the detection angle is set to φ = π/2 and
the outputs y1 and y2 become

y1 = k2
√
κ0p + 2k2β cosφ+ v1

= −
2k2βκ0∆
(κ

2

)2 + ∆2
+ v1

= f1(∆) + v1, (7.8)

y2 =
k̃2κ1

(

p2 + q2
)

2
+ v2

=
1

2

k̃2κ1κ0β2

(κ
2

)2 + ∆2
+ v2

= f2(∆) + v2. (7.9)

If the optical cavity is perturbed strongly enough and the error signal leaves its
linear regime, we cannot unambiguously determine the detuning if y1 is the only
measurement, as shown in Fig. 7.4. Therefore we complemented y1 with y2 to
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4"

� Calculation algorithm

①Measure ,$. and ,". at 7me instant k

② Set of possible detuning Δ/:  

;# = Δ# ∈ ℝ | 4!# − 9! Δ#
"
≤ @!" ABC 4"# − 9" Δ#

"
≤ @""

③ Obtain mean: Δ. and standard devia7on: B.

⟺

1 ↦ ;Δ is linear

Threshold
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Use of standard deviation &"
� We can use observation error B. for time-varying Kalman filter

*Kalman gain C. = feedback gain of state (/#) es7ma7on process 

Large B. ⇒ Small C. : Emphasize previous prediction D". (ignore ,.)

Small B. ⇒ Large C. : Emphasize measured output ,. = EΔ. 0
Time varying

Kalman filter

BeLer esSmaSon of internal state #D

Op-mal =# can be 
calculated 
mathema-cally



3232

Implementa:on

7.4. CONTROL IMPLEMENTATION
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Figure 7.3: Schematic of the cavity locking experiment, including the combina-
tion of a time-varying Kalman filter and a linear quadratic regulator.
The dashed lines depict electronic links.

guarantee a sufficient bandwidth. The result was a highly robust controller that
successfully achieved frequency lock of the optical cavity to the laser from any
initial operating point. While a twelfth-order polynomial is solved in the sim-
ulation [91], we chose to implement a simpler fourth-order model (third-order
plant model and an additional integrator), which did not include mode-splitting.
We were able to safely neglect mode-splitting, because the gradients of the error
signals corresponding to the non-degenerate s/p-polarised cavity modes differ in
sign, as shown in Fig. 7.4. Hence it is only possible to lock to one mode at a time;
in our case we chose to lock to the p-polarisation. A schematic of the closed-loop
system is depicted in Fig. 7.3.
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B.Δ/

� Implemented the observer and the controller on DSP system

� Identifying system and designing controller were done in the 
same way as previous cavity locking (no figures in the thesis)

C-program at 10kHz
(-"#, -!#) ↦ (Δ#, 6#)
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Result
� Succeeded in locking the cavity from any initial operation point 

(but no figures in the thesis)

7.5. RESULTS
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Figure 7.4: Frequency response of the optical cavity, showing the error signal
from the homodyne detector y1 (top) and the transmitted signal y2

(bottom). The main Airy peak/error signal at ∆ = 0 MHz corre-
sponds to the p-polarised cavity input, whereas the Airy peak/error
signal at ∆ ≈ −230 MHz belong to the s-polarised field utilised as
local oscillator of our homodyne locking scheme.
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Linear range ≃ 65MHz 

� Compared with PI control

ØInjected step voltage (0.4V) to PZT
(detuning≃ 43 MHz)

ØSucceeded in locking again with 
non-linear control

Detuning (43MHz)

Transmitted 
power

unlocked
Transmitted power

unlocked locked again 
in ∼30ms

PI control Non-linear control
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Damping of suspension

9.1. HARMONIC OSCILLATOR
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Figure 9.1: Bode plot for a driven, damped harmonic oscillator with varying
damping factors γ and a resonance frequency f0 = 1 Hz.

Gain and phase of the transfer function G(s) are given by

|G(iω)| =
1

m
√
(

ω2
0 − ω2

)2 + (2γω)2
, (9.6)

ϕ(ω) = arctan
(

2ωγ

ω2
0 − ω2

)

(9.7)

and shown for a varying γ and a resonance frequency f0 = 1 Hz in Fig. 9.1.
Fig. 9.1 highlights that for frequencies f < f0 the system shows a constant
response to an external force, whereas on resonance the system response is in-
creased significantly and the phase of the system drops by 180◦. The damping
factor γ effects the magnitude of the system response, the steepness of the phase
loss and therefore the FWHM ∆f of the resonance used to define the quality Q
for harmonic oscillators Q = f0/∆f . For frequencies above the resonance the
external force is suppressed by a factor 1/f2, pointing out that seismic isolation
can be realised by harmonic oscillators. If the suppression factor of 1/f2 is not
sufficient, it can be enhanced by cascading multiple harmonic oscillators. Re-
garding Eq. (5.6) n-cascaded harmonic oscillators result in a suppression factor
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� MoSon of test mass is excited on resonance

⇒ Need passive/acSve damping to extract energy

Larger damping 
factor 7

� Suspension system is generally a complex MIMO system (mul7ple 
pendulum, undecoupled DOFs (longitudinal, yaw, pitch))

⇒ Apply modern control for ac7ve damping!



3636

Overview 

� Target system

ØTriple pendulum suspension used for 
10 m prototype @ AEI

credit: AEI

9.3. DEGREES OF FREEDOM

Figure 9.4: Technical drawing of the triple pendulum suspension including di-
mensions. The upper mass is attached to cantilevers at the top, which
provide a vertical isolation stage. A second vertical isolation stage is
located inside the upper mass. The centre of mass of the lower mass
is not identical with the suspension point, which is desired to ensure
a suitable restoring force, although it introduces coupling between
modes.

109

� AcSve damping for longitudinal, yaw and pitch
�

⇒ Need opSmal filters for feedback control

ØMeasured transfer functions and 
identified systems

ØDesigned optimal filters with ℋ"
controller synthesis

*Implementation of filters was not done in  
this thesis

https://www.aei.mpg.de/38521/10-meter-prototype
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ØState-space representa,on
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ØState observer (Kalman-filter)

�Applica:on for three-mirror ring cavity
ØCavity locking with linear LQG control
ØAutolocking with non-linear control

�Applica:on for suspension damping system
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9.3. DEGREES OF FREEDOM

Figure 9.4: Technical drawing of the triple pendulum suspension including di-
mensions. The upper mass is attached to cantilevers at the top, which
provide a vertical isolation stage. A second vertical isolation stage is
located inside the upper mass. The centre of mass of the lower mass
is not identical with the suspension point, which is desired to ensure
a suitable restoring force, although it introduces coupling between
modes.
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Sensors/Actuators
� Used 6 BOSEMs on upper mass

CHAPTER 9. LOCAL CONTROL OF A TRIPLE PENDULUM
SUSPENSION

QPD
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lower testmass

2
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1

beamsplitter

fibre coupler

Figure 9.9: Schematic of the two optical levers consisting of two collimated laser
beams, which impinge with angles θ1,2 on the lower test mass. The
reflected beams are detected by QPD1,2 at a distance l1,2.

A

DC

B

y

x

Figure 9.10: Schematic of a QPD consisting of four photosensitive areas.
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CHAPTER 9. LOCAL CONTROL OF A TRIPLE PENDULUM
SUSPENSION

Figure 9.17: The schematic (taken from [112]) shows the upper mass (green)
with attached co-located sensor/actuator pairs. A frame (yellow)
connected with the cage of the suspension clamps the actuator and
readout units (red) of the BOSEMs, whereas the magnetic flag (light
green) is attached to the freely movable upper mass.
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� Used 2 optical levers for lower mass

Structure of a BOSEM (Birmingham OpLcal 
Sensor and Electro-MagneLc actuators)

/$: Longitudinal actuation (D,E)
/%: Yaw actua9on (D,-E)
/&:Pitch actua9on (B,C)
4'$: Longitudinal sensor
4'%: Yaw sensor
4'&: Pitch sensor

4($: Longitudinal sensor
4(%: Yaw sensor
4(&: Pitch sensor

9.4. CO-LOCATED SENSOR/ACTUATOR

Magnet

Coil
Actuator

Flag

LED

Photodiode

Flexi Circuit

Connector

LED

Collimating Lens

Integral
Lens Mask

Magnet

Coil

Flag

Photodiode

Figure 9.6: The assembly and functionality of a BOSEM consists of a LED,
whose light is converted into a flat-top beam by the combination of
two lenses and an aperture. The detected intensity is proportional to
the position of the magnetic flag, attached to the upper mass. The
position of the flag/upper mass can be controlled by a coil actuator,
which generates a magnetic field acting on the flag [114].

magnetic flag. The direction of the actuation depends on the sign of the voltage
applied to the coils. Since the BOSEM assembly is able to sense and act on the
upper mass motion, it provides a suitable sensor/actuator pair for active damp-
ing of the system’s resonances. To enable the implementation of linear control
techniques, the output voltage of the PD must be linearly dependent on the flag
position. We tested this requirement by mounting the flag onto a micrometer
table and shifting it through the beam path. The results are shown in Fig. 9.7
and demonstrated that the normalised voltage curve of all six BOSEMs exhib-
ited a wide linear range. The slopes of all curves were identical, meaning that
the system responses of the BOSEMs were identical and that there was no need
for additional scaling factors. The rest position (0mm) was set to 50% of the
maximum voltage to maximise the dynamic range of the system.
Another requirement to guarantee a linear behaviour of the system was that the
magnetic force of the coil acting on the flag is position independent. The fulfil-
ment of this requirement was shown via a Mathematica script written by Mark
Barton [115]. The script demonstrated that the force reaches a maximum for
given geometry parameters of coil and flag with respect to the distance between
the centres of coil and magnet. The maximum is the desirable operating point,

111

� This system can be regarded as 
3 inputs 6 outputs system 

*Used for system identification
(not used for control signal)
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Measurement of transfer functions
� Measured transfer func7on matrix using BOSEMs and op7cal levers

� Used LIGO CDS

9.8. SYSTEM IDENTIFICATION
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Figure 9.18: Comparison of the fitted models (in red) and the measured fre-
quency response data (in black) for the top-top transfer functions.
The fitted models are in good agreement with the measured data.

Table 9.3: Resonance frequencies of the three DOFs of interest.
Parameter Value
Longitudinal 0.64Hz

1.38Hz
2.51Hz

Yaw 0.88Hz
1.66Hz
3.14Hz

Pitch 1.03Hz
5.20Hz
10.51Hz
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CHAPTER 9. LOCAL CONTROL OF A TRIPLE PENDULUM
SUSPENSION
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Figure 9.19: Comparison of the fitted models (in red) and the measured fre-
quency response data (in black) for the top-bottom transfer func-
tions. The fitted models are in good agreement with the measured
data.
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Actuators of BOSEMs ⇒ Upper mass

ØLongitudinal, yaw and pitch were highly coupled (not diagonalized)

Actuators of BOSEMs ⇒ Lower mass

ℋ! controller synthesis does not need decoupling process 
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Space-state representation

�ℋ" controller synthesis minimizes performance criterion

� For ℋ" controller synthesis, transfer funcSon matrix 0(?)
was transformed to state-space model (5, 6, 9, :)

� Used Matlab balreal and modred funcSons

⇒ 60th-order system was obtained

Use this for calculating optimal feedback filters: ?(2)

Performance
criterion

Control output

Control input
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ℋ# controller synthesis
� Closed-loop transfer func7on from noise F to output ,9:

B C =
/&(0)
1(0) We want to minimize this

� Use ℋ" norm

∥ B C ∥! ≡ ∫*2
2
Tr B3 I? B I?

4)
!5

:' ; : Hermitian

transpose of :(;)

= 7
!"

"
8
#,%

9#% :; & <;
2>

ℋ! norm = RMS of all performance criterion: ∑' @('& with unit-intensity white noise

� Trade-off between control performance and control energy

⇒ op7mal filter ? that minimize ∥ B C ∥! can be obtained by  
solving Ricca7 equa7on

We can inject any 
modelled noise with G(H)

Performance
criterion

Control output
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Result: Obtained controller
� Calculate op7mal filters ? from state-space model (/, 0, ., 6)

� Used Matlab h2syn func7on
�

⇒ 75th-order filters were obtained

CH
A
PTER

9.
LO
CA
L
CO
N
TRO

L
O
F
A
TRIPLE

PEN
D
U
LU
M

SU
SPEN

SIO
N

T
o

: 
u

l

-50

0
50

100
From: yl

T
o

: 
u

l

-5760

0

5760

T
o

: 
u

y

-50
0

50

T
o

: 
u

y

0

1440

2880

T
o

: 
u

p

-50
0

50

10
0

10
1

10
2

T
o

: 
u

p

-5760

0

5760

From: yy

10
1

10
2

From: yp

10
1

10
2

Bode Diagram

Frequency  (rad/s)

M
ag

n
it

u
d

e 
(d

B
) 

; 
P

h
as

e 
(d

eg
)

Figure
9.24:Bode

plotofthe
com

puted
H

2
controller.The

inputofthe
transfer

function
is
the

system
output

y
l,y

,p
and

the
outputis

given
by
the

controlled
inputu

l,y
,p
associated

w
ith
the

considered
D
O
Fs.

136



44

Result: Closed-loop transfer func:on

� Succeeded in damping modes by ∼50 dB 
without exciting other modes 

9.9.
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� Simulated closed-loop transfer functions: I H =
))(+)
-(+)

Blue: undamped case

Red: with closed-loop
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Advantages/Disadvantages of modern control

�Advantages 
ØAble to deal with multiple-input multiple-output (MIMO) 

uncoupled system

ØFeedback control with internal state # (State feedback)

ØAble to obtain optimal filters for feedback control mathematically 
(with no need  for professional tuning technique)  

�Disadvantages
�

ØFor a too complicated system, enormous computation is needed

ØNeed precise system identification

ØNeed to set design parameters of cost function manually
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Summary

9.3. DEGREES OF FREEDOM

Figure 9.4: Technical drawing of the triple pendulum suspension including di-
mensions. The upper mass is attached to cantilevers at the top, which
provide a vertical isolation stage. A second vertical isolation stage is
located inside the upper mass. The centre of mass of the lower mass
is not identical with the suspension point, which is desired to ensure
a suitable restoring force, although it introduces coupling between
modes.
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� Application of modern control for gravitational wave detectors 
and quantum optical experiments

nApplication for a three-mirror ring cavity
ØLocked cavity with linear LQG control
ØAutolock with non-linear control

nApplication for a suspension system
ØDesigned optimal filters for active damping

of triple pendulum suspension with ℋ! controller
synthesis technique

7.4. CONTROL IMPLEMENTATION

HV Amplifier

λ/2
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LQR

Time-varying
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1
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Intensity
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u

Set Membership 
Block

Figure 7.3: Schematic of the cavity locking experiment, including the combina-
tion of a time-varying Kalman filter and a linear quadratic regulator.
The dashed lines depict electronic links.

guarantee a sufficient bandwidth. The result was a highly robust controller that
successfully achieved frequency lock of the optical cavity to the laser from any
initial operating point. While a twelfth-order polynomial is solved in the sim-
ulation [91], we chose to implement a simpler fourth-order model (third-order
plant model and an additional integrator), which did not include mode-splitting.
We were able to safely neglect mode-splitting, because the gradients of the error
signals corresponding to the non-degenerate s/p-polarised cavity modes differ in
sign, as shown in Fig. 7.4. Hence it is only possible to lock to one mode at a time;
in our case we chose to lock to the p-polarisation. A schematic of the closed-loop
system is depicted in Fig. 7.3.
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