Application of Modern Control for Interferometric Gravitational Wave Detectors

D1 Hiroki Fujimoto 2022/7/15 @Ando Lab Seminar

Paper

Doctoral thesis by D. Shütte in Leibniz University Hannover (AEI)

"Modern Control Approaches for Next-Generation Interferometric Gravitational Wave Detectors (2016)"

 On application of modern control for gravitational wave detectors and quantum optical experiments

- Application for a three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - ➤ Autolocking with non-linear control
- ■Application for a suspension system
 - \triangleright Design of active damping for triple pendulum suspension with \mathcal{H}_2 controller synthesis technique

- Introduction of modern control
 - ➤ State-space representation
 - ➤ State feedback
 - ➤ State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \succ Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

- Introduction of modern control
 - ➤ State-space representation
 - >State feedback
 - >State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \succ Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

Transfer function

Equation of motion of a pendulum:

$$m\ddot{x} = -m\omega_0^2 x - 2m\gamma \dot{x} + f$$

Fourier transform

$$-m\omega^2 X = -m\omega_0^2 X - i2m\gamma\omega X + F$$

$$\Rightarrow H(\omega) = \frac{X}{F} = \frac{1}{m(\omega_0^2 - \omega^2 + i2\gamma\omega)}$$

Transfer function

$$F \longrightarrow H$$

$$X = HF$$

Classical control considers only input/output in frequency domain

 \Rightarrow Modern control treats all internal states (x, \dot{x}) in time domain

State-space model

Rewrite EOM with $x_1 \equiv x_d$, $x_2 \equiv \dot{x}_d$

$$\dot{x}_1 = x_2 m\dot{x}_2 = -m\omega_0^2 x_1 - 2m\gamma x_2 + f$$

Let the internal state be $x \equiv [x_1, x_2]^T$

$$\Rightarrow \begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 \\ -\omega_0^2 & -2\gamma \end{bmatrix} x + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} f \equiv Ax + Bf \\ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x \equiv Cx \text{ (output)} \end{cases}$$

State-space representation

Classical control:

 χ_d

We can treat internal information x, not only input/output

Generalized state-space model

Any linear time-invariant system can be represented as

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

 $x \in \mathbb{R}^n$: internal states

 $u \in \mathbb{R}^m : \text{inputs}$ $y \in \mathbb{R}^p : \text{outputs}$ Multiple-input multipule-output system

 $A \in \mathbb{R}^{n \times n}$: system matrix

 $C \in \mathbb{R}^{p \times n}$: output matrix

 $B \in \mathbb{R}^{n \times m}$: input matrix

 $D \in \mathbb{R}^{p \times m}$: direct feedthrough

Advantages of state-space model

- What are the advantages of state-space model?
 - ➤ Able to deal with multiple-input multiple-output(MIMO) system
 - \triangleright Feedback control with internal state x (State feedback)
 - ➤ Able to obtain optimal filters for feedback control mathematically (with no need for professional tuning technique)

Disadvantages are mentioned in the last of this seminar

- Introduction of modern control
 - >State-space representation
 - ➤ State feedback
 - ➤ State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \triangleright Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

System poles

State-space ⇒ Transfer function

$$H(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$$

$$= \frac{1}{\prod_{i=1}^{n} (s - \lambda_i)} C \ adj(sI - A)B + D \qquad \text{matrix of M}$$

 λ_i : Eigenvalue of system matrix A

Eigenvalues of A = poles of the system H(s)

(if the system is controllable and observable)

 Transfer function ⇒ State-space transform is also possible (infinite number of expressions)

Static state feedback

- Classical control
 - ➤ Use output Y for feedback control

- State feedback
 - \triangleright Use internal state x for feedback control

Static state feedback

Closed-loop system with state feedback

w/o state feedback $\dot{x} = Ax + Bu$ $\dot{y} = Cx + Du$ $\dot{y} = -Kx$ $\dot{x} = (A - BK)x$ $\dot{y} = (C - DK)x$

System matrix: $A \Rightarrow (A - BK)$

Theorem:

Any arrangement of eigenvalues of (A - BK) can be obtained by choosing K (if the system is controllable)

We can arbitrarily place closed-loop poles (eigenvalues)!!

Optimization problem

 Practically, it's impossible to arrange poles arbitrarily due to limitation of control energy

• To optimize the controller *K*, quadratic cost function *J* is used:

$$J = \int_0^\infty \underbrace{(x^T Q x + u^T R u)}_{\text{Control energy}} dt$$

Q, R: Matrix of design parameters

Optimized K (that minimizes J) can be obtained by solving Riccati eq.

$$A^{T}[S - SB(B^{T}SB + R)^{-1}BS]A - S + Q = 0.$$

We can obtain optimized *K* mathematically!

- Introduction of modern control
 - >State-space representation
 - ➤ State feedback
 - ➤ State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \succ Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

Issue with state feedback

How can we obtain all the internal information?

Issue with state feedback

How can we obtain all the internal information?

⇒ Estimate internal states by observing inputs/outputs

Kalman filter

- Kalman filter
 - ➤ Practical observer
 - \triangleright Robust to process noise w and measurement noise v
 - ➤ Use feedback of outputs estimation error $(y \hat{y})$ for estimation of internal states x
 - \triangleright Feedback gain L: Kalman gain (optimized L from Riccati eq.)

- Introduction of modern control
 - >State-space representation
 - ➤ State feedback
 - >State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \succ Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

Application for three-mirror ring cavity

- For practice, application for three-mirror ring cavity is tested:
 - Cavity locking with linear LQG control

- Introduction of modern control
 - >State-space representation
 - >State feedback
 - ➤ State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \succ Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

Implementation steps of locking

- ① Measure the transfer function of the cavity: $H(s) = Y_1(s)/U(s)$
- 2 Transform H(s) to state-space representation (A, B, C, D)
- \bigcirc Calculate optimized controller: K with LQG method
- 4 Implement (A, B, C, D) and K on a Digital signal processing (DSP) system

1 Measurement of transfer function

- Measured the transfer function of the cavity: $H(s) = Y_1(s)/U(s)$ with PI control
- Fitted with 3rd-order model and 20th-order model
 ⇒Used 3rd-order model (up to first resonance) for easy computation

② Transform H(s) to state-space model

• Transformed H(s) to state-space representation (A, B, C, D) with Matlab functions (tf2ss?)

0.0573

0.2339

-1.1449

\mathfrak{G} Calculation of optimized controller: K

• To deal with unmodelled external disturbance (e.g. 1/f laser phase noise), integral control is introduced:

*State-space model in discrete time

Additional internal state: *q* at time instant k

$$\frac{q_{k+1} = q_k + y_k}{\text{Integral of output } y}$$

Integral of output y (error signal)

Modified state-space model

$$\begin{bmatrix} x \\ q \end{bmatrix}_{k+1} = \begin{bmatrix} A & 0 \\ C & I \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix}_k + \begin{bmatrix} B \\ 0 \end{bmatrix} \tilde{u}_k + \tilde{w}_k$$
$$\tilde{y}_k = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix}_k + \tilde{v}_k,$$

Calculated optimized controller: K with LQG (cost function) method

Design parameters for cost function

$$Q_L = \sigma_1^2 = 1,$$
 $R_L = \begin{bmatrix} \sigma_2^2 & 0 \\ 0 & \sigma_3^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 10^{-7} \end{bmatrix}$ $Q_K = q = 5 \cdot 10^5,$ $R_K = r = 0.5.$

4 Implementation

• Implemented the observer and the controller on DSP system

- DS1104 dSPACE DSP system
 - ➤8 DAC channels (12-bit, 300kHz)
 - ➤ 16 DAC channels (12-bit, 300kHz)
 - ➤ Programmable with Simulink

Result

- Succeeded in locking the cavity
- UGF≃61 Hz, phase margin≃47°

Error signal and transmitted power during lock

I'm not sure...

- Is this really optimized?
- Large phase delay

 due to computation?

Open-loop transfer function

- Introduction of modern control
 - >State-space representation
 - >State feedback
 - >State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \succ Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

Autolocking with non-linear control

• With linear control, cavity lock can be unlocked due to large disturbance (goes out of linear range of the error signal)

Autolocking with non-linear control

- With linear control, cavity lock can be unlocked due to large disturbance (goes out of linear range of the error signal)
- If we can obtain the detuning Δ in outside of the linear range, we can realize autolocking
- Use non-linear signal $y_1 = f_1(\Delta)$, $y_2 = f_2(\Delta)$ to obtain detuning Δ

Obtaining detuning Δ from non-linear signal

 $\lambda/2$

Threshold

• We want to know detuning Δ from observed y_1 and y_2

$$y_{1} = -\frac{2k_{2}\beta\kappa_{0}\Delta}{\left(\frac{\kappa}{2}\right)^{2} + \Delta^{2}} + v_{1} \quad y_{2} = \frac{1}{2}\frac{\tilde{k}_{2}\kappa_{1}\kappa_{0}\beta^{2}}{\left(\frac{\kappa}{2}\right)^{2} + \Delta^{2}} + v_{2}$$
$$= f_{1}(\Delta) + v_{1}, \qquad = f_{2}(\Delta) + v_{2}.$$

- ① Measure y_{1k} and y_{2k} at time instant k
- $\ensuremath{\mbox{\sc 2}}$ Set of possible detuning Δ_k :

$$S_k = \left\{ \Delta_k \in \mathbb{R} \mid (y_{1k} - f_1(\Delta_k))^2 \le \mu_1^2 \text{ and } (y_{2k} - f_2(\Delta_k))^2 \le \mu_2^2 \right\}$$

③ Obtain mean: $\overline{\Delta_k}$ and standard deviation: σ_k

Use of standard deviation σ_k

• We can use observation error σ_k for time-varying Kalman filter

*Kalman gain L_k = feedback gain of state (x_k) estimation process

Time varying Kalman filter \int Small $\sigma_k \Rightarrow$ Large L_k : Emphasize measured output $y_k = [\overline{\Delta}_k]^T$

Large $\sigma_k \Rightarrow$ Small L_k : Emphasize previous prediction \hat{x}_k (ignore y_k)

Better estimation of internal state x_k

Implementation

- Implemented the observer and the controller on DSP system
- Identifying system and designing controller were done in the same way as previous cavity locking (no figures in the thesis)

Result

• Succeeded in locking the cavity from any initial operation point (but no figures in the thesis)

Compared with PI control

- ➤Injected step voltage (0.4V) to PZT (detuning ~ 43 MHz)
- ➤ Succeeded in locking again with non-linear control

PI control

Non-linear control

- Introduction of modern control
 - >State-space representation
 - >State feedback
 - >State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \succ Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

Damping of suspension

- Motion of test mass is excited on resonance
 - ⇒ Need passive/active damping to extract energy

- Suspension system is generally a complex MIMO system (multiple pendulum, undecoupled DOFs (longitudinal, yaw, pitch))
 - ⇒ Apply modern control for active damping!

Overview

- Target system
 - Triple pendulum suspension used for 10 m prototype @ AEI

- Active damping for longitudinal, yaw and pitch
 - ⇒ Need optimal filters for feedback control
 - Measured transfer functions and identified systems
 - \succ Designed optimal filters with \mathcal{H}_2 controller synthesis
 - *Implementation of filters was not done in this thesis

- Introduction of modern control
 - >State-space representation
 - >State feedback
 - ➤ State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \triangleright Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

Sensors/Actuators

Used 6 BOSEMs on upper mass

 u_l : Longitudinal actuation (D,E)

 u_y : Yaw actuation (D,-E)

 u_p :Pitch actuation (B,C)

 y_{Ul} : Longitudinal sensor

 y_{Uy} : Yaw sensor

 y_{Up} : Pitch sensor

Structure of a BOSEM (Birmingham Optical Sensor and Electro-Magnetic actuators)

Used 2 optical levers for lower mass

 y_{Ll} : Longitudinal sensor

 y_{Lv} : Yaw sensor

 y_{Lp} : Pitch sensor

*Used for system identification (not used for control signal)

• This system can be regarded as 3 inputs 6 outputs system $u = \frac{1}{2}$

$$u = \begin{bmatrix} u_l, u_y, u_p \end{bmatrix}^T \qquad y = \begin{bmatrix} y_{Ul}, y_{Uy}, y_{Up}, y_{Ll}, y_{Ly}, y_{Lp} \end{bmatrix}^T$$

Measurement of transfer functions

- Measured transfer function matrix using BOSEMs and optical levers
- Used LIGO CDS

$$u = \begin{bmatrix} u_l, u_y, u_p \end{bmatrix}^T \qquad y = \begin{bmatrix} y_{Ul}, y_{Uy}, y_{Up}, y_{Ll}, y_{Ly}, y_{Lp} \end{bmatrix}^T$$

$$H(s)$$

➤ Longitudinal, yaw and pitch were highly coupled (not diagonalized)

 \mathcal{H}_2 controller synthesis does not need decoupling process

Actuators of BOSEMs ⇒ Lower mass

Space-state representation

- \mathcal{H}_2 controller synthesis minimizes performance criterion
- For \mathcal{H}_2 controller synthesis, transfer function matrix H(s) was transformed to state-space model (A,B,\mathcal{C},D)
- Used Matlab balreal and modred functions
 - ⇒ 60th-order system was obtained

Use this for calculating optimal feedback filters: K(s)

- Introduction of modern control
 - >State-space representation
 - ➤ State feedback
 - ➤ State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \succ Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

\mathcal{H}_2 controller synthesis

• Closed-loop transfer function from noise w to output y_L :

- Trade-off between control performance and control energy
 - \Rightarrow optimal filter K that minimize $||F(s)||_2$ can be obtained by solving Riccati equation

Result: Obtained controller

- Calculate optimal filters K from state-space model (A, B, C, D)
- Used Matlab h2syn function
 - ⇒ 75th-order filters were obtained

Result: Closed-loop transfer function

• Simulated closed-loop transfer functions: $F(s) = \frac{Y_L(s)}{W(s)}$

 Succeeded in damping modes by ~50 dB without exciting other modes

Blue: undamped case

Red: with closed-loop

- Introduction of modern control
 - >State-space representation
 - >State feedback
 - ➤ State observer (Kalman-filter)
- Application for three-mirror ring cavity
 - ➤ Cavity locking with linear LQG control
 - >Autolocking with non-linear control
- Application for suspension damping system
 - >System identification of triple pendulum suspension
 - \succ Designing optimal filters with \mathcal{H}_2 controller synthesis
- Advantage/disadvantage of modern control
- Summary

Advantages/Disadvantages of modern control

Advantages

- ➤ Able to deal with multiple-input multiple-output (MIMO) uncoupled system
- \triangleright Feedback control with internal state x (State feedback)
- Able to obtain optimal filters for feedback control mathematically (with no need for professional tuning technique)

Disadvantages

- For a too complicated system, enormous computation is needed
- ➤ Need precise system identification
- ➤ Need to set design parameters of cost function manually

Summary

 Application of modern control for gravitational wave detectors and quantum optical experiments

- ■Application for a three-mirror ring cavity
 - ➤ Locked cavity with linear LQG control
 - ➤ Autolock with non-linear control
- ■Application for a suspension system
 - ightharpoonup Designed optimal filters for active damping of triple pendulum suspension with \mathcal{H}_2 controller synthesis technique

