Phase Shift of Linear Polarizations on Mirror Coating

1

M2 Hiroki Fujimoto 2021/7/9 @Ando Lab Seminar

Contents

Resonant frequency difference in DANCE

Dielectric mirror and phase shift

◆How to measure the coating phase shift

Resonant frequency difference in DANCE

Axion-photon interaction

Axion-photon interaction causes phase velocity difference

Enhance signal with DANCE cavity

Axion signal can be enhanced with bow-tie ring cavity

Simultaneous resonance is needed to amplify both carrier and axion sidebands

Phase difference on mirror's surface

S- and P- polarizations cannot resonate simultaneously

In DANCE Act-1, phase difference \approx 3 deg

Upper limit of target phase difference = 0.06 deg (Finesse:3000)

What is the cause?

Birefringence of mirror?

Photoelasticity induced by holding pressure?

Mirror

Mirror holding jig

Both did not change the resonant frequency difference...

Fresnel Reflection

Dielectric Mirror

Actually, mirror is not a single boundary

Can dielectric multilayers shift the phase continuously?

Dielectric Mirror

Actually, mirror is not a single boundary

Can dielectric multilayers shift the phase continuously?

Yes! Dielectric mirror behaves completely differently from a single boundary

Tanioka-san's doctor thesis (NAOJ)

Resonant frequency difference between S- and P- pol. in a folded cavity

Measured the thickness of molecular layer on a cooled mirror

Used the theory of phase shift on dielectric mirror

Thin Film Optical Filters

The theory of dielectric mirror is written

Dielectric mirror and phase shift

Normal reflection on a single layer

Consider a single layer (2 boundaries)

Normal reflection on a single layer

Consider a single layer (2 boundaries)

A single film is equivalent to a cavity

Optical thickness: $n_1 d_1 = \lambda/4$ Anti-resonance (Higher reflectance)

For example, , $n_0 = 1.44$ (SiO2), $n_1 = 2.2$ (Ta2O5) $R_{\rm in} = R_{\rm end} = 0.043 \Rightarrow R_{\rm cav} = 0.16$

Normal reflection on multilayers

Equivalent to many coupled cavities

Optical thickness: $n_0d_0 = n_1d_1 = \lambda/4$

Anti-resonance in all cavities Higher reflectivity than a single layer

Oblique reflection on multilayers

Consider oblique incidence: $\theta_0 \neq 0$ Design: $n_0 d_0 = n_1 d_1 = \lambda/4$ Optical thickness : $n_0 d_0 \cos \theta_0$, $n_1 d_1 \cos \theta_1$ Off anti-resonance Reflectivity of a boundary: different for S- and P-pol.

Different coupled cavities (off-antiresonance) for S- and P-pol.

Different phase shift for S- and P-pol

Zero phase shift mirror

Multilayers are perfectly anti-resonant for S- and P- pol. Phase difference between S- and P-pol = 0

But difficult to realize due to the accuracy for thickness

Calculation of reflectivity

I designed a high reflective mirror for 45 deg incidence (2N=20)

Dielectric mirror for 45 deg incidence

 $R_{\rm S} = 0.9999, R_{\rm P} = 0.9962$ for 45 deg incidence

Phase difference between S and P changes continuously

Phase difference is 0 at 45 deg incidence

Error of thickness

Added error of $1\%(1 \sim 2 \text{ nm})$ to thickness of all layers

Phase difference = 3.3 deg at 45 deg incidence

Phase difference is sensitive to error of thickness

How to measure the coating phase shift of S- and P-pol.

From resonant frequency difference, phase difference: $\Delta \phi = \Delta \phi_{M1} + \Delta \phi_{M2} + \Delta \phi_{M3} + \Delta \phi_{M4}$ is measured

Phase difference on a single mirror can not be measured

Incident angle ≠ 0 deg on only folding mirror

From resonant frequency difference, Phase difference: : $\Delta \phi = \Delta \phi_{fold}$ is measured.

Phase difference on a single mirror can be measured

Plan 2: Use modulation and demodulation

Phase shift with normal incidence was measured by ALPS group

Rotate input linear polarization at 20 Hz Use beat note of 5 MHz of two lasers

Phase difference signal can be demodulated accuracy: $\pm 0.01 \text{ deg}$

Characterization of Mirror Birefringence for

ALPS

Harrison LaBollita University of Florida hlabollita0219@lions.piedmont.edu August 4, 2017

(http://www.phys.ufl.edu/REU/2017/LaBollitaHarrison.pdf)

Bonus slide: Application of phase shift on mirror coating

By designing the dielectric layers, phase shift of 90 deg can be realized.

Ellipticity $\varepsilon > 98\%$ was achieved

Phase shifting mirror

Summary

- Dielectric coating can be regarded as many anti-resonant coupled cavities
- ◆Input of light from undesigned angle
 ⇒phase difference between S- and P- pol.
- Difficult to make perfect zero phase shift mirror

Thank you for listening