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Reinforcement Learning
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What is Reinforcement Learning?

There are three basic fields in Machine learning
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Machine Learning

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning



�Supervised learning
Supervised learning is used for analysis or prediction.
Predict output for the input.
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Input: image Neural Network Output: 
prediction

Cat：95%
Lion：5% 

(https://www.researchgate.net/publication/321259051_Predict
ion_of_wind_pressure_coefficients_on_building_surfaces_using
_Artificial_Neural_Networks)

What is Reinforcement Learning?



�Reinforcement learning (RL)

Reinforcement learning is used to control the environment.
Agent learns optimal action through interaction with the environment.
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environment

Agent
recognizes the state 
of the environment

(ipsj.ixsq.nii.ac.jp) 

selects the optimal 
action

Take the optimal 
action

What is Reinforcement Learning?

https://www.google.com/url?sa=i&url=https%3A%2F%2Fipsj.ixsq.nii.ac.jp%2Fej%2Findex.php%3Faction%3Dpages_view_main%26active_action%3Drepository_action_common_download%26item_id%3D183865%26item_no%3D1%26attribute_id%3D1%26file_no%3D1%26page_id%3D13%26block_id%3D8&psig=AOvVaw3rNh980pMgRWq6RHuE7VbE&ust=1601533633611000&source=images&cd=vfe&ved=0CAMQjB1qFwoTCJjNnu6fkOwCFQAAAAAdAAAAABAD


�Examples in games
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Alpha Go

(https://www.engadget.com/2016/03/12/watch-alphago-vs-lee-sedol-
round-3-live-right-now/?_ga=2.241475077.649112291.1601463824-
230945953.1601463824 ) 

Agent57

(https://arxiv.org/abs/2003.13350 ) 

What is Reinforcement Learning?

https://www.engadget.com/2016/03/12/watch-alphago-vs-lee-sedol-round-3-live-right-now/?_ga=2.241475077.649112291.1601463824-230945953.1601463824
https://arxiv.org/abs/2003.13350


�Example in physical robotics
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A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum 
on a Cart,  Procedia Manufacturing,  Volume 24,  2018,  Pages 15-20

What is Reinforcement Learning?

https://www.sciencedirect.com/science/article/pii/S2351978918305134


Defining the RL problem
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𝐹

𝜃

𝑥

Environment Agent

State: 𝑆%

Reward: 𝑅%

Action: 𝐴%

State of cart pole: 𝑆% = (𝜃, �̇�, 𝑥, �̇�)
Reward to Agent: 𝑅% = cos 𝜃
Actions that agent takes: 𝐴% ∈ ±𝐹2

Cart Pole



Defining the RL problem
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𝜃

𝑥

Environment Agent

State: 𝑆%34

Reward: 𝑅%34

Action: 𝐴%

State of cart pole: 𝑆% = (𝜃, �̇�, 𝑥, �̇�)
Reward to Agent: 𝑅% = cos 𝜃
Actions that agent takes: 𝐴% ∈ ±𝐹2

Cart Pole



Defining the RL problem
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𝐹

𝜃

𝑥

Environment Agent

State: 𝑆%

Reward: 𝑅%

Action: 𝐴%

Cart Pole

Total rewards (return): 𝐺 = Σ%728 𝑅%
We want the agent that obtains the largest return.

Many algorithms: Q-Learning, SARSA, Policy gradient               
method, Actor-Critic method, etc.  



Q-Learning
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Total rewards (return): 𝐺 = Σ%748 𝑅%
State-action value function (Q function): 

𝑄 𝑠, 𝑎 = 𝔼 𝐺 𝑆2 = 𝑠, 𝐴2 = 𝑎]
≈Value of choosing action: 𝑎

when the state is 𝑠

Choose 𝑎𝑟𝑔 max
D
𝑄 𝑠, 𝑎

Based on observed 𝑅% and Bellman 
eq., update the estimated 𝑄 𝑠, 𝑎

Environment Agent

State: 𝑆%

Reward: 𝑅%

Action: 𝐴%



Deep Q Network
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�Deep Q Network (DQN)
Combination of Q-Learning and Deep Learning
Estimate 𝑄 𝑠, 𝑎 with Neural Network

Environment Agent

State: 𝑆%

Reward: 𝑅%

Action: 𝐴%

𝑄 𝑆%, 𝑎4
𝑆%

𝑄 𝑆%, 𝑎E

Calculate 𝑄 for all actions



Training the Interferobot
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Interferobot is an agent trained to align Mach-
Zehnder interferometer.

What is Interferobot?
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State:

Agent 
(Interferobot)

Action: tilting 
mirror 1 and BS 2



Training in simulated environment
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Agent is trained through interaction (trial and error) 
with the environment.

Training in physical environment takes long time.

Train the agent in simulated environment



Simulator of Mach-Zehnder interferometer
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�Configuration

・Gaussian beam with a plane wavefront with constant radius
・PZT actuator for alignment is on mirror 1 and BS 2

State:

Agent 
(Interferobot)

parameter 𝑎 𝑏 𝑐 Beam radius Wavelength
value 20 cm 30 cm 10 cm 950 μm 635 nm



Simulator of Mach-Zehnder interferometer
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� Initial condition

At the beginning of each training, mirror 1 and BS 2 are tilted 
randomly within±𝛼 from aligned state 

mirror 1

camera

x

y
BS 2

parameter 𝛼I4,J 𝛼I4,K 𝛼LME,J 𝛼LME,K
value [rad] 5.2 ⋅ 10TU 3.7 ⋅ 10TU 2.6 ⋅ 10TU 1.8 ⋅ 10TU

Beam 1

Beam 2



Simulator of Mach-Zehnder interferometer
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�State of Mach-Zehnder interferometer

Interferometric pattern changes with the optical path 
difference ∆𝐿: 0 → 𝜆

State:

State = 16 images of 64×64 pixels acquired by camera 

∆𝐿 (changed by 
PZT on mirror2)

16 images



Simulator of Mach-Zehnder interferometer
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�Domain randomization

Adding noise to the simulated environment can reduce 
the gap between the simulated and real environments.

• Vary beam radius by ±20% randomly
• Rescale the brightness of observed images by ±30% randomly
• Add white noise to each pixel, etc.

Simulated image Simulated image 
with noise



• Agent never gets penalty (∵ 𝑉 ≥ 0)
• Agent is not rewarded for fine-tuning 

(eg. 𝑉 = 0.95 vs. 𝑉 = 0.98)

Simulator of Mach-Zehnder interferometer
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�Reward
Visibility: 0 ≤ 𝑉 ≤ 1

Visibility itself is not suitable for reward. 

If 𝑉 is used 
as reward

Reward: 𝑅 = 𝑉 − log 1 − 𝑉 − 1

State: 𝑆% =

Reward: 𝑅% = 𝑉% − log 1 − 𝑉% − 1

𝑉0 1

5

−1

𝑅



Simulator of Mach-Zehnder interferometer
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�Actions of Interferobot

Do nothing
Tilt mirror 1 horizontally by ±0.01,±0.05,±0.1 ×𝛼I4,J
Tilt mirror 1 vertically      by ±0.01,±0.05,±0.1 ×𝛼I4,K
Tilt BS 2 horizontally        by ±0.01,±0.05,±0.1 ×𝛼LME,J
Tilt BS 2 vertically             by ±0.01,±0.05,±0.1 ×𝛼LME,K

parameter 𝛼I4,J 𝛼I4,K 𝛼LME,J 𝛼LME,K

value [rad] 5.2 ⋅ 10TU 3.7 ⋅ 10TU 2.6 ⋅ 10TU 1.8 ⋅ 10TU

Agent 
(Interferobot)



Simulator of Mach-Zehnder interferometer
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�Conditions for training

1. Repeat interaction for 100 steps (1 episode)
Interferobot is trained with double dueling DQN

2. Reset the simulated environment and begin new 
episode

3. Repeat 1 and 2 for 5×10j times (10 hours) 

State: 𝑆% =

Reward: 𝑅% = 𝑉% − log 1 − 𝑉% − 1

Action: 𝐴% ∈

Do nothing
Tilt mirror 1 horizontally
Tilt mirror 1 vertically
Tilt BS 2 horizontally
Tilt BS 2 vertically



Result in the simulated environment
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mirror 1

camera
BS 2

angle

distance
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Experiment with the physical 
environment
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Prepare the same Mach-Zehnder interferometer as the 
simulated one.

Let the trained Interferobot align physical Mach-Zehnder 
interferometer

Experiments were conducted for 100 times (100 episodes)

Experiment with the physical environment
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�Result in 1 episode

Experiment with the physical environment

camera
BS 2 angle

distance

x

y

di
st

an
ce

 fo
r x

 a
xi

s [
m

m
]

~ angle



Experiment with the physical environment
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�Comparison with human’s performance



Summary
30

�Training in simulated environment can reduce the 
training time.

� Interferobot performed well in both simulated and 
physical environments.

� Interferobot outperformed human in aligning 
Mach-Zehnder interferometer.



Thank you for listening
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