Interferobot: aligning an optical interferometer by a reinforcement learning agent

M1 Hiroki Fujimoto Oct. 2 @Ando Lab Seminar

Paper

• <u>https://arxiv.org/abs/2006.02252</u>

Interferobot: aligning an optical interferometer by a reinforcement learning agent

Dmitry Sorokin^{1,4} dmitrii.sorokin@phystech.edu Alexander Ulanov¹ a.e.ulanov@gmail.com

Ekaterina Sazhina^{1,4} sazhinaekaterina@gmail.com

Alexander Lvovsky^{1,2,3} alex.lvovsky⁰physics.ox.ac.uk

¹Russian Quantum Center, Moscow, Russia ²University of Oxford, United Kingdom ³P. N. Lebedev Physics Institute, Moscow, Russia ⁴Moscow Institute of Physics and Technology

Abstract

Limitations in acquiring training data restrict potential applications of deep reinforcement learning (RL) methods to the training of real-world robots. Here we train an RL agent to align a Mach-Zehnder interferometer, which is an essential part of many optical experiments, based on images of interference fringes acquired by a monocular camera. The agent is trained in a simulated environment, without any hand-coded features or a priori information about the physics, and subsequently transferred to a physical interferometer. Thanks to a set of domain randomizations

Contents

Introduction of Reinforcement Learning

What is Reinforcement Learning?
Defining the Reinforcement Learning problem

Interferobot:

What is Interferobot?

Training the Interferobot in simulated environment

Experiment with physical environment

Reinforcement Learning

There are three basic fields in Machine learning

Supervised learning

Supervised learning is used for analysis or prediction. Predict output for the input.

(https://www.researchgate.net/publication/321259051_Predict ion_of_wind_pressure_coefficients_on_building_surfaces_using _Artificial_Neural_Networks)

• Reinforcement learning (RL)

Reinforcement learning is used to control the environment. Agent learns optimal action through interaction with the environment.

• Examples in games

Alpha Go

(https://www.engadget.com/2016/03/12/watch-alphago-vs-lee-sedolround-3-live-right-now/? ga=2.241475077.649112291.1601463824-230945953.1601463824)

Agent57

• Example in physical robotics

<u>A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum</u> <u>on a Cart, Procedia Manufacturing, Volume 24, 2018, Pages 15-20</u>

Defining the RL problem

State of cart pole: $S_t = (\theta, \dot{\theta}, x, \dot{x})$

Reward to Agent: $R_t = \cos \theta$

Actions that agent takes: $A_t \in \{\pm F_0\}$

10

Defining the RL problem

State of cart pole: $S_t = (\theta, \dot{\theta}, x, \dot{x})$ Reward to Agent: $R_t = \cos \theta$

Actions that agent takes: $A_t \in \{\pm F_0\}$

Defining the RL problem

Total rewards (return): $G = \Sigma_{t=0}^T R_t$

We want the agent that obtains the largest return.

Many algorithms: Q-Learning, SARSA, Policy gradient method, Actor-Critic method, etc.

Q-Learning

Total rewards (return): $G = \Sigma_{t=1}^T R_t$

Deep Q Network

Deep Q Network (DQN)

Combination of Q-Learning and Deep Learning Estimate Q(s, a) with Neural Network

Training the Interferobot

What is Interferobot?

Interferobot is an agent trained to align Mach-Zehnder interferometer.

Training in simulated environment

Agent is trained through interaction (trial and error) with the environment.

Training in physical environment takes long time.

Train the agent in simulated environment

- Configuration
- Gaussian beam with a plane wavefront with constant radius
- PZT actuator for alignment is on mirror 1 and BS 2

parameter	a	b	С	Beam radius	Wavelength
value	20 cm	30 cm	10 cm	950 μm	635 nm

Initial condition

At the beginning of each training, mirror 1 and BS 2 are tilted randomly within $\pm \alpha$ from aligned state

- State of Mach-Zehnder interferometer
- Interferometric pattern changes with the optical path difference $\Delta L: 0 \rightarrow \lambda$

 ΔL (changed by PZT on mirror2)

State = 16 images of 64×64 pixels acquired by camera

Domain randomization

Adding noise to the simulated environment can reduce the gap between the simulated and real environments.

- Vary beam radius by ± 20 % randomly
- Rescale the brightness of observed images by ± 30 % randomly
- Add white noise to each pixel, etc.

• Reward

5

R

Visibility:
$$V = \frac{\max_t(I_{tot}) - \min_t(I_{tot})}{\max_t(I_{tot}) + \min_t(I_{tot})}, \quad 0 \le V \le 1$$

If V is used
as reward

Agent never gets penalty $(\because V \ge 0)$
Agent is not rewarded for fine-tuning
(eg. $V = 0.95$ vs. $V = 0.98$)
Visibility itself is not suitable for reward.
Reward: $R = V - \log(1 - V) - 1$
State: $S_t = \bigcup \bigcup \dotsb \dotsb$
Reward: $R_t = V_t - \log(1 - V_t) - 1$

1

Actions of Interferobot

 $\begin{cases} \text{Do nothing} \\ \text{Tilt mirror 1 horizontally by } [\pm 0.01, \pm 0.05, \pm 0.1] \times \alpha_{M1,x} \\ \text{Tilt mirror 1 vertically} & \text{by } [\pm 0.01, \pm 0.05, \pm 0.1] \times \alpha_{M1,y} \\ \text{Tilt BS 2 horizontally} & \text{by } [\pm 0.01, \pm 0.05, \pm 0.1] \times \alpha_{BS2,x} \\ \text{Tilt BS 2 vertically} & \text{by } [\pm 0.01, \pm 0.05, \pm 0.1] \times \alpha_{BS2,y} \end{cases}$

- Conditions for training
 - 1. Repeat interaction for 100 steps (1 episode) Interferobot is trained with double dueling DQN
 - 2. Reset the simulated environment and begin new episode
 - 3. Repeat 1 and 2 for 5×10^4 times (10 hours)

Result in the simulated environment

Prepare the same Mach-Zehnder interferometer as the simulated one.

Let the trained Interferobot align physical Mach-Zehnder interferometer

Experiments were conducted for 100 times (100 episodes)

Comparison with human's performance

Summary

- Training in simulated environment can reduce the training time.
- Interferobot performed well in both simulated and physical environments.
- Interferobot outperformed human in aligning Mach-Zehnder interferometer.

Thank you for listening