Future plans of DANCE Act-1 toward the Ph.D.

Hiroki Fujimoto D2, Department of Physics, Ando Lab.

April 24, 2023, Ando Lab. Mid-term report meeting

1

- ➢ Review of DANCE Act-1
- Current status of DANCE Act-1 / What to do for Ph.D.?

➢Future plans

- Improvement of shot noise limit
- Reduction of noises
 - 1 Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence
 - 2 Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
 - ③ Suppress phase noises by feedback control
 - 4-mirror auxiliary cavity to reduce parasitic resonance

➢ Rough schedule for Ph.D. / Summary

► Review of DANCE Act-1

Current status of DANCE Act-1 / What to do for Ph.D.?

➢Future plans

Improvement of shot noise limit

Reduction of noises

- 1 Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence
- 2 Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
- ③ Suppress phase noises by feedback control
 - 4-mirror auxiliary cavity to reduce parasitic resonance

Rough schedule for Ph.D. / Summary

Axion-photon interaction

- Axion signal appears as p-pol. sidebands in amplitude quadrature
- No need for strong magnetic fields

Light path dependency of polarization rotation

Polarization rotation can be measured with a PBS and PDs

Principle of DANCE

• Linear cavity

Polarization plane flips by reflection \Rightarrow cancels rotation in a round trip

Bow-tie ring cavity [1,2]

Two reflections prevent polarization flip \Rightarrow enhances rotational angle

Both s-pol. and p-pol. need to be resonant

Issue –Resonant frequency difference–

- There is resonant frequency difference between s-pol. and p-pol. (~3 MHz in DANCE Act-1)
- by phase shift $\Delta \phi$ on cavity mirrors
 - > s-pol. and p-pol. can not resonate simultaneously
 - Sensitivity is degraded

Auxiliary cavity for simultaneous resonance

- Auxiliary cavity can control the length of light path for p-pol.
 - able to compensate resonant frequency difference and realize simultaneous resonance

► Review of DANCE Act-1

➤Current status of DANCE Act-1 / What to do for Ph.D.?

➢Future plans

- Improvement of shot noise limit
- Reduction of noises
 - 1 Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence
 - 2 Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
 - ③ Suppress phase noises by feedback control
 - 4-mirror auxiliary cavity to reduce parasitic resonance

Rough schedule for Ph.D. / Summary

Performance of optical cavities

- Input power: $\sim 20 \text{ mW}$
- Finesse for s-pol. : 549 ± 3
- Finesse for p-pol. : 36.8 ± 0.2
- Reflectivity of the auxiliary cavity: $R_{aux,p} \sim 94.3\%$, $R_{aux,s} > 99.9\%$

Photo

detectors

Estimated sensitivity

- $\cdot > 2$ orders of magnitude better than the first result of DANCE Act-1
- 1-4 orders of magnitude worse than shot noise limit
- ~ 4 orders of magnitude worse than CAST limit

What to do for Ph.D.?

- Can I set upper bound better than CAST limit?
- ⇒ Extremely difficult due the issue of the auxiliary cavity... Even for improved shot noise.

Goal: Finish DANCE Act-1 with an auxiliary cavity toward DANCE Act-2

Identify technical noises that appear in interferometric axion search

Main content of this talk

- Maximize the sensitivity:
 - Vacuum
 - Vibration isolation
 - High power laser
 - Optimized cavity mirrors
 - Optimized feedback control
- Long-term observation and Data analysis
- Accumulate knowledge for next DANCE Act-2 (with wavelength tunable laser?)

► Review of DANCE Act-1

Current status of DANCE Act-1 / What to do for Ph.D.?

➢Future plans

Improvement of shot noise limit

- Reduction of noises
 - 1 Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence
 - 2 Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
 - ③ Suppress phase noises by feedback control
 - 4-mirror auxiliary cavity to reduce parasitic resonance

Rough schedule for Ph.D. / Summary

Improvement of shot noise limit

 \succ Current shot noise is \sim 3 orders of magnitude larger than target sensitivity

- Low finesses: $\mathcal{F}_s \sim 550$, $\mathcal{F}_p \sim 37$ and signal loss by non-criticality $\Rightarrow \sim 2$ orders
- Limited input power : $P_{in} \sim 20 \text{ mW} \Rightarrow \sim 1 \text{ order}$

Improvement of shot noise limit

	\mathcal{F}_{s}	\mathcal{F}_P
Target value	3000	3000
Measured value	549 <u>+</u> 3	36.8 ± 0.2

• s-pol.: Due to low R at input/output mirrors: $R_s = 99.4\%$ (Target: 99.9%)

• p-pol.: Due to low R at input/output mirrors: $R_p = 94\%$ (Target: 99.9%) and loss at aux. cavity: $R_{aux,p} = 94\%$ (Target: >99.99%)

Limited by R_{PBS,p} and AR coating of PBS

➤We need high performance PBS

- $R_{\rm s} > 99.9\%$ $R_{\rm p} < 0.1\%$ R of AR coating < 0.1%

Impossible to make (Wavelength tuning method for simultaneous resonance can avoid this issue)

Toward my Ph.D. thesis, I stopped seeking for better PBS, but optimize the R of input/output mirrors for a little improvement

Improvement of shot noise limit

► Review of DANCE Act-1

Current status of DANCE Act-1 / What to do for Ph.D.?

► Future plans

Improvement of shot noise limit

- Reduction of noises
 - 1 Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence
 - 2 Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
 - ③ Suppress phase noises by feedback control
 - 4-mirror auxiliary cavity to reduce parasitic resonance

Rough schedule for Ph.D. / Summary

Reduction of noises

• Current sensitivity is 1-4 orders of magnitude worse than shot noise

We need further reduction of technical noises

Measurement of polarization rotation

- Axion signal: rotational oscillation of polarization plane (p-pol.)
- Can be measured with HWP, PBS and PDs

Raw power spectrum of polarization rotation

Measured the rotational angle of the transmitted light

• Measured noise is larger than shot noise by $1 \sim 4$ orders of magnitude

Noise hunting

- Phase noise (cavity vibration, laser frequency noise) is limiting
- In principle, phase noise is negligible in DANCE...
- Phase noise couples to the p-pol. generated by birefringence of cavity mirrors or polarization mismatch at injection port

Phasor diagram of DANCE

Cross-coupling of p-pol. phase noise

- α : birefringence coupling in cavity
- β: unwanted amplitude-p-pol.
 (polarization mismatch at injection)
- γ: unwanted phase-p-pol.
 (polarization mismatch at injection)
- θ : HWP coupling for LO generation
- ϕ_p : phase noise of p-pol.

PD output at detection $\propto -\theta(\alpha + \gamma)\phi_p$ Coherence with phase noise of p-pol.

Cross-coupling of s-pol. phase noise

- α : birefringence coupling in cavity
- β: unwanted amplitude-p-pol.
 (polarization mismatch at injection)
- γ: unwanted phase-p-pol.
 (polarization mismatch at injection)
- θ : HWP coupling for LO generation
- ϕ_s : phase noise of s-pol.

PD output at detection $\propto (-\beta \alpha + \gamma \theta)\phi_s$

Coherence with phase noise of s-pol.

How to reduce the current noises

- 3 plans to reduce the current noises:
 - 1 Reduce the coupling coefficient
 - Additional injection of p-pol. to cancel the cavity birefringence (no so effective?)
 - 2 Reduce the cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
 - ③ Suppress the phase noises by feedback control
 - 4-mirror auxiliary cavity to deal with the parasitic resonance

► Review of DANCE Act-1

Current status of DANCE Act-1 / What to do for Ph.D.?

➢Future plans

Improvement of shot noise limit

- Reduction of noises
 - 1 Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence
 - 2 Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
 - ③ Suppress phase noises by feedback control
 - 4-mirror auxiliary cavity to reduce parasitic resonance

Rough schedule for Ph.D. / Summary

1 Reduction of coupling coefficient

- To cancel the cavity birefringence, inject additional p-pol.
- Adjust the HWP and the QWP at the injection port

s-pol.

p-pol.

1 Reduction of coupling coefficient

- Inject p-pol. so that cavity birefringence can be cancelled ($\gamma = -\alpha$) PD output at detection $\propto -\theta(\alpha + \gamma)\phi_p = 0 \times \phi_p$
- However, for dependency of ϕ_s ,

PD output at detection $\propto (-\beta \alpha + \gamma \theta)\phi_s = -\alpha(\theta + \beta)\phi_s$

• For axion signal,

PD output at detection $\propto (\theta + \beta) \times (axion sidebands)$

1 Reduction of coupling coefficient

• Inject p-pol. so that ϕ_s can be cancelled $(\gamma = \alpha \beta / \theta)$

PD output at detection $\propto (-\beta \alpha + \gamma \theta)\phi_s = 0 \times \phi_s$

• However, for dependency of ϕ_p ,

PD output at detection $\propto -\theta(\alpha + \gamma)\phi_p = -\alpha(\theta + \beta)\phi_p$

• For axion signal,

PD output at detection $\propto (\theta + \beta) \times (axion sidebands)$

► Review of DANCE Act-1

Current status of DANCE Act-1 / What to do for Ph.D.?

Future plans

Improvement of shot noise limit

Reduction of noises

- (1) Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence

- (2) Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber

(3) Suppress phase noises by feedback control

4-mirror auxiliary cavity to reduce parasitic resonance

Rough schedule for Ph.D. / Summary

31

2 Reduce cavity vibration and air turbulence

To reduce the cavity vibration and air turbulence, install followings:

➤Vacuum chamber

- $40 \text{ cm} \times 100 \text{ cm}$, rectangular shape like Michimura-san's chamber for B-L DM
- Going to order to Ono Denki

Stack isolation system

 Going to refer to Numata-san's stack isolation system

Inject laser from

► Review of DANCE Act-1

Current status of DANCE Act-1 / What to do for Ph.D.?

➢Future plans

Improvement of shot noise limit

Reduction of noises

- 1 Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence
- 2 Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
- ③ Suppress phase noises by feedback control
 - 4-mirror auxiliary cavity to reduce parasitic resonance

Rough schedule for Ph.D. / Summary

③ Suppress phase noises by feedback control

- Phase noise can be suppressed by feedback control
- Bandwidth of feedback control for p-pol. is narrow (UGF $\simeq 30$ Hz) \Rightarrow can not suppress vibration noise of aux. cavity
- Parasitic resonance of the actuator is limiting the bandwidth

3 Suppress phase noises by feedback control

• Piezo-actuated mirror can cause parasitic resonance

• 4 plans to remove parasitic resonance:

Plan A: Piezo-actuated mirror attached on heavy rigid mass

Plan B: Piezo-actuated mirror mounted in soft materials

- B4 experiment in 2022 S Semester by Okuma-kun and Sugawara-kun
- Great improvement but for the drift by temperature

Plan C: Inverse transfer function implemented by digital filter

Plan D: Robust control (Modern control)

Introduced in the

Midterm report 2022

3 Suppress phase noises by feedback control

Plan A: Piezo-actuated mirror attached on heavy rigid mass

- ► Review of DANCE Act-1
- Current status of DANCE Act-1 / What to do for Ph.D.?

► Future plans

- Improvement of shot noise limit
- Reduction of noises
 - 1 Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence
 - 2 Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
 - ③ Suppress phase noises by feedback control
 - 4-mirror auxiliary cavity to reduce parasitic resonance
- ➢Rough schedule for Ph.D. / Summary

Rough schedule toward Ph.D.

Summary

➢ Future plans of DANCE Act-1 toward Ph.D.

- Improvement of shot noise limit
- Reduction of noises
 - 1 Reduce coupling coefficient
 - Additional injection of p-pol. for cancelling birefringence
 - 2 Reduce cavity vibration and air turbulence
 - Stack isolation system
 - Vacuum chamber
 - 3 Suppress phase noises by feedback control
 - 4-mirror auxiliary cavity to reduce parasitic resonance

Schedule for the next two years