Reports on IDM 2024

Hinata Takidera (D1) Department of Physics, The University of Tokyo

Ando Lab Seminar, October 11th, 2024

IDM 2024 LIDA DarkGEO CAST

IDM 2024

IDM 2024 (Identification of Dark Matter 2024) • Aim to draw a complete picture of the status of dark matter searches

- July 8th 12th, 2024
- L'Aquila, Italy
- Hold once every 2 years

IDM 2024

References

LIDA

(LIDA), Phys. Rev. Lett. **132**, 191002 (2024).

DarkGEO

New J. Phys. 26, 055002 (2024).

CAST

- Phys. 13, 584 (2017).

• J. Heinze et al., First Results of the Laser-Interferometric Detector for Axions

• J. Heinze et al., DarkGEO: a large-scale laser-Interferometric axion detector,

CAST Collaboration, New CAST limit on the axion-photon interaction, Nat.

 CAST Collaboration, A new upper limit on the axion-photon coupling with an extended CAST run with a Xe-based Micromegas detector, arXiv:2406.16840.

LIDA

LIDA (Laser-Interferometric Detector for Axions) • Dark matter axion search with laser interferometer technique

- Linear polarization
- Aim to detect p-polarization (Axion signal)

1st science run

Peak sensitivity $g_{a\gamma} = 1.51 \times 10^{-10} \text{ GeV}^{-1}$ for $m_a = 1.985 \text{ neV}$ (95% C.L.)

Input pump power12 WIntra-cavity power118 kWMeasurement time85 hDetuning478 kHzFinesse (s-pol.)74220Finesse (p-pol.)2220

Discussion

Sensitivity is limited by

- electronic dark noise
- shot noise
- technical laser noise

If disturbed, the cavity changes its state correlating with

- a reduction in circulating power
- a distortion of the transmitted field
- higher readout noise

Transmitted light is elliptically polarized, if s-polarization is injected

Next run

	1st run	Next ru
Intra-cavity power	118 kW	200 kV
Aeasurement time	85 h	6 month
Squeezing level	_	10 dB
Detuning	478 kHz	0 kHz

- Preparing squeezing light
- Adjusting resonant frequency difference by tuning angle of the mirrors with pico-motor

DarkGEO

DarkGEO-II: rectangular configuration

DarkGEO prospects

	1st run	Next run	DarkG
Intra-cavity power	118 kW	200 kW	10,000
Measurement time	85 h	6 months	1 yea
Squeezing level	-	10 dB	10 d
Detuning	478 kHz	0 kHz	0 kH

11

CAST

CAST (SERN Axion Solar Telescope)

- A powerful axion helioscope
- Decommissioned prototype LHC dipole magnet
- Solar tracking possible during sunrise and sunset (2 × 1.5 h per day)

How to obtain upper limit

Differential solar axion flux

$$\frac{d\Phi_a}{dE} = 6.02 \times 10^{10} \left(\frac{g_{a\gamma}}{10^{-10} \text{ GeV}} \right)$$

Likelihood function

Upper limit is set by integrating the following posterior probability from 0 to 95 %

 $\mathcal{P} = \mathcal{L} \times \Pi$ Posterior probability Prior probability

CAST upper limit

Gas phase Vacuum phase 10^{-6} $|g_{a\gamma}|$ (GeV⁻¹) 10^{-10} OSQAR 10^{-10} DAMA 10^{-9} SUMICO CAST 10^{-10} 10-11 HESS Haloscopes 10^{-12} 10^{-13} 10^{-14} 10^{-15} 10^{-10} 10^{-7} 10^{-6} 10^{-5} 10^{-3} 10^{-2} 10^{-8} 10^{-4} 10^{-1} 10^{-9}

Vacuum $m_a < 0.02 \text{ eV}$ 4He $0.02 < m_a < 0.39 \text{ eV}$ 3_{He} $0.39 < m_a < 1.17 \text{ eV}$

far exceeds the length of the magnet

CAST upper limit

Gas phase Vacuum phase 10^{-6} $|g_{a\gamma}|$ (GeV⁻¹) 10 OSQAR 10^{-10} DAMA 10^{-9} SUMICO CAST 10^{-10} 10-11 HESS Haloscopes 10^{-12} 10^{-13} 10^{-14} 10^{-15} 10^{-10} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-3} 10^{-2} 10^{-4} 10^{-1} 10^{-2}

Vacuum $m_a < 0.02 \text{ eV}$ 4He $0.02 < m_a < 0.39 \text{ eV}$ 3_{He} $0.39 < m_a < 1.17 \text{ eV}$

10 m_a(eV)

Axion-photon conversion probability Gas phase

Photon refraction mass

The axion-photon momentum mismatch will reduce the sensitivity

 \rightarrow Match photon refraction mass determined by buffer gas density to axion mass

CAST Collaboration, J. Cosmol. Astropart. Phys. 02 (2009) 008. CAST Collaboration, Phys. Rev. D 92, 021101 (2015). CAST Collaboration, Phys. Rev. Lett. **107**, 261302 (2011). CAST Collaboration, Phys. Rev. Lett. **112**, 091302 (2014).

Principle of detection

The IAXO pathfinder ultra-low background detector

Microbulk Micromegas detectors

- Very homogeneous amplification gap, uniform gain
- Intrinsically radiopure
- Good energy and spatial resolution
- Pixelized readout gives topological information

X-rays ionize the gas in the conversion region and the produced signal is read by the Micromegas

chamber

Readout strips connector

Update of detector

Toward Xe-based gas mixtures

- Typical background spectra with Ar-based mixtures has peak at ~ 3 keV
- Solar axion peak expected at ~ 3 keV
- Need to reduce the background in this range

Measured count rate spectrum of background data in the sunrise detector

Update of detector

Succeeded to reduce the background at ~ 3 keV with Xe-based gas mixtures

New upper limit

CAST 2017 upper limit $g_{a\gamma} < 6.6 \times 10^{-11} \text{ GeV}^{-1}$ for $m_a < 0.02 \text{ eV}$ (95% C.L.)New upper limit $g_{a\gamma} < 5.7 \times 10^{-11} \text{ GeV}^{-1}$ for $m_a < 0.02 \text{ eV}$ (95% C.L.)

Summary

LIDA

- One of the most rival experiment for DANCE
- Achieved shot noise at detuned frequency
- Plan to realize simultaneous resonance by tuning angle of mirrors

CAST

- A powerful axion helioscope
- Updated upper limit
- Developing baby IAXO (next generation detector)

