Current status and future plans for DANCE

Hinata Takidera (D1) Department of Physics, The University of Tokyo

Midterm report meeting, April 23rd, 2024

Contents

- Introduction
- Current status of DANCE
- Current status of my experiment
- Future plans for DANCE
- Summary

Contents

Introduction

- Current status of DANCE
- Current status of my experiment
- Future plans for DANCE
- Summary

Abstract

Aim to detect axion with a bow-tie optical ring cavity

- Laser interferometer
- Axion-photon interaction
- Simultaneous resonance
- Conduct a sensitive broadband axion search

DANCE

Dark matter

- Account for about 80% of all the matter in the universe
- Extensive research is being conducted
- One of the leading candidates of dark matter: Axion

Axion and Axion-Like-Particles (ALPs)

- Pseudo-scalar particle (QCD axion) is suggested to solve strong CP problem on Quantum Chromo Dynamics (QCD)
- Various Axion-Like-Particles (ALPs) is predicted
- Many experiments have utilized the axion-photon conversion under magnetic field (Primakoff effect). However, axion has not been observed yet.

Characteristics (ALPs)

- Very light particles ⇒ Behave like waves
- Axion weakly interacts with photon, electron, proton

Previous searches

Axion-photon interaction

Axion-photon interaction induces phase velocity difference between left-handed and right-handed circularly polarized light

$$c_{
m L/R}(t) = 1 \pm rac{g_{a\gamma}a_0m_a}{2k} \sin(m_at+\delta_{ au})$$

Phase velocity Axion-photon coupling Axion field Phase factor

Regard as a rotation of linearly polarized light

Rotation angle of linearly polarized light

$$\Delta heta(l,t) = rac{g_{a\gamma}\sqrt{2
ho_a}}{m_a} \sin\left(m_a\,rac{l}{2}
ight) \sin\left(m_a\left(t-rac{l}{2}
ight)+\delta_ au
ight)$$

• Detect p-polarized light (Axion signal)

Avion mass

• Amplify it by using longer optical path

How to amplify the axion signal

Extend optical path with a bow-tie ring cavity

Rotation of polarization can be amplified because the flip is canceled by reflections on both two mirrors

detector

DANCE

DANCE (Dark matter Axion search with riNg Cavity Experiment)

- Dark matter axion search with laser interferometer technique
- Bow-tie optical ring cavity

Measure the amount of modulated p-polarized light (Axion signal) by amplifying it with a bow-tie optical ring cavity

Target sensitivity of DANCE

Aim to detect axion dark matter in low mass region *L*: round-trip, $\mathcal{F}_{s/p}$: finesse s/p-pol., P_{in} : Input power

- Introduction
- Current status of DANCE
- Current status of my experiment
- Future plans for DANCE
- Summary

Current status of DANCE Act-1

- Started in 2019 ⇒ First observation was finished in May 2021
- Issue: s-pol. and p-pol. do not resonate simultaneously
- → Degrade the sensitivity to axion in low axion mass region
- Achieved simultaneous resonance for the first time with an auxiliary cavity in November 2021

Issue: Simultaneous resonance

How to achieve simultaneous resonance

Advantage

Control the reflection phase difference between s-pol. and p-pol. for simultaneous resonance easily

Disadvantage

The optical loss on the polarizing beam splitter (PBS) between a bow-tie ring cavity and an auxiliary cavity degrades the sensitive to axion

Advantage

Achieve simultaneous resonance without an auxiliary cavity

Disadvantage

- Difficult to conduct mirror coating to cancel the reflection phase difference between s-pol. and p-pol.
- Need to use stable wavelength tunable laser

Simultaneous resonance with an auxiliary cavity 16

- Achieved simultaneous resonance in November 2021 by adding an auxiliary cavity to compensate for the reflection phase difference between s-pol. and p-pol.
- p-pol. is resonant in an auxiliary cavity by tuning PZT

Simultaneous resonance with an auxiliary cavity 17

- Improved by more than 2 orders of magnitude
- Need to reduce the optical loss between a main cavity and an auxiliary cavity

Simultaneous resonance with an ECDL

- Mirrors of reflection phase difference between s-pol.and p-pol. depends on laser wavelength
- Select the wavelength by finely adjusting the angle of the interference filter (IF)
- Constructing setup is in progress

Wavelength sensitive phase-shifting mirror

Prepare wavelength sensitive phase-shifting mirror by dielectric multilayer film coating

- Realize reflection phase
 difference continuously
- Realize high reflection by stacking low and high refractive index material alternately

19

Wavelength tunable laser (Nakagawa ECDL) 20

External cavity diode laser (ECDL)

- Wavelength range: 1045 1068 nm
- FWHM: 200 kHz
- Output power: 20 50 mW

Characteristics

- Amplify output by constructing cavity between LD and OC
- Select wavelength by finely adjusting the angle of the Interference Filter (IF)
 - → The optical axis remains because the structure has a transparent design

- Introduction
- Current status of DANCE
- Current status of my experiment
- Future plans for DANCE
- Summary

Measurement of reflection phase difference ²²

Establishment of simultaneous resonance with a folded cavity

- Reflection phase difference between s-pol. and p-pol. depends on wavelength
- 2 Time drift of the reflection phase difference between s-pol. and p-pol.
- ⇒ Difficult to conduct an accurately sensitive axion search

 $\Delta \phi$: reflection phase difference between s-pol. and p-pol.

Requirement for simultaneous resonance

$$\Delta \phi \leq 0.015~{
m deg}$$

Mirror	Reflectivity	CC[mm]
Front	99%	50
End	99%	50
Test	s-pol.: 99.99%, p-pol.: 99.97%	1000

Overview of experimental setup

1 Wavelength vs reflection phase difference ²⁴

Reflection phase difference between s- and p-pol. per mirror

- Selected the wavelength from 1064 nm to 1068 nm in 0.5 nm increments and measured 10 times at each wavelength
- Obtained transmitted light by tuning laser frequency with PZT in ECDL

1) Wavelength vs reflection phase difference ²⁵

1) Wavelength vs reflection phase difference ²⁶

Measured reflection phase difference utilizing wavelength tunable laser → Reflection phase difference is 0 @ 1066.7 nm

1) Wavelength vs reflection phase difference ²⁷

Measurement result $\Delta \phi = \phi_{
m s} - \phi_{
m p} = 0.002(1) \deg @1066.7 \, {
m nm}$

 \Rightarrow Satisfy requirement for simultaneous resonance: $\Delta\phi \leq 0.015~{
m deg}$

→ Obtained wavelength which achieves simultaneous resonance

Time drift of reflection phase difference between s- and p-pol. (24 hours) @ 1064 nm

- Fluctuation range: 0.00 0.03 deg
- \Rightarrow Did not satisfy requirement for simultaneous resonance: $\Delta\phi \leq 0.015~{
 m deg}$
- → Investigate the cause of time drift
- Peak at around 2.5×10^{-4} Hz (1 hour)

Temperature fluctuation

→ Time drift of reflection phase difference

Temperature fluctuation leads to expand film thickness and change refractive index

⇒ Quantitative evaluation will be conducted in the future

Contents

- Introduction
- Current status of DANCE
- Current status of my experiment
- Future plans for DANCE
- Summary

Noise reduction for folded cavity experiment ³³

Cavity lock is unstable at specific frequency

⇒ Adding an voltage with an offset circuit and shifting the resonance point

to around 12MHz, the fluctuation of PDH signal disappeared.

Phase modulation frequency from EOM: 15MHz

Resonant frequency difference: 7MHz

⇒ Beat frequency is 14MHz because of two reflections

Possible cause of the problem

- ① Is the phase modulation frequency involved ?
- ② Is there any problems in control system?
- ③ Do s- or p-pol. mix in the RFPD and make it difficult to lock long term?

Noise reduction for folded cavity experiment ³⁴

Possibility of dominant noise

Intensity noise may be mixed in frequency noise → Specify the noise source

Noise reduction for folded cavity experiment ³⁵

Suppress fluctuation by improving control gain

 \Rightarrow Need to do current control due to resonant structure at around 10 kHz

Obtain time drift of reflection phase difference that satisfies the requirement for simultaneous resonance after noise reduction → Can I write a paper ?

Improvement of shot noise limit for DANCE

The cause of limiting the output power from diode laser

- Catastrophic Optical Damage (COD) of face deteriorates the device
- Laser characteristics deteriorate due to increase in temperature of optics

Is high power with a power amplifier achievable?

<u>Concern</u>

- Thickness of mirror coating may change
- → Reflection phase difference changes
- Mirror may be damaged

https://www.toptica.com/ja/technology/technical-tutorials/tapered-amplifiers

Improvement of shot noise limit for DANCE

37

- Improved by 2 orders of magnitude achieving simultaneous resonance
- Improved by 1 orders of magnitude realizing high power laser

Schedule toward Ph.D.

Contents

- Introduction
- Current status of DANCE
- Current status of my experiment
- Future plans for DANCE
- Summary

Summary

DANCE (Dark matter Axion search with riNg Cavity Experiment)

- Dark matter axion search with a bow-tie optical ring cavity by detecting a rotation angle of linearly polarized light
- Establishment of simultaneous resonance with a folded cavity is in progress
- DANCE with an ECDL is also in progress
- Achieve the world's most sensitive dark matter axion search

