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Abstract

Aim to detect axion with a bow-tie optical ring cavity
e Laser interferometer

* Axion-photon interaction

* Simultaneous resonance

—> Conduct a sensitive broadband axion search
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Dark matter 5

e Account for about 80% of all the matter in the universe
* Extensive research is being conducted
* One of the leading candidates of dark matter: Axion
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Axion and Axion-Like-Particles (ALPSs)

 Pseudo-scalar particle (QCD axion) is suggested to solve
strong CP problem on Quantum Chromo Dynamics (QCD)

* Various Axion-Like-Particles (ALPs) is predicted

 Many experiments have utilized the axion-photon conversion
under magnetic field (Primakoff effect). However, axion has
not been observed yet.

Characteristics (ALPSs)
* Very light particles = Behave like waves

* Axion weakly interacts with photon, electron, proton



Previous searches
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Axion-photon interaction 8

Axion-photon interaction induces phase velocity difference between
left-handed and right-handed circularly polarized light

AXion mass
/
- GayApMg

CL/R (t) =1 sin(mat + 57-)
g T 2 §

Phase velocity Axion-photon coupling Axion field Phase factor

—» Regard as a rotation of linearly polarized light

Rotation angle of linearly polarized light

a \/ 2 a
\Aﬂ(l, t) = Jay v =P sin (ma L) sin (ma (t — i) + 57)
my 2 2

Axion dark matter

. * Detect p-polarized light (Axion signal)
_’ K >' o Amplify it by using longer optical path




How to amplify the axion signal 9

Rotation of polarization is small for short optical path
Axion dark matter
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DANCE 10

DANCE (Dark matter Axion search with riNg Cavity Experiment)
 Dark matter axion search with laser interferometer technique

 Bow-tie optical ring cavity
Photo
PDS‘ detectors

HWP
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P P-P a Frequency

control

Measure the amount of modulated p-polarized light (Axion signal) by
amplifying it with a bow-tie optical ring cavity



Target sensitivity of DANCE 1

Aim to detect axion dark matter in low mass region
L: round-trip, 9?78/13: finesse s/p-pol., P, : Input power
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Current status of DANCE Act-1

e Started in 2019 — First observation was finished in May 2021

* |ssue: s-pol. and p-pol. do not resonate simultaneously
— Degrade the sensitivity to axion in low axion mass region

* Achieved simultaneous resonance for the first time with an auxiliary
cavity in November 2021

No simultaneous resonance
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Issue: Simultaneous resonance 14

Reflection phase difference
on the mirrors

No simultaneous resonance
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How to achieve simultaneous resonance 15

DANCE with an auxiliary cavity

........ . Photo
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Advantage

Control the reflection phase difference
between s-pol. and p-pol. for simultaneous
resonance easily

Disadvantage

The optical loss on the polarizing beam
splitter (PBS) between a bow-tie ring
cavity and an auxiliary cavity degrades the
sensitive to axion

DANCE with an ECDL
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Disadvantage

 Difficult to conduct mirror coating to
cancel the reflection phase difference
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* Need to use stable wavelength tunable
laser



Simultaneous resonance with an auxiliary cavity

* Achieved simultaneous resonance in November 2021 by adding an
auxiliary cavity to compensate for the reflection phase difference
between s-pol. and p-pol.

* p-pol. is resonant in an auxiliary cavity by tuning PZT
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Simultaneous resonance with an auxiliary cavity

Axion-photon coupling |gay| [GeV™1]

* Improved by more than 2 orders of magnitude

* Need to reduce the optical loss between a main cavity and an auxiliary

cavity
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Simultaneous resonance with an ECDL 18

 Mirrors of reflection phase difference between s-pol.and p-pol. depends
on laser wavelength

e Select the wavelength by finely adjusting the angle of the interference
filter (IF)

e Constructing setup is in progress
Photo  Wwavelength sensitive phase-shifting mirror

deteCtO 'S o Reflection phase difference between s-pol. and p-pol.
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Wavelength sensitive phase-shifting mirror 1

Prepare wavelength sensitive phase-shifting mirror by dielectric multilayer
film coating

Die|eCtriC mult”ayer fllm COating o Reflection phase difference between s-pol. and p-pol.
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* Realize high reflection by Wavelength dependence of reflection
stacking low and high phase difference between s- and p-pol.
refractive index material (Layertec inc.)

alternately



Wavelength tunable laser (Nakagawa ECDL)

External cavity diode laser (ECDL)
 Wavelength range: 1045 - 1068 nm
e FWHM: 200 kHz

e Qutput power: 20 - 50 mW

Characteristics
 Amplify output by constructing cavity between LD and OC
e Closed structure — Resistant to acoustic noise and vibrations

e Select wavelength by finely adjusting the angle of the Interference Filter (IF)
—> The optical axis remains because the structure has a transparent design
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Measurement of reflection phase difference 2

Establishment of simultaneous resonance with a folded cavity
(D Reflection phase difference between s-pol. and p-pol. depends on

wavelength

(@ Time drift of the reflection phase difference between s-pol. and p-pol.
—> Difficult to conduct an accurately sensitive axion search

PDp
PBS
Front
mirror mirror
Test mirror

A @ : reflection phase difference
between s-pol. and p-pol.
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Overview of experimental setup 23
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(D Wavelength vs reflection phase difference

Reflection phase difference between s- and p-pol. per mirror

e Selected the wavelength from 1064 nm to 1068 nm in 0.5 nm
iIncrements and measured 10 times at each wavelength

e Obtained transmitted light by tuning laser frequency with PZT in ECDL

Nakagawa ECDL
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(D Wavelength vs reflection phase difference 2

Reflection phase difference A¢ — ' X 180 deg

per mirror

Resonant peak (1064 nm)
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(D Wavelength vs reflection phase difference 2
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Measured reflection phase difference utilizing wavelength tunable laser
— Reflection phase difference is 0 @ 1066.7 nm



(D Wavelength vs reflection phase difference =

Resonant peak (1066.7 nm)
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Measurement result A¢ = ¢s — ¢, = 0.002(1) deg @1066.7 nm
— Satisfy requirement for simultaneous resonance: A¢ < 0.015 deg

— QObtained wavelength which achieves simultaneous resonance



(@ Time drift of reflection phase difference

Time drift of reflection phase difference between s- and p-pol. (24 hours)

@ 1064 nm

Frequency Frequency

control control 7
Fiber laser

Nakagawa
ECDL

~ _ CCD PDs |Frequency
camera counter




(2 Time drift of reflection phase difference 2

Reflection phase difference [deg]

Time drift of reflection phase difference Power spectrum
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e Fluctuation range: 0.00 - 0.03 deg
— Did not satisfy requirement for simultaneous resonance: A¢ < 0.015 deg

— |nvestigate the cause of time drift

e Peak at around 2.5 X 10™* Hz (1 hour)



(@ Time drift of reflection phase difference

Feedback signal — Fluctuation of laser frequency

Temperature fluctuation
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(@ Time drift of reflection phase difference

31

Temperature fluctuation

—> Time drift of reflection phase difference

180.10

Dielectric multilayer coating

180.00

Reflection phase difference A¢ [deg]

Refractive index

Si0, (n; = 1.44)
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Incident angle [deg]
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Temperature fluctuation leads to expand film thickness and change

refractive index

— Quantitative evaluation will be conducted in the future

46
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Noise reduction for folded cavity experiment 3

Cavity lock is unstable at specific frequency
— Adding an voltage with an offset circuit and shifting the resonance point

to around 12MHz, the fluctuation of PDH signal disappeared.

Phase modulation frequency from EOM: 15MHz
Resonant frequency difference: 7MHz
— Beat frequency is 14MHz because of two reflections

Possible cause of the problem

(D Is the phase modulation frequency involved ?

@ Is there any problems in control system ?

@ Do s- or p-pol. mix in the RFPD and make it difficult to lock long term ?




Noise reduction for folded cavity experiment 3
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Possibility of dominant noise

Intensity noise may be mixed in frequency noise
— Specify the noise source



Noise reduction for folded cavity experiment 3

Suppress fluctuation by improving control gain
— Need to do current control due to resonant structure at around 10 kHz

Obtain time drift of reflection phase difference that satisfies the
requirement for simultaneous resonance after noise reduction
—> Can | write a paper ?

— fit
- data
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Improvement of shot noise limit for DANCE s

The cause of limiting the output power from diode laser
e (Catastrophic Optical Damage (COD) of face deteriorates the device
e |Laser characteristics deteriorate due to increase in temperature of

optics

Is high power with a power amplifier achievable?

Injected beam

Single-mode channe
Entrance facet, AR coated

Concern

* Thickness of mirror coating may
change

—> Reflection phase difference changes

Tapered amplifier

Output facet, AR coated

 Mirror may be damaged

Tapered gain region

https://www.toptica.com/ja/technology/technical-tutorials/tapered-amplifiers



Improvement of shot noise limit for DANCE

37

hoton coupling |ga,| [GeV™!]

* Improved by 2 orders of magnitude achieving simultaneous resonance
* |Improved by 1 orders of magnitude realizing high power laser
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Schedule toward Ph.D.
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Summary 40

hoton coupling |gay| [GeV™!]

n

Axion

DANCE (Dark matter Axion search with riNg Cavity Experiment)

 Dark matter axion search with a bow-tie optical ring cavity by detecting
a rotation angle of linearly polarized light

e Establishment of simultaneous resonance with a folded cavity is in
progress

e DANCE with an ECDL is also in progress

e Achieve the world’s most sensitive dark matter axion search
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