# Search for New Physics in Electronic Recoil Data from XENONnT

Hinata Takidera (M1) Department of Physics, University of Tokyo

## Contents

- Today's paper
- XENON1T
  - a dual-phase LXe TPC
- XENONnT
  - Radon removal system (RRS)
  - Background model  $B_0$
  - 90% C.L. upper limit
- Summary

## Today's paper

#### PHYSICAL REVIEW LETTERS 129, 161805 (2022)

**Editors' Suggestion** 

#### Search for New Physics in Electronic Recoil Data from XENONnT

E. Aprile,<sup>1</sup> K. Abe,<sup>2</sup> F. Agostini,<sup>3</sup> S. Ahmed Maouloud,<sup>4</sup> L. Althueser,<sup>5</sup> B. Andrieu,<sup>4</sup> E. Angelino,<sup>6</sup> J. R. Angevaare,<sup>7</sup> V. C. Antochi,<sup>8</sup> D. Antón Martin,<sup>9</sup> F. Arneodo,<sup>10</sup> L. Baudis,<sup>11</sup> A. L. Baxter,<sup>12</sup> L. Bellagamba,<sup>3</sup> R. Biondi,<sup>13</sup> A. Bismark,<sup>11</sup> A. Brown,<sup>14</sup> S. Bruenner,<sup>7</sup> G. Bruno,<sup>15</sup> R. Budnik,<sup>16</sup> T. K. Bui,<sup>2</sup> C. Cai,<sup>17</sup> C. Capelli,<sup>11</sup> J. M. R. Cardoso,<sup>18</sup> D. Cichon,<sup>19</sup> M. Clark,<sup>12</sup> A. P. Colijn,<sup>7</sup> J. Conrad,<sup>8</sup> J. J. Cuenca-García,<sup>11,20</sup> J. P. Cussonneau,<sup>15,\*</sup> V. D'Andrea,<sup>21,13,14</sup> M. P. Decowski,<sup>7</sup> P. Di Gangi,<sup>3</sup> S. Di Pede,<sup>7</sup> A. Di Giovanni,<sup>10</sup> R. Di Stefano,<sup>22</sup> S. Diglio,<sup>15</sup> K. Eitel,<sup>20</sup> A. Elykov,<sup>14</sup> S. Farrell,<sup>23</sup> A. D. Ferella,<sup>21,13</sup> C. Ferrari,<sup>13</sup> H. Fischer,<sup>14</sup> W. Fulgione,<sup>6,13</sup> P. Gaemers,<sup>7</sup> R. Gaior,<sup>4</sup> A. Gallo Rosso,<sup>8</sup> M. Galloway,<sup>11</sup> F. Gao,<sup>17</sup> R. Gardner,<sup>9</sup> R. Glade-Beucke,<sup>14</sup> L. Grandi,<sup>9</sup> J. Grigat,<sup>14</sup> M. Guida,<sup>19</sup> R. Hammann,<sup>19</sup> A. Higuera,<sup>23</sup> C. Hils,<sup>24</sup> L. Hoetzsch,<sup>19</sup> J. Howlett,<sup>1</sup> M. Iacovacci,<sup>22</sup> Y. Itow,<sup>25</sup> J. Jakob,<sup>5</sup> F. Joerg,<sup>19</sup> A. Joy,<sup>8</sup> N. Kato,<sup>2</sup> M. Kara,<sup>20</sup> P. Kavrigin,<sup>16</sup> S. Kazama,<sup>25,†</sup> M. Kobayashi,<sup>25</sup> G. Koltman,<sup>16</sup> A. Kopec,<sup>26</sup> F. Kuger,<sup>14</sup> H. Landsman,<sup>16</sup> R. F. Lang,<sup>12</sup> L. Levinson,<sup>16</sup> I. Li,<sup>23</sup> S. Li,<sup>12</sup> S. Liang,<sup>23</sup> S. Lindemann,<sup>14</sup> M. Lindner,<sup>19</sup> K. Liu,<sup>17</sup> J. Loizeau,<sup>15</sup> F. Lombardi,<sup>24</sup> J. Long,<sup>9</sup> J. A. M. Lopes,<sup>18,‡</sup> Y. Ma,<sup>26</sup> C. Macolino,<sup>21,13</sup> J. Mahlstedt,<sup>8</sup> A. Mancuso,<sup>3</sup> L. Manenti,<sup>10</sup> F. Marignetti,<sup>22</sup> T. Marrodán Undagoitia,<sup>19</sup> K. Martens,<sup>2</sup> J. Masbou,<sup>15</sup> D. Masson,<sup>14</sup> E. Masson,<sup>4</sup> S. Mastroianni,<sup>22</sup> M. Messina,<sup>13</sup> K. Miuchi,<sup>27</sup> K. Mizukoshi,<sup>27</sup> A. Molinario,<sup>6</sup> S. Moriyama,<sup>2</sup> K. Morå,<sup>1</sup> Y. Mosbacher,<sup>16</sup> M. Murra,<sup>1</sup> J. Müller,<sup>14</sup> K. Ni,<sup>26</sup> U. Oberlack,<sup>24</sup> B. Paetsch,<sup>16</sup> J. Palacio,<sup>19</sup> P. Paschos,<sup>9</sup> R. Peres,<sup>11</sup> C. Peters,<sup>23</sup> J. Pienaar,<sup>9</sup> M. Pierre,<sup>15</sup> V. Pizzella,<sup>19</sup> G. Plante,<sup>1</sup> J. Qi,<sup>26</sup> J. Qin,<sup>12</sup> D. Ramírez García,<sup>11</sup> S. Reichard,<sup>20</sup> A. Rocchetti,<sup>14</sup> N. Rupp,<sup>19</sup> L. Sanchez,<sup>23</sup> J. M. F. dos Santos,<sup>18</sup> I. Sarnoff,<sup>10</sup> G. Sartorelli,<sup>3</sup> J. Schreiner,<sup>19</sup> D. Schulte,<sup>5</sup> P. Schulte,<sup>5</sup> H. Schulze Eißing,<sup>5</sup> M. Schumann,<sup>14</sup> L. Scotto Lavina,<sup>4</sup> M. Selvi,<sup>3</sup> F. Semeria,<sup>3</sup> P. Shagin,<sup>24</sup> S. Shi,<sup>1</sup> E. Shockley,<sup>26,§</sup> M. Silva,<sup>18</sup> H. Simgen,<sup>19</sup> J. Stephen,<sup>9</sup> A. Takeda,<sup>2</sup> P.-L. Tan,<sup>8</sup> A. Terliuk,<sup>19,∥</sup> D. Thers,<sup>15</sup> F. Toschi,<sup>14</sup> G. Trinchero,<sup>6</sup> C. Tunnell,<sup>23</sup> F. Tönnies,<sup>14</sup> K. Valerius,<sup>20</sup> G. Volta,<sup>11</sup> Y. Wei,<sup>26</sup> C. Weinheimer,<sup>5</sup> M. Weiss,<sup>16</sup> D. Wenz,<sup>24</sup> C. Wittweg,<sup>11</sup> T. Wolf,<sup>19</sup> D. Xu,<sup>17</sup> Z. Xu,<sup>1</sup> M. Yamashita,<sup>2</sup> L. Yang,<sup>26</sup> J. Ye,<sup>1,¶</sup> L. Yuan,<sup>9</sup> G. Zavattini,<sup>3,\*\*</sup> M. Zhong,<sup>26</sup> and T. Zhu<sup>1</sup>

(XENON Collaboration)<sup>††</sup>

## Abstract

The primary science goal of XENONnT: Search for weakly interacting massive particles (WIMPs)

To reduce radon-induced backgrounds in liquid xenon detectors

A high-flow radon removal system based on cryogenic

data analysis

- No excess above background
- Set stringent new limits
  - solar axions
  - an enhanced neutrino magnetic moment
  - boson dark matter

# XENON1T



https://link.springer.com/article/10.1140/epjc/s10052-017-5326-3

# Working principle of a dual-phase LXe TPC



Particles catter off xenon nuclei (WIMPs or neutrons)  $\rightarrow$  nuclear recoils Particles interact with atomic electrons ( $\gamma$  rays and  $\beta$ electrons)  $\rightarrow$  electronic recoils

6

The recoils excite and ionize the LXe

https://link.springer.com/article/10.1140/epjc/s10052-017-5326-3

- S1: scintillation photons
- S2: secondary scintillation photons
- The S1-S2 time difference
- $\rightarrow$  The ratio S2/S1 can be employed for electronic recoil background rejection

## Illustration of a dual-phase LXe TPC



- an active LXe target of 2.0t
- built from materials selected for their low radioactivity
- enclosed by 24 interlocking and
  light-tight PTFE (polytetrafluoroethylene)
  panels

https://link.springer.com/article/10.1140/epjc/s10052-017-5326-3

## XENONnT

## Improvement from XENON1T

- A high-flow radon removal system (RRS) based on cryogenic
- $\rightarrow$  further reduce background



Radon removal system (RRS)

![](_page_8_Figure_1.jpeg)

The change in the number of radon particles

$$\frac{dN(t)}{dt} = k_{1a} + (1 - \epsilon)k_{1b} - \lambda_{Rn} \cdot N(t) - f \cdot N(t) + \frac{k_2 + \epsilon k_{1b} + f \cdot N(t)}{R_{RRS}}$$
  
the decay of <sup>222</sup>Rn the effective radon particle flux  
 $\lambda_{Rn} = 0.18[1/d]$   $f = \frac{F_{Xe}}{m_{Xe}} = \frac{1}{\tau_{ex}}$ 

 $\epsilon$ : extraction efficiency  $\tau_{\rm ex}$ : the detector's Lee volume exchange time

 $R_{\rm RRS} \equiv \frac{c_{\rm F}}{c_{\rm D}}$ : RRS's reduction factor

![](_page_9_Figure_1.jpeg)

https://arxiv.org/abs/2205.11492

Starting condition  $N(t = 0) = N_0$  ( $N_0$ : the number of radon atoms before starting the removal)

$$N(t) = \frac{K}{\Lambda} + \left(N_0 - \frac{K}{\Lambda}\right) \cdot e^{-\Lambda \cdot t}$$
$$K = k_{1a} + (1 - \epsilon)k_{1b} + \frac{k_2 + \epsilon k_{1b}}{R_{RRS}}$$
$$\Lambda = \lambda_{Rn} + f \cdot \left(1 - \frac{1}{R_{RRS}}\right)$$

In case a perfect RRS can fully remove radon

$$N_{\text{equi}} \stackrel{t \to \infty}{=} \frac{K}{\Lambda} = \frac{k_{1a} + (1 - \epsilon)k_{1b} + \frac{k_2 + \epsilon k_{1b}}{R_{\text{RRS}}}}{\lambda_{\text{Rn}} + f \cdot \left(1 - \frac{1}{R_{\text{RRS}}}\right)} \stackrel{R_{\text{RRS}}{=} \infty}{=} \frac{1}{\lambda_{\text{Rn}} + f} \cdot \left(k_{1a} + (1 - \epsilon)k_{1b}\right)$$
$$N_{\text{equi}}\left(R_{\text{RRS}}, f, \epsilon\right)$$

The reduction inside the detector's LXe volume

$$r\left(R_{\rm RRS}, f, \epsilon\right) = \frac{N_{\rm equi}\left(R_{\rm RRS} = 1, f, \epsilon\right)}{N_{\rm equi}\left(R_{\rm RRS}, f, \epsilon\right)} \qquad r\left(R_{\rm RRS} \to \infty, f, \epsilon\right) = \frac{\lambda_{\rm Rn} + f}{\lambda_{\rm Rn}} \cdot \frac{k_{\rm tot}}{k_{\rm 1a} + (1 - \epsilon)k_{\rm 1b}}$$

The combined LXe and GXe modes

11

The individual reduction capabilities

$$r_{\text{LXe}} = r \left( R_{\text{RRS}} \to \infty, f, \epsilon = 0 \right) = \frac{\lambda_{\text{Rn}} + f}{\lambda_{\text{Rn}}} \cdot \frac{k_{\text{tot}}}{k_{1a} + k_{1b}}$$
$$r_{\text{GXe}} = r \left( R_{\text{RRS}} \to \infty, f = 0, \epsilon \right) = \frac{k_{\text{tot}}}{k_{1a} + (1 - \epsilon)k_{1b}}$$

![](_page_11_Figure_1.jpeg)

Expected radon reduction in XENONnT ( $R_{RRS} \rightarrow \infty$ )

XENONnT can reach  $^{222}$ Rn activity concentration of 1  $\mu$ Bq/kg

## Efficiencies

![](_page_12_Figure_1.jpeg)

Efficiencies in reconstructed energy and the solar axion signal

## Calibration data and models at low energy

14

consider ER interactions only

![](_page_13_Figure_2.jpeg)

 $^{220}Rn \rightarrow$  the energy threshold, selection efficiency, energy reconstruction  $^{37}Ar \rightarrow$  validate the energy reconstruction and skew-Gaussian smearing model

### Consider 9 components in the background model $B_0$

![](_page_14_Figure_2.jpeg)

constraints between (39, 44) keV are excluded

Further the possibility of tritium as an explanation for the XENON1T excess  $\rightarrow$  operated XENONnT in a different mode for 14.3 days after the SR0 data collected (SR0: from July 6, 2021 to November 10, 2021)

Tritium is not included in the background model !

Tritium dataset showed no evidence for a tritium like excess

Tritium may be the cause of the excess observed in XENON1T

## cS1-cS2 space

![](_page_16_Figure_1.jpeg)

The WIMP search region is not used in this search

## Fit to SR0 data using the $B_0$ model

![](_page_17_Figure_1.jpeg)

ER background rate within (1,30) keV  $\rightarrow$  (15.8 ± 1.3)events/(ton×year×keV)

The lowest background rate ever achieved !

![](_page_18_Figure_1.jpeg)

- The blind analysis shows no excess above the background.
- $\rightarrow$  Tritium may be the cause of the excess observed in XENON1T.
- The average ER background rate of (15.8 ± 1.3)events/(ton×year× keV) in the (1,30) keV energy region is the lowest ever achieved in a DM search experiment.