The Current Status of TOBA

Satoru Takano, Ching Pin Ooi, Yuka Oshima, Yuta Michimura, Masaki Ando

> The Univ. of Tokyo 18/05/21 GWADW2021 @ online

Torsion Bar Antenna (TOBA)

TOBA : TOrsion-Bar Antenna

- Gravitational wave detector using two torsion pendulums
- Resonant frequency of torsion pendulum ~ mHz
 - → Sensitive to **low frequency** (~ 0.1Hz)
- Target sensitivity $h \sim 10^{-19} / \sqrt{Hz} @ 0.1 Hz$ with 10 m bars

Science of TOBA

^{3/22}

Development Plan

18.05.2021

GWADW2021

Setup of Phase-III TOBA

Cryogenic Suspension System

- Cool down TMs to 4 K
- Two radiation shields

Suspension wire

- Si wire
- High Q value (>10⁸)

Heat Links

- High-purity aluminum
 - Conductive cooling

Optical System

High sensitive angular sensor Measure HG10 mode induced by rotational motion

GWADW2021

Active Vibration Isolation System

- Reduction of seismic vibration
 - Coupling from horizontal vibration
 - ▶ 10⁻⁷ m/√Hz @ 0.1 Hz
 - Nonlinear coupling
 - ▶ 10⁻¹⁰ m/√Hz @ 1 Hz

Measure motion at the suspension point by seismometer & tilt meter

Feedback the signal to actuators to cancel out the motion

 Reduction of vibration induced by cooler

Design Sensitivity

18.05.2021

Development Items

- Cryogenic Suspension System
 - Cooling System
 - High-Q suspension wire \rightarrow Ching Pin's Poster (ID: 66)
- Optical System

• New angular sensor with higher sensitivity \rightarrow <u>Yuka's Poster (ID: 39</u>)

- Active Vibration Isolation
 - Reduction of translational seismic noise
 - Reduction of vibration induced by cooler

Current Suspension System

Test for cryogenic, simplified configuration

- Silicon fiber \rightarrow CuBe wire
- Heatlinks between IM and TMs
- Readout: only optical levers

18.05.2021

Current Setup

Cooling Result

Cool down to 6.1 K

• Slower cooling speed \rightarrow Bad heat contact?

18.05.2021

Sensitivity of one TM

- Limited by beam jitter, interference of stray light
- Unexpected noise: magnetic noise due to eddy current flowing TM

Sensitivity of differential motion

Active Vibration Isolation System

- Tested w/o the suspension and the cryostat
- Tiltmeter is not install

- Sensor: L4C (inertial) x6, PS (local) x6
- Actuator: PZT (range: ~60µm) x6

Performance of AVIS

18.05.2021

Current achievements

- Cryogenic Suspension System
 - Cooling System
 - Succeeded in cooling doen to 6.1 K
 - Cooling speed is slower than expected
- Active Vibration Isolation
 - Reduction of translational seismic noise
 - Succeeded in controlling 3 DoF simultaneously
 - Need to decouple tilt from horizontal motion
 - Reduction of vibration induced by cooler
 - Test with cryostat

Update Plans

Next update:

Improvement of optical system, magnetic noise reduction

Mitigation of Magnetic noise

- Reduction of eddy current \rightarrow silicon TM
 - Improvement of optical system & magnetic noise reduction

Improvement of optical system

- Introduce light to OB via optical fibers
- Make OB as a monolithic interferometer

Basic Optical Design

18.05.2021

GWADW2021

20/22

Summary

- Current achievement
- Cryogenic \rightarrow basically demonstrated
 - Need some improvements (cooling speed, achieved temp.)
- Active isolation vibration \rightarrow 3 DoF controlled
 - Decouple tilt motion from horizontal translation
- Update Plan
- Silicon TM
- Monolithic optical system
- On-going issues
- Development of high-Q silicon fiber
- Demonstration of coupled WFS

Stray Light Problem

Front reflection at

- Cube BS
- QPD surface

Stray light

Interference with stray light contaminates oplev signal

Beam Jitter Control Noise

- Some coherence btw TM oplev yaw & Jitter QPD sum
 - Beam jitter control signal shakes beam additionally
 - Contaminates oplev signal

Coherence btw TM oplev yaw & QPD sums

10

5% residual assumptioncan be explained the noise budget well

18. 05. 2021

Magnetic Noise Due to Eddy Current

- Ambient magnetic fluctuation induces eddy current
 - TM has magnetic dipole moment $\tilde{\mu}$

This $\tilde{\mu}$ induces torque noise $\tilde{\mu} \times B$ with DC magnetic field B

Magnetic Noise Due to Eddy Current

- Induced eddy current \propto electric \dot{c} 10^{-2} 8.1 K 35.0 K 10.0 K 40.0 K 80.0 K 45.0 K 15.0 K 102.5 K 50.0 K For metals electric conductivity gets larger when cooled down
 - Coupling gets larger at lower temperature

 10^{-1}

High Sensitive Angular Sensor

Cavity-enhanced wave front sensor (new idea)

- Compensate Gouy phase difference between HG00 and HG10
 - HG10 mode resonates as well as HG00
 - Induced HG10 is enhanced
 - Higher sensitivity than normal WFS 5×10⁻¹⁶ rad/√Hz @ 0.1 Hz
- How to compensate

Local Quadrature Interferometer

- Quadrature Interferometer for a local sensor of AVIS
- Michelson interferometer with a dithered reference mirror
 - Resolution: same as Michelson interferometer
 - Range: ∞ (ideally)
- No polarization optics
- Generate quadrature signal by moving reference mirror

Picture

18.05.2021

GWADW2021

Performance

