Future Prospects for Torsion Pendulums

Satoru Takano

Ando Lab Mid-term Seminar 2020

21.04.20.

Contents

- Overview of TOBA
- Phase-III TOBA
- Current situation
- Future Plan
- Others

Overview of TOBA

TOBA

- (Introduction for newcomers)
- TOrsion Bar Antenna: suspended torsion pendulum(s)
 - Low resonant frequency (<100mHz) → low-frequency(~0.1 Hz) detector
 - Detect gravity gradient
 - GWs (CBC, SGWB, etc.)

- Target Sensitivity @ 0.1Hz
 GWs: 10⁻¹⁹ /√Hz
 - Local: 10⁻¹⁵ /√Hz

^{21.04.2020}

Science of TOBA

Astronomical Target

With sensitivity 10⁻¹⁹/√Hz ...

• Intermediate mass blackhole (IMBH) merger

Stochastic GW background (SGWB)

- $\Omega_{GW} \sim 10^{-7} \rightarrow Exceed BBN limit$
- Insight for early universe

Earthquake Early Warning

- Current warning: detect EQ by P-wave
 - Gravity field propagation is much faster than P-wave!
- With sensitivity 10-15/√Hz, TOBA can detect an M7 EQ 100 km away in 10 sec

Newtonian Noise

Newtonian Noise (Gravity Gradient Noise)

Gravity gradient induce by local potential

Fundamental noise for GW detectors

Newtonian Noise Measurement

- TOBA has potential for measurement of some types of NN
 - Test models, establish mitigation scheme, …

Development Plan

24. 05. 2019

GWADW2019

Phase-III TOBA

Setup of Phase-III TOBA

Cryogenic Suspension System

- Cool down TMs to 4 K
- Two radiation shields

Suspension wire

- Si wire
- High Q value (>10⁸)

Heat Links

- High-purity aluminum
 - Conductive cooling

Optical System

Wave Front Sensor (WFS) Measure HG10 mode induced by rotational motion

Active Vibration Isolation System

- Reduction of seismic vibration
 - Coupling from horizontal vibration
 - ▶ 10⁻⁷ m/√Hz @ 0.1 Hz
 - Nonlinear coupling
 - ▶ 10⁻¹⁰ m/√Hz @ 1 Hz

Measure motion at the suspension point by seismometer & tilt meter

Feedback the signal to actuators to cancel out the motion

 Reduction of vibration induced by cooler

Design Sensitivity

Development Items

- Cryogenic Suspension System
 Cooling System → Shimoda
 - High-Q suspension wire \rightarrow Ching Pin
- Optical System
 - New WFS with higher sensitivity → Shimoda, Miyazaki
- Active Vibration Isolation
 - Reduction of translational seismic noise
- → Takano
- Reduction of vibration induced by cooler

Development Items

- Cryogenic Suspension System
 Cooling System →
 High-Q suspension wire →
- Optical System

New WFS with higher sensitivity → Shimoda, Miyazaki

- Active Vibration Isolation
 - Reduction of translational seismic noise
 - Reduction of vibration induced by cooler

→ Takano

Current Situation

Current Status

- Cryogenic Suspension System
 - O Cooling down TMs at 6.1 K
 - × Achieved temperature is higher (design: 4 K)
 - * Cooling speed is smaller than expected
- Optical System
 - * Measured by optical lever, cavities are not locked
 - **×** Residual jitter noise (0.01 1 Hz)
 - × Interference of stray light (floor level)
- Active Vibration Isolation System
 - O Controlling 3-axis translation simultaneously
 - × Tilt-horizontal coupling
 - × Resonance of the structure

Cryogenic Performance

- Slower cooling speed → smaller thermal conductivity of heat links
- Can be explained by supposing smaller value by 30 50 %

Good contact procedure is necessary

Higher Achieved Temperature

21.04.2020

Midterm Seminar 2020

Optical System

Not locked

Current Sensitivity

Optical System

Not locked

Stray Light Problem

Front reflection at

- Cube BS
- QPD surface
 - Stray light

Interference with stray light contaminates oplev signal

Beam Jitter Control Noise

- Some coherence btw TM oplev yaw & Jitter QPD sum
 - Beam jitter control signal shakes beam additionally
 - Contaminates oplev signal

Coherence btw TM oplev yaw & QPD sums

10

5% residual assumptioncan be explained the noise budget well

21.04.2020

Active Vibration Isolation System

• 2019 April: Frame exchange, servo modification

• 2019 June: Succeeded in controlling 3 axis simultaneously

Active Vibration Isolation System

2019 July: Installation to the TOBA chamber

• 2020 Feb: Test run with cryogenic temp.

Active Vibration Isolation Performance

After Installation

Some difference in characteristics of actuators

High-Q parasitic resonance

Hard to compensate to the resonance!

No such resonances before installation!

Future Plans

Cryogenic system

- Test better way to attach heat links
- Replace electrical wires to ones with less thermal conductivity

Optical system

- Cube BS → Plate BS to avoid stray light interference
- Introduce MC to suppress beam jitter

Active Vibration Isolation

- Damp resonance mode of the structure by adding damper
- Install tiltmeter to reduce tilt-horizontal coupling
- Introduce sensor correction servo

Others

Introduce magnetic shield

Cryogenic system

- Test better way to attach heat links
- Replace electrical wires to ones with less thermal conductivity

Optical system

- Cube BS \rightarrow Plate BS to avoid stray light interference
- Introduce MC to suppress beam jitter

Active Vibration Isolation

- Damp resonance mode of the structure by adding damper
- Install tiltmeter to reduce tilt-horizontal coupling
- Introduce sensor correction servo

Others

 Introduce magnetic shield 21.04.2020

Cryogenic system

- Test better way to attach heat links
- Replace electrical wires to ones with less thermal conductivity

Optical system

- Cube BS → Plate BS to avoid stray light interference
- Introduce MC to suppress beam jitter

Active Vibration Isolation

- Damp resonance mode of the structure by adding damper
- Install tiltmeter to reduce tilt-horizontal coupling
- Introduce sensor correction servo

Others

 Introduce magnetic shield 21.04.2020

AVIT upgrade

How to avoid the effects of parasitic resonance?

- Make resonant frequency higher
 - Need to exchange the structure
- Damp the resonance
 - Let's use shock absorbers
 - Easy to install

Sensor Correction

Control Servo

Optical System Modification

- Problems so far
 - Jitter control noise
 - Stray light interference
- In both case, we need to modify optical system

Control Servo

Witness sensor cancels the local sensor signal

Restore reduction performance

Cryogenic system

- Test better way to attach heat links
- Replace electrical wires to ones with less thermal conductivity

Optical system

- Cube BS → Plate BS to avoid stray light interference
- Introduce MC to suppress beam jitter

Active Vibration Isolation

- Damp resonance mode of the structure by adding damper
- Install tiltmeter to reduce tilt-horizontal coupling
- Introduce sensor correction servo

Others

Introduce magnetic shield
 21.04.2020

- Requirement for jitter rec ion: 10-6
 - ← 10⁻⁹/√Hz w/o control, 10⁻¹⁵/√Hz is the target

Passive reduction by mode cleaner

Suppose F=10⁴:

- 10⁻³ reduction by mode cleaner
- 10⁻¹ reduction by additional suppression
- 10⁻² reduction by WFS

How to Control cavities?

- If we introduce a mode cleaner, sideband for control of main cavity also suppressed
 - How to control mode cleaner and cavity simultaneously?
- 1. Make the round trip length of MC so that sideband is on resonance next to the carrier
 - For 15 MHz sideband, round trip length = 20 m

► Too long!

2. Between MC and the gain cavity insert a phase modulator

One candidate

3. Use suppressed sideband to lock the main cavity

Another way

- 4. Consider another locking way
 - I have no idea

Goal (?)

With current suspension wire \rightarrow limited by suspension thermal noise

Target of My Research

Achieve sensitivity 10⁻¹²/√Hz @ 0.1 Hz

- Lock the cavity and demonstrate new WFS
 First trial for pendulums
- Introduce MC and suppress beam jitter
 10⁻⁶ reduction is the target
- See suspension thermal noise @ 300 K and 4 K
 Show the merit of cryogenic system

Science of that Sensitivity

- What can I do with this sensitivity?
- Newtonian noise injection
 - G-cal like injection (moving mass)
 - Inject temperature fluctuation

- Non-equilibrium thermal noise
 O Heat [™] to make huge heat flow
 Test the thermal residence models
 - Test the thermal noise models
- Currently no quantitative estimation...
- Fortunately(?) I have time to estimate them

End