The research of TOBA so far and my future plans

Satoru Takano

Ando lab

Department of Physics, Univ. of Tokyo

Caution

- I will try to speak in English as possible
- ・でも時々日本語になります
- Discussion is welcomed whether in Japanese or English

Contents

- The current status of TOBA
 - The introduction of TOBA
 - The current setup
 - What we did last year

- Future prospects of me
 - Experiments about TOBA
 - Other experiments

Contents

- The current status of TOBA
 - The introduction of TOBA
 - The current setup
 - What we did last year

- Future prospects of me
 - Experiments about TOBA
 - Other experiments

TOBA (Torsion Bar Antenna)

Torsion Bar Antenna (TOBA)

- A gravitational detector using one/two torsion pendulums
- The resonant frequency of torsion mode is about mHz
 - \rightarrow we can see GWs in low frequency (0.1-10Hz)
- Detectable on the ground \rightarrow no need to operate in space, low cost
- Goal: $h \sim 10^{-19} / \sqrt{\text{Hz}}$ @0.1Hz by using 10m test mass(es)

Targets of TOBA

GWs in low frequency

IMBH binary merger
 Hints for generation of SMBH

 Gravitational Wave Background
 Direct measurement for early universe

M. Ando et al., PRL, 105, 161101(2010)

https://physics.aps.org/articles/v11/36

K. Ishidoshiro et al., PRL 106, 161101 (2011)

Targets of TOBA

Gravitational gradients

- Newtonian Noise
 - Testing modelsR&D for 3G detectors

Early alert for earthquakes
 Big social contributions

R&D plan

Contents

- The current status of TOBA
 - The introduction of TOBA
 - The current setup
 - What we did last year

- Future prospects of me
 - Experiments about TOBA
 - Other experiments

The current setup

- 20cm test mass, suspended by double pendulums
- Measuring differential motion of two arms by Michelson interferometer
- Using counter weights to reduce seismic cross-coupling

Hexapod

Readout system

Seismometers x6

Current sensitivity

Contents

- The current status of TOBA
 - The introduction of TOBA
 - The current setup
 - What I did last year

- Future prospects of me
 - Experiments about TOBA
 - Other experiments

What we did about TOBA

What I did was investigation of noises as we could

- PEM injection
 - Vertical vibrations on the optical bench
 - Magnetic fields on TOBA entirely
- Noise from the laser
 - Frequency noise
 - Polarization noise

Duty cycle of me

What we did about TOBA

What we did was investigation of noises as we could

- PEM injection
 - Vertical vibrations on the optical bench
 - Magnetic fields on TOBA entirely
- Noise from the laser
 - Frequency noise
 - Polarization noise

I did mainly

I did partially Shimoda-san did mainly

He will talk about this

Motivation

The motivation:

- We assumed that if we lowered the actuation efficiency, the sensitivity would get improved
- But it didn't work!

There was another limiting noise (actually, the polarization noise was dominant)

Vertical seismic noise

Coupling to vertical seismic vibration via readout

Shake OB directly to measure the transfer function

Setup of vertical vibration injection

- TM was fixed on OB
- Michelson interferometer on OB
- OB was supported by 3 PZTs, which shook OB directly
- OB motion invoked by PZTs was measured 3 photo sensors

Measuring scheme

- TM was fixed on OB
- Michelson interferometer on OB
- OB was supported by 3 PZTs, which shook OB directly
- OB motion invoked by PZTs was measured 3 photo sensors

Measurement

Transfer function from vertical motion of OB to MI signal

Calculation

Measured by the seismometers

Calculated by models

Measured by the injection

Result

Midterm Seminor 2018

Result

- This readout noise is dominant around 5Hz 50Hz
- Which components induced this noise is yet unknown

Frequency noise

Measured by difference between symmetric and antisymmetric MI

Measurement

Measured by difference between symmetric and antisymmetric MI

Result

• Frequency noise is about 1 order smaller

than the sensitivity @ 0.1 Hz 10^{-6} **Best sensitivity** 10^{-7} strain (/ -01 (/ Hz) -10⁻¹⁰ 10^{-8} Frequency noise 10^{-11} 10^{-12} 10⁰ 10^{-1} 10¹ Frequency (Hz)

Magnetic Noise

Coupling path from variation of magnetic field to the interferometer

Uniform field
 Induced as torque directly

Nonuniform field
 Induced via force to torque

In both cases the variation of dipole moment was neglected I only considered the effect from uniform field

Injection setup

Injected magnetic field in two directions

 The field was generated by two coils made by Okada-san

Measurement 1

Bx: 9.6 / f^2 mrad \cdot (Hz)² / T By: 12 / f^2 mrad \cdot (Hz)² / T

Dipole moment: $\mu = 6.27 \times 10^{-3} \,\text{A} \cdot \text{m}^2$

Measurement 2

Magnetic field in the vacuum chamber

Calculation

Result

Result

Almost the same level as the sensitivity
 This noise may limit the sensitivity below 10⁻² Hz

08.05.2018

Midterm Seminor 2018

Contents

- The current status of TOBA
 - The introduction of TOBA
 - The current setup
 - What we did last year

- Future prospects of me
 - Experiments about TOBA
 - Other experiments

From now, I just want to discuss about

what I will do for master thesis

Contents

- The current status of TOBA
 - The introduction of TOBA
 - The current setup
 - What we did last year

- Future prospects of me
 - Experiments about TOBA
 - Other experiments

Phase-III TOBA

• We are now planning Phase-III TOBA (detail: Shimoda-san's talk)

Cryogenic

What we must do:

- Evaluation of cooling
- Evaluation of induced noise by the cooler, heatlinks, etc.
- Reduction of vibration via heatlinks
- and more

New readout system

What we must do:

- Principle test (table top, suspended)
 Table top was done by Shimoda-san
 If I do this, next target might be to test this scheme for suspended cavity
- Design, calculation
 Requirement value is 500 ppm
- Evaluation of a monolithic optical bench
 How rigid is it?

Other topics about Phase-III TOBA

- Improvement of AVIT
 Increasing the range of actuation (using longer PZTs)
 (modern control?)
- Test of other vibration isolation schemes
 Center of percussion
 VSPI
- Evaluation of coil-coil actuators
 Aritomi-san already did, but I heard from Shimoda-san that there is still something to investigate about them

Contents

- The current status of TOBA
 - The introduction of TOBA
 - The current setup
 - What we did last year

- Future prospects of me
 - Experiments about TOBA
 - Other experiments

Other experiment

- Other possibilities:
- Following Komori-san's experiment
 Radiation-pressure experiment
 Measurmet of non-equilibrium thermal noise
 CSL experiment
- Joining Kawasaki-kun's experiment
 Axion!

Discussion

08.05.2018

Summary

- Last year I investigated some noises in TOBA
- What I will do is TBD
 - > I should decide it until the deadline of application of JPS meeting

END

Polarization noise

Measuring the intensity of each polarization of the laser

- TM was fixed on the OB
- Both polarization were monitored by PDs

Old sensitivity

Midterm Seminor 2018