## Gravitational Waves Detection via Weak Measurements

Satoru Takano

## Contents

- Part1 : Quantum Measurements
- von Neumann measurement model
- Weak measurements and weak values

• Part2 : Review of the paper

"Gravitational Waves Detection via Weak Measurements" • The measurement method • WMA-LIGO

## Part 1

## Quantum Measurements

## Quantum Measurement

- When we execute an measurement on a quantum system, ordinarily the original state is destroyed
- An example: spin measurement, wave function collapse





- We want to measure an system without destroying quantum state
- von Neumann's measurement model

## von Neumann measurement model

- Prepare another system called Probe or pointer :  $|\psi\rangle_S, |\phi\rangle_P$
- The measured system and the probe is interacted
- > The interaction Hamiltonian has the form like that  $\hat{H} = \alpha \hat{A} \hat{X},$

where  $\hat{A}$  is an observable of the system,  $\hat{X}$  is a canonical variable of the probe  $[\hat{X},\hat{P}]=i$ 

- Whole system  $|\Psi
  angle_{SP}=|\psi
  angle_S\otimes|\phi
  angle_P$
- evolves with time as:  $|\Psi\rangle_{SP}(t)=e^{-i\int dt \hat{H}}|\Psi\rangle_{PS}$

 $|\psi\rangle_S$ 

## Some assumptions

• For simplicity, we prepared the probe as a Gaussian in  $\hat{P}$  representation:

$$_{P}\langle P|\phi\rangle_{P} = \mathcal{N}\exp\left(-\frac{P^{2}}{4\Delta P^{2}}\right)$$

- The system is supposed to be separable with eigenstates of  $\hat{A}$ :  $|\psi\rangle_S = \sum c_i |a_i\rangle$ ,  $\hat{A}|a_i\rangle = a_i |a_i\rangle$
- Under such a situation, we measure  $\langle P \rangle$

## The final state

• If the interaction time  $\Delta t$  is enough small,

$$\int dt \hat{H} = \alpha \Delta t \hat{A} \hat{X}$$

• Then,  ${}_{P}\langle P|\Phi\rangle_{SP}(t) = \mathcal{N}e^{-i\int dt\hat{H}}\exp\left(-\frac{P^{2}}{4\Delta P^{2}}\right)\sum c_{i}|a_{i}\rangle$   $= \mathcal{N}\sum c_{i}\exp\left(-\frac{(P-\alpha\Delta ta_{i})^{2}}{4\Delta P^{2}}\right)|a_{i}\rangle$ 

The result is an mixture of Gaussians

## The Probability density

• The probability density of  $\langle P 
angle$  is

$$p(P) = |_P \langle P | \Phi \rangle_{SP} |^2 = \sum |c_i|^2 \exp\left(-\frac{(P - \alpha \Delta t a_i)^2}{2\Delta P^2}\right)$$

- If  $\Delta P$  is much smaller than the difference of  $a_i$
- > We will detect the value  $a_i$  with probability  $|c_i|^2$
- If  $\Delta P$  is much bigger than all of >The mean value is

$$\langle A \rangle = \sum |c_i|^2 a_i$$

## An example



## An example



## Weak measurements

- We select the initial state and the final state of the system:  $|\psi_i
angle_S\,,|\psi_f
angle_S$ 

these operations are called preselection, postselection

• Then, measurements are done:



#### Weak measurements

• The result:

$$S\langle\psi_{f}|_{P}\langle P|\Phi\rangle_{SP} = \mathcal{N}\langle\psi_{f}|e^{-i\alpha\Delta t\hat{H}}|\psi_{i}\rangle\exp\left(-\frac{P^{2}}{4\Delta P^{2}}\right)$$
$$\simeq \mathcal{N}\langle\psi_{f}|\psi_{i}\rangle\exp\left(-i\alpha\Delta tX\frac{\langle\psi_{f}|\psi_{i}\rangle}{\langle\psi_{f}|\hat{A}|\psi_{i}\rangle}\right)$$
$$\times\exp\left(-\frac{P^{2}}{4\Delta P^{2}}\right)$$

## Weak value

• We define weak value as:

$$A_w = \frac{\langle \psi_f | \psi_i \rangle}{\langle \psi_f | \hat{A} | \psi_i \rangle}$$

• Then  

$${}_{S}\langle\psi_{f}|_{P}\langle P|\Phi\rangle_{SP} = \simeq \mathcal{N}\langle\psi_{f}|\psi_{i}\rangle\exp\left(-\frac{(P-\alpha\Delta tA_{w})^{2}}{4\Delta P^{2}}\right)$$

- · If we measure  $\langle P 
  angle$  , we know  $A_w$
- The meaning of  $A_w$  is not trivial, controversing

# Part 2 Review Of The Paper

## Introduction

- This paper suggest a brand-new interferometer using weak measurement
- As a pointer, they use polarized photons
- The measured system is the path of the photon (in detail, I will explain later)
- Note: this method execute preselection and postselection, but doesn't use the weak value!

## Notation

- Suppose we want to measure a two-level system |0
  angle, |1
  angle
- We use photons as the pointer:

 $|H\rangle$  is the horizontal polarization state,

- |V
  angle is the vertical polarization state
- Other representation of polarizations:

 $|+\rangle = (|H\rangle + |V\rangle)/\sqrt{2}, \qquad |R\rangle = (|H\rangle + i|V\rangle)/\sqrt{2},$  $|-\rangle = (|H\rangle - |V\rangle)/\sqrt{2} \qquad |L\rangle = (|H\rangle - i|V\rangle)/\sqrt{2}$ 

#### **Polarization states**



## A brand-new method

• Preparing the initial state of the pointer as

$$|\phi_i\rangle_P = |+\rangle = \frac{|H\rangle + |V\rangle}{\sqrt{2}}$$

- We take the initial and the final state of the system as before:  $|\psi_i\rangle = \alpha |0\rangle + \beta |1\rangle, \ |\psi_f\rangle = \gamma |0\rangle + \eta |1\rangle$
- Now, consider a new Unitary operator

$$\hat{U} = |0\rangle\langle 0|\otimes \hat{I} + |1\rangle\langle 1|\otimes (|H\rangle\langle H| + e^{i\theta}|V\rangle\langle V|)$$

-  $\boldsymbol{\theta}$  is the signal what we want to measure and amplify by weak measurement

## Assumptions

- In this case, the final state is  $|\Psi_f\rangle_{PS} = \hat{U}|\Psi_i\rangle_{PS}$ 

$$= \alpha |0\rangle \otimes |+\rangle + \beta |1\rangle \otimes (|H\rangle + e^{i\theta} |V\rangle) / \sqrt{2}$$
$$|\phi_f\rangle_P = (\alpha \gamma + \beta \eta) |H\rangle + (\alpha \gamma + \beta \eta e^{i\theta}) |V\rangle$$

• Ordinary,  $\,\, heta\ll 1$  , so in the first order

$$\begin{aligned} \alpha \gamma + \beta \eta e^{i\theta} &\simeq (\alpha \gamma + \beta \eta) e^{i\varphi} \,, \\ \tan \varphi &= \frac{\beta \eta \theta}{\beta \eta + \alpha \gamma} = \frac{\theta}{1 + \frac{\alpha \gamma}{\beta \eta}} \end{aligned}$$

### How to detect the signal

• Then, the final state of the pointer is

$$\langle \phi_f \rangle_P = \frac{1}{\sqrt{2}} (|H\rangle + e^{i\varphi}|V\rangle)$$

- Using this, we extract the signal  $\varphi$  by calculating

$$\langle \hat{\sigma}_y \rangle = {}_P \langle \phi_f | \hat{\sigma}_y | \phi_f \rangle_P = \sin \varphi$$

The postselection probability is

$$P_{select} = |_{S} \langle \psi_{f} | \psi_{i} \rangle_{S}|^{2} = |\alpha \gamma + \beta \eta|^{2}$$

#### Amplification factor

• Suppose 
$$\alpha = \beta = 1/\sqrt{2}, \gamma = \cos \chi, \eta = \sin \chi$$
  
 $\tan \varphi = \frac{\theta}{1 + \cot \chi}$   
• If we take  $\chi = -(\pi/4 + \delta)$ ,  
 $\tan \varphi \simeq \frac{\theta}{\delta}$ 

so the amplification factor is

$$h = \frac{\varphi}{\theta} = \frac{\tan^{-1}(\theta/\delta)}{\theta}$$

With recently technology, we can reach h~10<sup>3</sup>

2017 July 20

## Trade-off of the postselection probability

• on the other hand, the postselection probability is

$$P_{select} = \frac{1}{2} |\cos \chi + \sin \chi|^2 = \sin^2 \delta$$

There is a trade-off between
 The amplification of the signal
 The postselection probability



## Polarization of photons in the MI

- PBS1:  $|H\rangle$  is transmitted,  $|V\rangle$  is reflected
- QWP: if photons passes it twice, It converts
- $\succ |H\rangle \rightarrow |V\rangle$  $\geqslant |V\rangle \rightarrow |H\rangle$ 
  - All photons go to the signal port



## The preselection and the postselection

• The initial state is

$$|\Psi_i\rangle_{SP} = (r_1|down\rangle + t_1|up\rangle) \otimes |+\rangle$$

- If GW comes in, the phase between  $\left|H\right\rangle$  and  $\left|V\right\rangle$  is slightly change:

$$|\Psi_f\rangle_{SP} = r_1 |down\rangle \otimes |+\rangle + t_1 |up\rangle \otimes (|H\rangle + e^{i\theta} |V\rangle)$$

• Finally, we postselect the final states:

$$|\psi_f\rangle_S = r_2|down\rangle + t_2|up\rangle$$

## Signal port



## Signal amplification

• This is the same as previous example :

$$\label{eq:alpha} \begin{split} \alpha &= r_1\,,\beta = t1\\ \gamma &= r_2\,,\eta = t_2\\ |\phi\rangle_P = \frac{1}{\sqrt{2}}(|H\rangle + e^{i\varphi}|V\rangle)\\ \tan\varphi &= \frac{\theta}{1+\frac{r_1r_2}{t_1t_2}} \end{split}$$

- If we choose  $r_1,r_2,t_1,t_2$  so as to  $r_1r_2+t_1t_2\to 0$  , signal  $\theta$  is much amplified

2017 July 20

## Conclusion

- Using WMA-LIGO, we can amplify the signal by the factor  $h\sim 10^3$
- Shot noise and radiation pressure noises are treated as usual FPMI
- All photons go to the signal port
   It means that the MI is at the bright fringe
- Shot noise is worst than ordinary interferometer?
- Quantum measurements theory is difficult

## End

2017 July 20

## Setting

Suppose the interaction Hamiltonian is  

$$\hat{H} = \alpha \hat{A} \otimes \hat{\sigma}_y,$$
where  $\hat{A} = |0\rangle\langle 0| - |1\rangle\langle 1|,$   
 $\hat{\sigma}_y = |R\rangle\langle R| - |L\rangle\langle L| = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ 

The initial state is

$$\begin{split} |\Psi_i\rangle_{PS} &= |\psi_i\rangle_P \otimes |H\rangle \,, \\ |\psi_i\rangle_P &= \alpha |0\rangle + \beta |1\rangle \end{split}$$

- The final state of the system is  $|\psi_f\rangle_P = \gamma |0
angle + \eta |1
angle$ 

## Calculation

• If the interaction occurred between small time  $\Delta t$ , the time evolution is :

$$|\Psi_f\rangle_P = e^{-i\theta\hat{A}\otimes\hat{\sigma}_y}|\Psi_i\rangle$$
 where  $\theta = \Delta t \alpha$ 

• Then, the final state of the pointer is  $|\phi_f\rangle_P = \langle \psi_f | \Psi_f \rangle \simeq \langle \psi_f | \psi_i \rangle e^{-i\theta A_w \hat{\sigma}_y} | H \rangle$ if the weak value condition is satisfied.

# • After some algebra, we get $$\begin{split} |\phi_f\rangle_P &= \langle \psi_f |\psi_i\rangle e^{-i\theta A_w \hat{\sigma}_y} (\cos\chi |H\rangle + \sin\chi |V\rangle) \\ &\simeq \langle \psi_f |\psi_i\rangle (|H\rangle + \chi |V\rangle) \\ \text{if } \chi &= \theta A_w \ll 1 \end{split}$$

• Using 
$$|\phi_f\rangle_P$$
, we can calculate  $A_w$  as follows:  
 $\langle \hat{\sigma}_x \rangle = 2\theta \operatorname{Re}(A_w)$ ,  
 $\langle \hat{\sigma}_y \rangle = 2\theta \operatorname{Im}(A_w)$