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By the way...

We so much owe to Einstein.
In 1905 (Annus Mirabilis)
- Special relativity

o Finally it evolved to general relativity, and
predict GW

* Photoelectric effect

o Quantum mechanics. Then we get coherent
light source.

 Brownian motion

o Fluctuation dissipation theorem, stochastic
thermodynamics.

All above is much related to our research!
Today’s seminar is related to third one.
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Today, | will talk some topics about nonequilibrium
thermodynamics related to GW detector community.

Main topic:

- Stochastic Thermodynamics
* Fluctuation Theorem

* Information Thermodynamics
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Equilibrium state = macroscopic quantity do not change in time

How about our experiment?
- Laser: Strongly pumped
- Feedback: Controlled
* (Cryogenic: Heat flow through fibers and heatlinks)

We often consider systems far from equilibrium!

For better understanding of our experiment, we should care about

physics under nonequilibrium state.
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Brief History of NETD (1)

- Einstein’s relation (1905):
o Einstein, 1905
o Relation btw diffusion of particle and viscosity

/ AN Vd

diffusion constant mobility, 4 = F

- Johnson noise
o Measurement by Johnson, Theory by Nyquist (1928)
o Thermal fluctuation of electrical voltage (or current)

p Sy(w) = 4kBTR\

single-sided PSD resistance
of voltage
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Brief History of NETD (2)

* Fluctuation dissipation theorem (FDT)
o Callen, Welton (1952)
o Generalization of Johnson noise to arbitrary system

fhw
Sp(w) = 4kBTR(a))— coth < > )

F(w)

v(w)

Z(w) = : generalized impedance, R(w) = Re[Z(w)]: generalized resistance

- Levin’s approach
o Levin (1998)
o Mathematically equivalent, calculated easily

8kBT Wdiss dissipation energy per period

X 2
0 FO applied force F' = F, cos wt
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Brief History of NETD (3)

- Linear resopnse theory
o Kubo, Nakano, ... (1950s)

phw
C{A,B}(a)) — COth T C[A’B](a))

Ciap (@) = [ dte™({A(r), B(0)}) : fluctuation at equilibrium

Ciup(@) = J dte'([A(z), B(0)]): resopose function

All of these relation state that fluctuation at equilibrium is related to

response to external force applied \
\far from equilibrium <+ equilibrium
related!
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Noise out of equilibrium

Can we satisfied with FDT?
» No! There is shot noisel

Si(@) = 2e(l) -~

PSD of current average current

Apparently shot noise and Johnson noise is different.
- Johnson noise depends on temperature, but shot noise doesn’t

- Johnson noise exists even average current flows, but shot noise
appear only when average current exists

As a stochastic process, there noises can be described as
o Johnson noise: Gaussian

o Shot noise: Poissonian
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Stochastic Thermodynamics

Conventional thermodynamics
- System is macroscopic

* Dynamics is deterministic

Stochastic thermodynamics

- System is mesoscopic (e.g. a particle driven by brownian
motion)

- Dynamics is stochastic
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Langevin Equation

Langevin equation

mxX=—yx+ F(x,A)+ ¢
oU(x, 1)

0x

¢ : random force acted by the thermal bath, (£(n)é@)) .= D?5(t — 1)
- Then, modifying the equation like this:

F(x,A) = — : some controllable potential force

X
dp = (—lx + F(x, /1)> dt+ &dt , dp =—dt
m m
Here, Edt = DdW is Gaussian process.

Now x and p are stochastic quantities. If you know the probability
density of them, you can calculate any quantities depending x and

P-
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1st Law of Thermodynamics

- Next, define heat (d'Q) work (d'W)as follows:

dQ:=(ri—&)edx, dW:=——d

exerted force x velocity

— energy dissipation potential change

due to external operation
— work done by external system

- From Langevin equation, we get:
dU =d'Q+dW

- 1st law of thermodynamics in terms of stochastic process!
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FDT Appears Naturally

- Consider average heat flow:

( \
, 2y p? D?
(@) =-L[( L) -—
m 2m 4y

\ )

- At equilibrium state, 1st term is equal to kg77/2

- And, at equilibrium there is no heat flow

P2 - kT P2 D2 o
om [ 2 2m 4y

~ D = \/2pkyT (EDET)) = 2yky TS — 1)

This means S(:(a)) - 4kaT — FDT!
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- Stochastic view of system can describe thermodynamics
structure
o 1st law of thermodynamics
o 2nd law of thermodynamics (I omit its derivation)
- If the system is at equilibrium, FDT also appears naturally.
- Next, let’s consider the system far from equilibrium by stochastic
way
> Fluctuation theorem
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Fluctuation Theorem

A strong relation which holds even when the system is out of
equilibrium.

Consider “forward process” (ordinary time evolution) and “backward
process” (time-reversed and T transformation) process.

Now define the measurement probability of a quantity €2 as
o Forward: p(£2)
o Backward: p'(—Q)

Fluctuation states that

p'(=Q) =p(Qe™ (k=1

even the system is out of equilibrium!
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FT Family

Last equation is one of FT. There are many “so-called FT”

» Crooks FT .
PT (_ A) o entropy generation rate

—0

P(A)
« Detailed FT

P(=Q) = p(Qe

- Integral FT zoology of theorem...

(e7%) =1

- Jarzynski equality
<e—ﬂW> — e—ﬁAF

Review of FTs: Rep. Prog. Phys. 75 126001
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https://iopscience.iop.org/article/10.1088/0034-4885/75/12/126001

FT contains FDT (1)

- Consider two baths 1,2 and between baths current Bath1
of X flows. 1
X1

- Define intensive variables conjugative to X in terms
of entropy and energy:

0S oU
HX::_’PX::a_X:

- Suppose that flowing current is Jy and difference

TII,

of Il btw 2 baths is Ally, entropy generation rate
Is written as:
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FT contains FDT (2)

- From integral FT,
P(Jy) = P(=Jy)e = P(—Jy)e'x*!x
. Taking average, you'll get this:
(Jx) = (=Jye x3k)

- Now consider the situation near equilibrium. Expanding RHS and
considering up to O(Ally) terms,

y <JX2> -9 a<JX> — T a<JX>

ATT=0 0AIly ALt 0A Py _—
X— X—
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FT contains FDT: Example

Let’s apply it to a circuit.

- Now, X = g (charge), APy = V (voltage), Jy = g = I (current)

oJy) () 1
> = — = — Bath1
- Substituting this, you’ll get AV

2T
(I?) = 3 or (V%) =2RT

Johnson noise!
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Violation of FDT under Steady Flow

Harada-Sasa (HS) equality: violation of FDT PRL 95, 130602 (2005)

- For (over-damped) Langevin system
thermal force

yx = F(x) +f(x) + ¢

external force to measure R(t)
relation btw PSD of velocity and responce function:

J * dw
—=v2+| — [Cw)-kT(R(w)— R(-w))]
% o 2m

= 0 if equilibrium

# 0 for nonequilibrium steady state

C(7) := ((x(r) — v)(x(0) — v,)) : autocorrelation of velocity
(X() = v, + J dt'R(t — t)f(t") : response function

Jdt = { (yx — &) o dx) : energy dissipation
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.130602

Application of HS equality

PRL 104, 198103 (2010)

Measurement of energy loss of molecular motors
Estimation of energy dissipation at steady state (— nonequilibrium)
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.198103

Information Thermodynamics

Relation between work & information obtained by measurement

ASsystem o ﬁ(Q) > Al

It says that:

Entropy change of the system must be grater than entropy change
of the bath + information obtained by the measurement

Information / &

Equivalently, 0 - edback
eedpac

H Work
Wea + AF <IGAL - 080 (o)
AF
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Cooling Limit by Feedback

> Cooling limit by feedback control gi gi

- For a Langevin system like / feedbackforee & 7&’"

What can we extract from information thermodynamics? ‘

mx = — },x + Ffb(xa /1) + 5 measurement
- Effective temperature is bounded by mutual information:
t€(0,7]
T —T.
2o (X
T -
kBTeff . mxz l \
T <T> mutual information

obtained by measurement

- How much Information you got during system’s timescale puts
limit for feedback cooling PRE 84, 021123 (2011)
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https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.021123

Application to our research

Harada-Sasa equality

- Energy loss measurement — Q value ?
Feedback cooling limit

- Better way to damp oscillation?
Other concern

- How about quantum case? — under discussion
My ambition:

- Unified description of quantum noise due to photons and thermal
noise of oscillators

- Analytical calculation of nonequilibrium thermal noise of cooled
pendulum (like Komori-san’s paper)
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