Introduction to Ando Lab

Satoru Takano 6th Floor Joint Seminar

Ando Lab

- 2 Staff
- 3 Master Students
- 8 Ph.D Students

Our Physics				
	GW			
	KAGRA			
	DECIGO		TOBA	
	SQL Measurement		Polarization of GW	
Optomechanics		Axion Search	Lorentz Invariance	
CSL			Inverse Squar	e Law
Quantum			Beyond	GR

References

重力波とはなにか

「時空のさざなみ」が拓く新たな宇宙論

重力波で見える宇宙のはじまり 「時空のゆがみ」から宇宙進化を探る

Gravity in GR

- Gravity: Strain of space-time
- The heavier an object, the larger the induced strain

NAOJ Gravitational Wave Project Office

Gravitational Wave

• Gravitational wave = propagation of strain

Characteristic of GW

• Tidal force

• High transparency

Source of GW

- Sources of GW: mainly astronomical objects
 - Compact binary merger (black hole, neutron star)
 - ► Supernova
 - ► Pulsar
 - Early universe
- GW tells us what we can't see by EM wave
- → GW detector is our new "eye"

Physics of GW

- What we have learned from GW:
 - Propagation speed (almost the same as light)
 - ► GR is consistent
 - There are BHs with O(10) solar mass
 - Constraints on equation of state of NS
 - NS merger generates heavy nuclei
 - ►etc...
- What we will learn from GW:
 - ► Test of GR
 - Generation process of Supermassive black hole
 - Fluctuation of early universe
 - ►etc…

First Detection

How to Measure

- Resonant-Mass
 - ► 1st GW detector

- Laser interferometer
 - Current standard

- Torsion pendulum
 - Our original

- Resonant-Mass
 - ► 1st GW detector

- Laser interferometer
 Current standard

← Weber Bar

Resonant-Mass Detector ↓ (Hirakawa lab era)

Torsion pendulum
 Our original

from Prof. Tsubono's Final Lecture

- Resonant-Mass
 - ► 1st GW detector

- Laser interferometer
 - Current standard
 - KAGRA (on earth): L ~ 3km
 - DECIGO (in space): L ~ 1000km
- Torsion pendulum
 - ► Our original

Laser Interferometer

- Make use of interference of laser
 - ► GW comes → Arm length changes
 - → Laser power at photodetector changes

KAGRA

Underground of Kamioka, Gifu
Now under construction
Operation will start in FY2019

3km

DECIGO

- Laser Interferometer in space
- Arm length: L ~ 1000km

Sensitivity

Frequency / Hz

- Resonant-Mass
 - ► 1st GW detector

Laser interferometer
 Current standard

- Torsion pendulum
 - Our original
 - ► TOBA

TOBA

- TOBA = TOrsion-Bar Antenna
- Measure the rotational motion of a bar
- Resonant frequency:
 - Normal pendulum: ~ 1Hz
 - ► Torsion pendulum: ~ a few mHz
- More sensitive at low frequency (< 1Hz)

Phase-III TOBA

• Now constructing of a prototype (Phase-III TOBA)

Lorentz Invariance Test

- Isotropy of light speed: principle of (general) relativity
- But could only be an approximate
- Test of anisotropy
 - Two-way: Michelson-Morley type

Setup

