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TOBA (TOrsion-Bar Antenna) is a gravitational wave detector using a torsion pendulum. The resonant frequency of 
torsional motion is ~1mHz, therefore it can be a ground-based GW detector which is sensitive to low frequency GWs 
(0.1-10Hz). Our target sensitivity is ~ 10-19 /√Hz @ 0.1Hz, which will enable us to detect IMBH(intermediate mass black 
hole) binary mergers and GGN(gravity gradient noise), etc. Here we show the current status of TOBA. We also explain 
future update plans, Phase-III TOBA.  

TOBA = “TOrsion Bar Antenna” [1]


• GW detector using a torsion pendulum

• Low resonant frequency (~ mHz)

- target range: 0.1Hz ~ 10 Hz


• Ground-based 

- inexpensive, easy to maintenance


Our goal: 10-19/√Hz @ 0.1 Hz

R&D Plan

Design sensitivity of Phase-III TOBA

Cryogenic | cooled to 4K 

New readout sensor | improved WFS

1. Introduction | What is TOBA?

TOBA: TOrsion Bar Antenna 
The Current Status and Future Plans 

Targets of TOBA

IMBH Binary Merger

- 10Gpc for 105M⊙ BH


baseline length. The advantage of a TOBA is its configu-
ration simplicity, the potential sensitivity in low frequen-
cies even with a ground-based configuration, and the
capability of an intermittent observation of low-frequency
GWs with a modulation and up-conversion scheme.

A TOBA has an option to be a resonant antenna, in
which two test-mass bars are connected by a shaft with a
small spring constant [23]. Though the observation band is
limited around the resonant frequency in this configuration,
the requirement for the angular sensor is relaxed.
Moreover, its sensitivity to low-frequency GWs can be
enhanced by tuning the resonant frequency to twice the
antenna rotation frequency. In such a case, a reduction of
the thermal noise of the shaft is critical.

Besides the fundamental noises investigated in this
work, there are many practical noises to be considered:
additional noises in the angular sensors, Brownian fluctua-
tion by residual gases, and noises due to electromagnetic
fluctuations [24]. In a ground-based configuration, the
simplicity of a TOBA is helpful for low-frequency isola-
tions and common-mode reduction of seismic disturbances
and for the reduction of gravity-gradient noises in an
underground site. A space mission requires a reduction in
the antenna size while maintaining its sensitivity by using
advanced optical technologies. Optimization of the an-
tenna parameters, implementation of advanced interfero-
metric techniques, and investigations of these noise
behaviors will be considered in future works.

Conclusion.—We propose a gravitational-wave antenna,
a TOBA, comprised of bar-shaped test masses and sensors to
monitor their differential angular motions. This antenna has
a fundamental sensitivity to gravitational waves with fre-
quencies lower than 1 Hz, which are inaccessible by current
ground-based detectors. In order to investigate the concept
and potential of a TOBA, we are developing a prototype
ground-based detector [25]. In addition, we have developed
a tiny module, called the SpaceWire Interface Demon-
strationModule, for space-related demonstrations; this mod-
ule has been operated in a low-Earth orbit for one year [26].
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FIG. 4 (color online). Estimated SNR for a merger of equal-
mass black holes with equal and parallel spin parameters of 0.5
[19], shown as a function of the total mass and the luminosity
distance.
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Newtonian Noise

- comes from fluctuation of 

terrestrial gravity field [2]


- testing models for R&D of 

     3G GW detectors

3. Future Plan | Phase-III TOBA

2. Current Result | Noise investigation

mail: takano@granite.phys.u-tokyo.ac.jp

4. Summary

Prototypes

Phase-I (2009)

Phase-II (2015)

Phase-III (Next)

40cm Test Mass

Cryogenic 

Goal: 10-15/√Hz 
  @ 0.1Hz

Final (Future)

10m Test Mass

Cryogenic 

Goal: 10-15/√Hz 
  @ 0.1Hz

Test for cryogenic GW observation

Establish noise reduction scheme 
Succeed: reducing seismic cross-coupling 

       jjhii identifying other noise sources

Feature 
• Cryogenic 
- cooled to 4K

- reducing thermal noise

• New readout sensor 
- a kind of WFS

- advantage 


ho in some points

cooling time of the suspension
• calculation shows the wire reaches 3.1K in 21 days

4KIntermediate mass

Test mass

1st shield

2nd shield

ordinary wave front sensor

HG00 resonates, but HG10 doesn't

improved WFS

Both HG00 and HG10 resonates

What is good?

- No frequency noise 
- Lower cross-coupling than Michelson interferometer (MI) 
- The same optical gain and shot noise level as MI

technical noises are 
well identified!

We showed basic concept of TOBA. Our goal is to observe 
Newtonian noise and IMBH binary mergers. So far we have 
identified many noise sources and demonstrated reducing 
schemes. We started Phase-III TOBA, in which we cool tests mass 
to 4K and employ new angular sensor, improved WFS.

HG10

resonance

non resonance

generate 

HG10

generate 

HG10HG00

HG10

resonance

resonance
compensate

Gouy phase

Now 
Here

Seismometer x6

Actuator x6

Intermediate & 
Damping  mass

Test mass

Optical bench

- 20cm test mass

- Michelson 

interferometer

Seismic cross-coupling 
(x, y, z, nonlinear)Actuator 

 circuit

Magnetic 
field

ADC circuit

Laser 
Frequency

Best sensitivity 
(18. Apr.) 

- two cryogenic shields

- radiation cooling + heat reach 3.1K in 21 days

an estimation of Newtonian noise [2]

an estimation of SNR for IMBH merger [1]
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