Photo-induced carrier dynamics of charge glass using timeresolved spectroscopy

2024 Mid-term report meeting

M1 Sugioka Tatsuya

1. Method(Time-resolved spectroscopy)

- 2. Background of the research
- **3.** Results and discussion
- 4. Summary

Time-resolved spectroscopy

What is Time-resolved spectroscopy?

A method to **investigate the transient response** of electrons using **laser pulses** Ex) **emission, absorption**

Why laser pulse?

Spatiotemporally controlled pulses enable high time-resolution

Especially, we use **Pump-probe spectroscopy**

Pump-probe spectroscopy

Experimental system

liquid phase(disordered)

Generally, a phase transition to solid phase(ordered), But in a special condition, freeze randomly

This is what we call glass

Glass has both liquid-like disorder and solid-like rigidity

> The mechanism of glass formation is said to be one of the greatest mysteries in physics

In a organic matter family, Electronic systems have also been found to be vitrified

Charge frustration

- θ-Rb: Charge order(CO) in slow cooling
 Charge glass(CG) in rapid cooling
- θ-Cs: Charge glass(CG) regardless of cooling rate

The closer to an equilateral triangle, the stronger its frustration

Are there differences between different frustrated glass state?

Result

Result

Result

Discussion

Discussion

Discussion

Summary

- Anisotropy of photo-induced carrier dynamics depends on lattice frustration
 - Electronic system with different frustration produce CG with different properties
- CG research is still in the stage of basic research, and we have no clear application
- But it shows interesting physical properties (like negative resistance) and drawing attention
- Possibly be clue to unraveling the mystery of glass

Self Introduction

- Tatsuya Sugioka/杉岡達哉
- Time line
 2002.2 :born in Hyogo
 - -2020.3 :Rakusei(洛星) high school in Kyoto
 - -2024.3 : Hokkaido Univ. applied physics
 - 2024.4- :Ando Lab.

My Hobby : traveling, watching baseball, stargazing

