Improved wave front sensor using a Gouy phase compensation cavity

Shimoda Tomofumi

Ando lab. seminar on 22 Dec. 2017

Abstract

- We are developing an improved angular sensor
- sensitivity of wave front sensor(WFS) can be improved by using auxiliary cavity for HG₁₀ mode resonance
- it gives us many merits and a few demerits compared with conventional angular sensors

Contents

- principle
- merits & demerits
- technical issues
- design for TOBA
- summary

principle

principle of wave front sensing

- tilted mirror converts HG_{00} to HG_{10}
- HG₁₀ mode from the cavity is detected as angular signal
- no cavity amplification on HG₁₀ mode signal (same as optical lever)

similar to MI

- sensitivity of conventional WFS is in the same order as Michelson interferometer whose arm separation is beam diameter
- because 10 mode signal is not amplified by the cavity

improvement idea

• If HG₁₀ mode can resonate inside the cavity, generated signal is amplified

similar to FPMI

 sensitivity of improved sensor is in the same order as Fabry-Perot Michelson interferometer whose arm separation is beam diameter

 \Rightarrow high sensitivity

normal cavity cannot realize this

• HG_{10} mode gets different phase from HG_{00} mode by Φ_{Gouy} therefore they cannot resonate at the same time in a normal cavity

idea : auxiliary cavity for Gouy phase compensation

cavity has different reflection phase for each modes

idea : auxiliary cavity for Gouy phase compensation

- reflection phase of the auxiliary cavity can compensate Φ_{Gouy} in the main cavity

lock points of auxiliary cavity

solutions don't always exist

allowed reflectivity

• cavity length (10cm) & beam size (0.8mm) are fixed

preferred reflectivity

enough finesse of the main cavity is required for angular signal amplification

possible configurations

• test mass can be put anywhere

inserted in cavity

merits & demerits

low shot noise

• \Leftrightarrow high angular response (almost same as MI)

• same as MI shot noise level $\sim 10^{-15}$ rad/rtHz

large linear range

than Michelson interferometers

roughly larger by (bar length) / (beam diamerer)

- less(no) angular control is required ⇔ less(no) actuator noise
- (practically, range of PD should be considered)

low beam jitter noise

than conventional WFSs

suppressed by finesse

no(low) frequency noise

no frequency noise in wave front sensor

 (spatial nonuniformity of frequency fluctuation can be noise ...?)

- making flatness is easier in smaller scale
- especially this is good point for large bars (L>50cm) which are difficult to make flatness between both ends

higher by (bar length) / (beam diameter)

noise ~ (fluctuation) / L

noise ~ (fluctuation) / w

summary of merits & demerits

• new sensor is the best !!

	conventional WFS	Michelson interferometer	new WFS	
shot noise		E	e	
linear range		E	E	
beam jitter		@ ?	E	
frequency noise	(()	E	(!)	
trans-coupling	(()	E	e	
thermal noise	E	(:)	E	← not dominant in TOBA

technical issues

1length signal extraction

- main cavity : Refl PDH signal
- auxiliary cavity : DC signal (Trans (const) imes Refl)

to set dc offset 0

main cavity length signal

- auxiliary cavity is detuned from HG₀₀ resonance
 - \rightarrow auxiliary cavity works as well as single mid mirror for HG₀₀
 - \Rightarrow refl PDH siganal mainly contains main cavity length signal

auxiliary cavity length signal

• reflectivity of auxiliary cavity $abs(r_a)$ depends on auxiliary cavity length

 \Rightarrow trans/refl DC power changes

signal separation

- not bad
- $(R_{front} = 99\%, R_{mid} = 99.95\%, R_{end} = 99.95\%)$

sensing matrix	main cavity	auxiliary cavity
PDH signal (refl)	1 —	0.09—
DC signal (refl-trans)	0 —	1 —

②coupling from other mirrors

• every mirror can generate HG₁₀ mode

coupling cannot be eliminated

- not enough degrees of freedom to separate signals
 - 2 readout quadrature vs 3 mirrors
- (by choosing readout direction, coupling from only one mirror can be removed)

(semi-)monolithic mirrors may be necessary ⇒ how much is the angular fluctuation of mirrors?

③length-angle coupling

(not evaluated in detail yet)

④other technical issues

- Do nonexplicit coupling routes exist? from...
 - frequency fluctuation
 - polarization fluctuation
 - intensity fluctuation
 - and so on...

design for TOBA

cavity design

- cavity length : 10cm(main) / 7.5cm(auxiliary)
 - limited by chamber size
- beam radius : 0.8mm @front mirror (waist)
 - from thermal noise requirement
- Finesse of main cavity : 360

total configuration (plan)

- put the front mirror on the test mass
- mid & end mirrors are (semi-)monolithic
- beam jitter is suppressed by control with two QPDs

jitter suppression

- QPD noise : ~ 10⁻⁷ V/rtHz @0.1Hz
- position sensitivity of QPD (w=0.4mm) : ~ 30 V/mm

 \rightarrow position sensing noise : 3 \times 10⁻¹² m/rtHz

- measure beam center at two points (separated by 30cm) \rightarrow angular jitter : 10⁻¹¹ rad/rtHz
- jitter noise is suppressed by finesse(~300) \rightarrow 3 × 10⁻¹⁴ rad/rtHz

sensor noise level

• $4 \times 10^{-14} \text{ rad/rtHz} @ 0.1 \text{ Hz} \in \text{target} : 5 \times 10^{-14} \text{ rad/rtHz}$

sensor noise level

• $4 \times 10^{-14} \text{ rad/rtHz} @ 0.1 \text{ Hz} \Leftrightarrow \text{target} : 5 \times 10^{-14} \text{ rad/rtHz}$

summary

summary

- sensitivity of wave front sensor can be improved by using auxiliary cavity for HG₁₀ mode resonance
- improved sensor has low <u>shot noise</u>, jitter noise, <u>frequency noise</u>, and large <u>linear range</u>, but high <u>thermal</u> <u>brownian noise</u>
- optical design for TOBA is fixed : (noise) 4×10^{-14} rad/rtHz (demonstration experiment is in preparation)

remaining issues

- measure or estimate angular fluctuation of (semi-) monolithic optics
- calculate length-angle coupling in detail and think how to reduce it

end