Future development plan of Torsion-bar antenna

Tomofumi Shimoda

Ando lab. midterm seminar (2018/5/8)

contents

- overview of TOBA
- protypes : what is done so far
 - cross-coupling reduction
 - technical noise investigation
- next plan : for Phase-III TOBA
 - cryogenic suspension
 - vibration isolation
 - angular sensing
- summary of TOBA development plan

TOrsion-Bar Antenna

- TOBA = a gravitational wave detector using a torsion pendulum
- sensitive to low-frequency GWs because of <u>low</u>
 <u>resonant frequency</u> (~mHz) of Yaw rotation
- target sensitivity : <u>10⁻¹⁹ /rtHz @0.1Hz</u> with 10m bar

scientific targets of TOBA

low-frequency GWs

intermediate mass blackholes (~10⁵ M_{sun})

- Earthquke early warning with gravity signal
 - M6.0 earthquakes are detectable in 10sec from 100km away
- Newtonian noise
 - test noise models for the next generation GW detectors

low frequency GWs

- Intermediate mass black holes
 - <u>10 Gpc</u> for 10⁵ M_{sun} IMBHs

PhysRevLett. 105.161101

- stochastic GW background
 - beyond BBN bound

Phys. Rev. Lett. 106.161101

earthquake early warning

earthquake! gravity deformed wavefront

ground deformation by earthquakes

 \rightarrow Newtonian gravity perturbation

gravitational signal propagates at the <u>speed of light</u>

faster than seismic waves

• M6.0 earthquakes are detectable in 10sec from 100km away with smaller scale (~1m) TOBA

Newtonian noise

- density perturbation of the ground and the <u>atmosphere</u>
- measurement at low-frequency can help understanding the nature of the noise (for next generation detectors)

temperature (atmosphere)

calculated by D. Fiorucci

development plan

• prototypes \rightarrow **<u>phase-III</u>** \rightarrow final

	prototypes	Phase-III	Final
features	~20cm bar	40cm bar cryogenic	10m bar cryogenic
sensitivity	10 ⁻⁸ /Hz ^{1/2} @0.1Hz	~10 ⁻¹⁵ /Hz ^{1/2} @0.1Hz	10 ⁻¹⁹ /Hz ^{1/2} @0.1Hz
	 ✓ proof of concept ✓ noise hunting 	 ✓ noise reduction ✓ IMBHs in Milky-way galaxy ✓ Earthquake detection ✓ NN measurement 	GW observation

now here

what do we have to do for phase-III ?

prototypes

what is done so far

current prototype

• 2×10^{-8} /rtHz @ 0.1Hz

tilt adjustment for cross-coupling reduction significant noise in TOBA

- translation of the ground can be transferred to the rotation of the bar via asymmetries of the system (cross-coupling)
- **<u>tilt</u>** is the main asymmetry which introduces coupling
- after adjustment : ~10⁻⁵ rad/m @0.1Hz

technical noise investigation

noise sources are well identified

next : Phase-III

phase-III TOBA

- <u>~10⁻¹⁵ /rtHz @0.1Hz</u> with small scale (~40cm) bar
 - demonstration of noise reduction for final (10m) TOBA
- Scientific targets of Phase-III
 - search IMBHs inside the Milky-way galaxy (~ 1 Mpc)
 - earthquake early warning (M6.0 in 10s from 100km)
 - Newtonian noise investigation (cancellation demonstration)

design overview

- 40cm test mass
- two cryogenic shields
- double stage suspension

suspension design

- <u>two individual suspension series</u> (TM susp. & OB susp.)
- matching Yaw resonant frequencies for common-mode rejection
- damping on intermediate masses (not shown in the figure)

noise sources & requirements

suspension thermal nosie

- cooling : <u>4K</u> @ suspension wire
- high-Q suspension wire : <u>Q = 10⁸</u> (silicon or sapphire)
- seismic noise (cross-coupling from translation)
 - cross-coupling : <u>10⁻⁹ rad/m @0.1Hz</u>
 - active vibration isolation : <u>10⁻⁷ m/rtHz @0.1Hz</u> (~10⁻² isolation)
 - rotational passive isolation : <u>10⁻⁶ rad/rad @ 0.1Hz</u>

sensing noise

- <u>5 × 10⁻¹⁶ rad/rtHz @0.1Hz</u>
- (new angular sensor, monolithic optics)
- Newtonian noise
- technical noise

noise sources & requirements

suspension thermal nosie

- cooling : <u>4K</u> @ suspension wire
- high-Q suspension wire : <u>Q = 10⁸</u> (silicon or sapphire)
- seismic noise (cross-coupling from translation)
 - cross-coupling : <u>10⁻⁹ rad/m @0.1Hz</u>
 - active vibration isolation : <u>10⁻⁷ m/rtHz @0.1Hz</u> (~10⁻² isolation)
 - rotational passive isolation : <u>10⁻⁶ rad/rad @ 0.1Hz</u>

sensing noise

- <u>5 × 10⁻¹⁶ rad/rtHz @0.1Hz</u>
- (new angular sensor, monolithic optics)
- Newtonian noise
- technical noise

cryogenic configuration

- two cryogenic shields
- radiation cooling

+ heat conduction

cooling time of the suspension

• calculation shows the wire reaches 3.1K in 21 days

cryocooler + vacuum chamber

cooling test of cryocooler (2014)

• worked well (reached 3K in 25 hours)

cooling test of cryocooler (2018)

- sometimes stops due to errors of the chiller
- reached to 5.8 K (cooling ability decreased?)
- cryo pump : 7×10^{-4} Pa (300K) $\rightarrow 2 \times 10^{-6}$ Pa (5.8K)

large vibration

- peaks at 1.7Hz and its harmonics (2-3 orders excess)
- seismometers saturate
- where do the vibration come from?

vibration at the chamber

noise sources & requirements

suspension thermal nosie

- cooling : <u>4K</u> @ suspension wire
- high-Q suspension wire : <u>Q = 10⁸</u> (silicon or sapphire)
- seismic noise (cross-coupling from translation)
 - cross-coupling : <u>10⁻⁹ rad/m @0.1Hz</u>
 - active vibration isolation : <u>10⁻⁷ m/rtHz @0.1Hz</u> (~10⁻² isolation)
 - rotational passive isolation : <u>10⁻⁶ rad/rad @ 0.1Hz</u>

sensing noise

- <u>5 × 10⁻¹⁶ rad/rtHz @0.1Hz</u>
- (new angular sensor, monolithic optics)
- Newtonian noise
- technical noise

cross-coupling reduction

- basic reduction scheme is <u>already demonstrated</u>
- requirement : 10⁻⁹ rad/m @0.1Hz
 ⇔ tilt adjustment in precision of <u>0.01 μrad</u>

seismically indeced RMS $\,\,^{\sim}$ 10-100 μrad

< 0.01µrad

- <u>stabilize the tilt</u> with auxiliary sensors (optical lever) and actuators (coil-coil) then <u>adjust its DC position</u>
- <u>automatic reduction idea</u>
 - 1. excite suspension point motion at a single frequency
 - 2. measure coupling transfer function at the frequency (coupling TF is proportional to the tilt)
 - 3. feedback to the tilt actuator of the mass

active vibration isolation

- requirement : 10⁻² isolation @0.1Hz
- 10⁻¹ isolation at 1 Hz is <u>already achieved</u> (by A. Shoda)

noise sources & requirements

suspension thermal nosie

- cooling : <u>4K</u> @ suspension wire
- high-Q suspension wire : <u>Q = 10⁸</u> (silicon or sapphire)
- seismic noise (cross-coupling from translation)
 - cross-coupling : <u>10⁻⁹ rad/m @0.1Hz</u>
 - active vibration isolation : <u>10⁻⁷ m/rtHz @0.1Hz</u> (~10⁻² isolation)
 - rotational passive isolation : <u>10⁻⁶ rad/rad @ 0.1Hz</u>

sensing noise

- <u>5 × 10⁻¹⁶ rad/rtHz @0.1Hz</u>
- (new angular sensor, monolithic optics)
- Newtonian noise
- technical noise

optical configuration

- improved type of wave front sensor (new)
 - enhance angular signal (HG₁₀ mode) using an auxiliary cavity

 $\zeta_c = - \varphi_a$ (detuned auxiliary cavity) $\Rightarrow HG_{00}$ and HG_{10} resonate at the same time \Rightarrow angular signal (HG_{10}) enhanced

low shot noise, no frequency noise

demonstration of angular sensor

- angular signal enhancement was measured with another possible configuration (folded)
- not completed yet

summary of noise reduction plan

- cryogenic systems
 - design : cooling to 4K by radiation & conduction
 - cryocooler is already installed
- seismic noise reduction
 - 10⁻⁹ rad/m cross-coupling : tilt stabilization \rightarrow adjusting
 - 10⁻² active isolation : longer range actuator & stiffer frame
- sensing noise
 - improved wave front sensor (resonating HG₁₀)
 - proof-of-concept experiment is ongoing

design sensitivity

pre-Phase-III(??) TOBA

- using CuBe (Q=10⁵) suspension wire
 - until high-Q(Silicon?) wire development is completed
- other configurations are almost same as phase-III

schedule

• I can get an additional year if DC2 application is approved

Summary

summary of phase-III

- phase-III is an important demonstration of TOBA
- cryogenic systems
 - design : cooling to 4K by radiation & conduction
 - cryocooler is already installed
- seismic noise reduction
 - 10^{-9} rad/m cross-coupling : tilt stabilization \rightarrow adjusting
 - 10⁻² active isolation : longer range actuator & stiffer frame
- sensing noise
 - improved wave front sensor (resonating HG₁₀)
 - proof-of-concept experiment is ongoing
- cooling will start from the end of 2018

End !!