BEC-phononic Gravitational Wave Detector

SHIMODA TOMOFUMI 2016/11/4 ANDO LAB. SEMINAR

Paper

"Phonon creation by gravitational waves" (C. Sabin et. al., 2014)

Phonon creation by gravitational waves

Carlos Sabín¹, David Edward Bruschi², Mehdi Ahmadi¹ and Ivette Fuentes¹

¹ School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK ² Racah Institute of Physics and Quantum Information Science, The Hebrew University of Jerusalem, 91904 Givat Ram, Jerusalem, Israel E-mail: c.sabin.les@gmail.com

Received 28 February 2014, revised 29 May 2014 Accepted for publication 3 June 2014 Published 7 August 2014 New Journal of Physics **16** (2014) 085003 doi:10.1088/1367-2630/16/8/085003

Abstract

We show that gravitational waves create phonons in a Bose–Einstein condensate (BEC). A traveling spacetime distortion produces particle creation resonances

Abstract

A new type GW detector using a Bose-Einstein condensate was proposed

As a consequence of relativistic quantum field theory, phonons are excited by GWs in a BEC trapped in a box-like potential(cavity)

Sketch of setup

- BEC in a cavity
- phonons are excited by GWs
- measure the final state and estimate the GW amplitude

BEC phononic field

▶ The phononic field of BEC obeys a massless Klein-Gordon equation:

$\Box \hat{\Pi} = 0$

here, d'Alembertian operator \Box is :

$$\Box = 1/\sqrt{-\mathfrak{g}} \,\partial_a \left(\sqrt{-\mathfrak{g}} \mathfrak{g}^{ab} \partial_b\right)$$
$$\mathfrak{g}_{ab} = \left(\frac{n_0^2 c_s^{-1}}{\rho_0 + p_0}\right) \begin{pmatrix} -c_s^2 & 0 & 0 & 0 \\ 0 & 1 + h_+(t) & h_\times(t) & 0 \\ 0 & h_\times(t) & 1 - h_+(t) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

: Effective spacetime metric

Solution

The solution of Klein-Gordon equation (in flat spacetime)

$$\Pi(t,x) = \sum_{k} \left(\phi_k(t,x) a_k + \phi_k^*(t,x) a_k^{\dagger} \right)$$
$$\left(\phi_n = \frac{1}{\sqrt{n\pi}} \sin \frac{n\pi(x-x_L)}{L} e^{-i\omega_n t}, \quad \omega_n = \frac{n\pi c_s}{L} \right)$$

 a_k , a_k^\dagger : annihilation&creation operator

Particle creation by spacetime distorsion

effects of spacetime distorsion :

$$\hat{\phi}_{m} = \sum_{n}^{n} \left(\alpha_{mn} \phi_{n} - \beta_{mn} \phi_{n}^{*} \right)$$

$$\hat{a}_{m} = \sum_{n}^{n} \left(\alpha_{mn}^{*} a_{n} + \beta_{mn}^{*} a_{n}^{\dagger} \right)$$

$$\left[\begin{array}{c} |\alpha_{mn}|^{2} - |\beta_{mn}|^{2} = 1 \\ \text{(Bogoliubov transformation)} \end{array} \right]$$

► the coefficient β_{mn} is associated to particle (phonon) creation :

$$N_n = \sum_m |\beta_{mn}|^2$$

Effect of gravitational waves

• the effect of sinusoidal GW : $h_{+}(t) = \epsilon \sin \Omega t$

► at resonance ($\Omega = \omega_m + \omega_n$), after enough long duration ($\omega t > > 1$),

$$\beta_{mn}(t) \simeq -(-1)^{m+n} \frac{\epsilon}{4} \sqrt{\frac{n}{m}} \omega_m t$$

phonon creation associated with $\epsilon,\,t,\,\omega_{m}$

Similarity to dynamical Casimir effect

$$\beta_{mn}(t) \simeq -(-1)^{m+n} \frac{\epsilon}{4} \sqrt{\frac{n}{m}} \omega_m t$$

effect of GWs coincides with those of a cavity with sinusoidally varying length in flat spacetime

$$L(t) = L(0)(1 + \epsilon \sin(\Omega t))$$

- similar to dynamical Cassimir efect
 - ▶ a cavity with moving walls creates photon

Compare with an optical cavity

Estimation error

Cramer-Rao bound (quantum measurement limit):

$$\langle (\Delta \hat{\epsilon})^2 \rangle \ge \frac{1}{MH_{\epsilon}}$$

ε : GW amplitude
M : number of probes (~10¹⁴)
H : Quantum Fisher Information

quantum Fisher Information $H_{\boldsymbol{\epsilon}}$

$$H_{\epsilon} = \frac{n}{4m} \omega_m^2 t^2 \left(8 - 4\cosh^4(r) + 2\sinh^2(2r)\right)$$

r : two-mode squeezing parameter between mode m,n

Optimal bound of the strain sensitivity(1)

Optimal bound of the strain sensitivity(2)

$$\langle (\Delta \hat{\epsilon})^2 \rangle \geq \frac{1}{MH_{\epsilon}} \qquad \Delta \epsilon \propto e^{-2r}$$

$$H_{\epsilon} = \frac{n}{4m} \omega_m^2 t^2 \left(8 - 4 \cosh^4(r) + 2 \sinh^2(2r) \right)$$

- squeezing dependence
 - ▶ L=1µm,
 - ► c_s=10mm/s
 - ► M=10¹⁴
 - ▶ (m,n)=(10,11)

∇ε\∧Ό šš

A sensitivity to continuous GWs (h₀sinωt):

Noise sources in phonon creation

thermal phonon excitation

negligible at achievable temperature

@10nK (normal) : $N_{phonon} = 10^{-31}$

@0.5nK (best *) : $N_{phonon} = 10^{-625}$

 $\Leftrightarrow N_{phonon}(\epsilon=10^{-26}, t=1000s) \sim 10^{-36}$

(* A. E. Leanhardt et. al., 2003 / % achieved for 2,500 atoms)

How to measure phonons?

Measure the momentum of atoms

- release the condensate trapping potential
- each phonon state is mapped into the state of an atom
- measurement with position-sensitive single-atom detector
- Non-destructive method
 - using atomic quantum dots interacting with the BEC *

* C. Sabin et. al., Sci. Rep. 4, 6436 (2014)

Sensitivity curve (???)

detailed information about this plot was not described in the paper

Summary

- The effect based on the relativistic quantum field theory was calculated
- Spacetime distorsions of GWs can create phonons in a BEC
- > There are resonances at $\Omega = \omega_m + \omega_n$ (Ω :GW freq. / ω_n :mode freq.)
- ► At resonance, sensitivity $\Delta \epsilon / \sqrt{\Omega} \sim 10^{-26} / \sqrt{Hz}$ is assumed to be achieved (?)
 - ► (In our familiar sensitivity, $\frac{\sqrt{S_h} \sim 10^{-23}/\sqrt{Hz}$?)

Concrete configuration remains to be considered