Report on TOBA experiment and future prospect (TOBA実験の報告と今後)

Shimoda Tomofumi

Ando Lab. midterm seminar (26 Apr. 2017)

Contents

- about TOBA experiment
- next tasks about seismic cross-coupling noise
- other tasks

TOBA experiment

Motivation

Torsion pendulum : <u>low resonant frequncy(~mHz)</u>

- Low-frequency gravitational wave (~0.1Hz)
 - Intermediate Mass Black Hole (IMBH) merger
 - Stochastic graviational wave background
- Graviaty-gradiometer
 - Newtonian noise
 - Earthquake early alert

target sensitivity : 10⁻¹⁹ /rtHz @0.1Hz

 10^{-16}

10⁻¹⁷

 10^{-18}

10⁻¹⁹

 10^{-20}

10-21

 10^{-22}

 10^{-23}

 10^{-24}

1e-05 0.0001

ТОВА

aLIGO

100

1000

10

LISA

0.001

0.01

Frequency [Hz]

Sensitivity [/rtHz]

Gravitational wave : IMBH merger

• IMBH : $10^2 < M/M_{sun} < 10^6$

observable ~10Gpc \Rightarrow few events/yr (?)

Gravity-gradiometer

- Newtonian noise
 - fluctuation of newtonian gravity from ground and atmosphere
 - can be a dominant noise in third-generation GW detector (ET, ...)

Current phase of TOBA

- Phase-I,II ⇒ Phase-III ⇒ Final
- target sensitivity : <u>10⁻¹⁵ /rtHz @0.1Hz</u>

	Phase-I	Phase-II	Phase-III	Final
構成	超伝導磁気浮上 20cm試験マス	<u>ワイヤ懸架</u> 24cm試験マス	ワイヤ懸架 30cm試験マス 低温	ワイヤ懸架 10m試験マス 低温
感度	10 ⁻⁸ /Hz ^{1/2} @0.1Hz	10 ⁻¹⁰ /Hz ^{1/2} @5Hz	10 ⁻¹⁵ /Hz ^{1/2} @0.1Hz	10 ⁻¹⁹ /Hz ^{1/2} @0.1Hz
	原理実証		<u> </u>	本格観測
懸架系変更 now here 大型化, ハイパワー化				

Main noise sources in TOBA

Seismic cross-coupling noise

Seismic cross-coupling noise

What is done

- find coupling routes and transfer functions
- measure coupling transter functions (from Long, Trans)

Vert(z)

Roll

Pitch

Yaw

Long(y)

Frans(x)

demonstrate reduction (from Long, Trans)

there is also nonlinear transfer
 linear coupling
 (Yaw) = (tilt) × (Roll)

nonlinear

 $(Yaw) = (Pitch) \times (Roll)$

What is done : measurement & reduction

measured and reduced (<u>from Long, Trans only</u>)

Achievements

	horizontal (Long,Trans)	vertical (<mark>Vert</mark>)	nonlinear coupling	others
theoretical analysis		○(?)		\bigtriangleup
measurement		\bigtriangleup	\bigtriangleup	_
reduction	△ (not enough)	_	_	_

Next tasks about cross-coupling

- ① measure and analyze cross-coupling from Vert
- ② measure nonlinear coupling
- ③ reduce cross-coupling from Long, Trans more
- ④ calculate about other coupling routes

coupling from VERT

reduce more

Next tasks about cross-coupling

- 1 measure and analyze cross-coupling from Vert
- ② measure nonlinear coupling
- ③ reduce cross-coupling from Long, Trans more
- ④ calculate about other coupling routes

1Cross-coupling from VERT

measurement test with Takano-kun

- ✓ Much higher than expected
- ✓ Shape of the measured transfer function disagrees with theory

Further analysis is required • identify coupling route

Next tasks about cross-coupling

- 2 measure nonlinear coupling
- ③ reduce cross-coupling from Long, Trans more
- ④ calculate about other coupling routes

②Nonlinear coupling

Coupling by nonlinear transfer

linear coupling

 $(Yaw) = (tilt) \times (Roll)$

- already calculated theoretically
 dominant at low frequency (⇔linear coupling : ~1Hz)
 - ⇒ also important for other experiments

(inverse-square law, ...)

nonlinear transfer (Yaw) = (Pitch) × (Roll) (time-dependent tilt)

Measurement experiment

• measurable by very simple experiment

Okada-san's TOBA

• Nonlinear coupling was already observed?

Next tasks about cross-coupling

③ reduce cross-coupling from Long, Trans more ④ calculate about other coupling routes

③more reduction for Long/Trans

Tilt control with optical lever

simulation including sensor/actuator noise

Next tasks about cross-coupling

(4) calculate about other coupling routes

(4) other coupling routes

- asymmetry of intermediate mass
- (transfer via **conductive wires**)

Summary of tasks about cross-coupling

- ✓cross-coupling from Vert
 - identify coupling route

 (already measured but disagree with theory)
- ✓Nonlinear coupling
 - measurement experiment with simple torsion pendulum
- ✓reduce cross-coupling from Long, Trans more
 - control Pitch/Roll vibration (install tilt sensor, decoupling)
- ✓ calculate about other coupling routes
 - intermediate mass, conductive wire, etc...

FF [rad/m]

Other problems

Problems

- How to improve the sensitivity
 - noise source around 0.1Hz is not completely identified
- technical issues
 - electrostatic force

Noise around 0.1Hz

Not only actuator noise

Scattering?

Coherence with intensity monitor PD

Reduce scattering

• Current setup is terrible

update plan

cleaning

Other noise sources

magnetic noise of Optical Bench
many components on the bench

measure response with Helmholtz coils

Other noise sources

- fluctuation of polarization
 - ⇒ fluctuation of input power and visibility of interferometer

measure

- fluctuation of polarization by using PBS
- $\boldsymbol{\cdot}$ polarization dependence of BS
- polarization dependence of interferometer visibility

Technical update : metal coating

- Metal coating for TM (and coils)
 shield electrostatic force on TM
 - (it makes the system unstable)

covered with aluminum foil

How much should it be shielded?

- as far as lock is stable?
- can it be a noise source? (Lorentz force etc...)

Summary of updates

- improve sensitivity around 0.1Hz
 - reduce scattering
 - investigate other noise sources

 (magnetic noise? fluctuation of polarization?)

- Metal coating for TM and coils
 - shield electrostatic force

Total Plan about TOBA(rough)

- do some measurements with current setup for a while
 - coupling from VERT
 - scattering reduction
 - investigate other noise source

- calculation and other measurement at the same time
 - nonlinear coupling
 - other coupling routes
- renew the setup
 - metal coating for TM
 - install tilt sensors
 - (redesign the whole system?)

Conclusion

• We have many things to do

End

interesting experiment

Thermal noise reduction with SPI (by 安東さん)

feedback relative motion(TM-IM) to intermediate mass(IM)

Thermal noise suppression

 \bullet Thermal noise can be suppressed by tuning ${\boldsymbol{G}}$

$$\tilde{D} = (\kappa_1 + \kappa_2 - I_1\omega^2 + \tilde{G})(\kappa_2 - I_2\omega^2) - \kappa_2(\kappa_2 + \tilde{G}) \qquad I_2 \qquad \theta_2$$

$$\tilde{\theta}_2 = \frac{\kappa_2}{\tilde{D}}\tilde{N}_{th1} + \frac{\kappa_1 - I_1\omega^2 + \tilde{G}}{\tilde{D}}\tilde{N}_{th2}$$

$$\tilde{I} \text{ infinite } \mathbf{G} \qquad 0 \qquad -\frac{1}{I_2\omega^2} \qquad \mathsf{N}_{th1} \text{ : suppressed} \\ \tilde{I} \text{ infinite } \mathbf{G} \qquad 0 \qquad -\frac{1}{I_2\omega^2} \qquad \mathsf{N}_{th1} \text{ : suppressed} \\ \tilde{I} \text{ infinite } \mathbf{G} \qquad 0 \qquad \mathsf{N}_{th2} \text{ : not changed} \\ (= -(\kappa_1 - I_1\omega^2)) \qquad \overline{\kappa_1 - (I_1 + I_2)\omega^2} \qquad 0 \qquad \mathsf{N}_{th2} \text{ : broadband cancelled}$$

 $\neq N_{th1}$

 $\theta_l \gtrsim$

Response to GW/Torque under control

• at high frequency (free mass region)

 q_1 , q_2 : quadrapole moment

	$ ilde{N}_{th1}$	$ ilde{N}_{th2}$	$ ilde{h}$	$ ilde{N}_{\mathrm{ext}}$
no control	$\frac{\kappa_2}{1}$	1	q_2	
G = 0	$I_1 I_2 \omega^4$	$I_2\omega^2$	$2I_{2}$	$I_2\omega^2$
infinite gain	0	1	q_2	1
$\tilde{G} = \infty$	0	$-\overline{I_2\omega^2}$	$\overline{2I_2}$	$-\overline{I_2\omega^2}$
tuned gain	1	0	$q_1 + q_2$	1
$\left \tilde{G} = -(\kappa_1 - I_1\omega^2)\right $	$-\frac{1}{(I_1+I_2)\omega^2}$	U	$2(I_1 + I_2)$	$(I_1 + I_2)\omega^2$

Response to GW/Torque under control

 increase(decrease) factors compared to the case without control at high frequency (free mass region)

	\tilde{N}_{th1}	\tilde{N}_{th2}	$ ilde{h}$	$ ilde{N}_{\mathrm{ext}}$
infinite gain $ ilde{G}=\infty$	0	1	1	1
tuned gain $\tilde{G} = -(\kappa_1 - I_1 \omega^2)$	$\left \frac{I_1I_2}{\kappa_2(I_1+I_2)}\omega^2\right $	0	$\frac{q_1 + q_2}{q_2} \frac{I_2}{I_1 + I_2}$	$\frac{I_2}{I_1 + I_2}$

S/N can be improved?

• with practical thickness of wire : $\kappa \propto d^4 \propto m^2$

$$\tilde{N}_{th} = \sqrt{4k_B T \frac{\kappa \phi}{\omega}} \quad \clubsuit \quad \left\{ \begin{array}{c} \tilde{N}_{th1} \propto m_1 + m_2 \\ \tilde{N}_{th2} \propto m2 \end{array} \right\}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|} & \tilde{N}_{th1} & \tilde{N}_{th2} & \tilde{h} & \tilde{N}_{ext} \\ \hline \text{no control} & & \\ \hline \tilde{G} = 0 & \hline I_1 I_2 \omega^4 & -\frac{1}{I_2 \omega^2} & \frac{q_2}{2I_2} & -\frac{1}{I_2 \omega^2} \\ \hline \text{tuned gain} & & \\ \hline \tilde{G} = -(\kappa_1 - I_1 \omega^2) & -\frac{1}{(I_1 + I_2) \omega^2} & 0 & \frac{q_1 + q_2}{2(I_1 + I_2)} & -\frac{1}{(I_1 + I_2) \omega^2} \\ \end{array}$$

$$\tilde{\theta}_{th}(G=0) \propto \frac{m_2}{I_2}$$
, $\tilde{\theta}_{th}(\text{tuned } G) \propto \frac{m_1 + m_2}{I_1 + I_2}$

Signal to Noise ratio
gravitational wave external torque

$$\tilde{h}/\tilde{\theta}_{th}$$
 $\tilde{\theta}_{ext}/\tilde{\theta}_{th}$
 $\frac{q_2}{m_2}$ $\frac{1}{m_2}$
 $q_1 + q_2$ 1
 $m_1 + m_2$ 1

S/N can be improved?

Signal to Noise ratio

gravitational wave

not change or decrease

external torque $\hat{ heta}_{\mathrm{ext}}/ heta_{th}$ m_2 always $m_1 + m_2$ decrease