Ando lab. Intermediate Seminar (May 9th, 2018)

Title:

Compact Stars

Yuki Miyazaki (M1)

About myself

2014:

Undergraduate student of Univ. of Tokyo

2018 : Graduate student

↑ My photo of license.Appear to criminals ...

About myself

2014:

Undergraduate student of Univ. of Tokyo

2017:

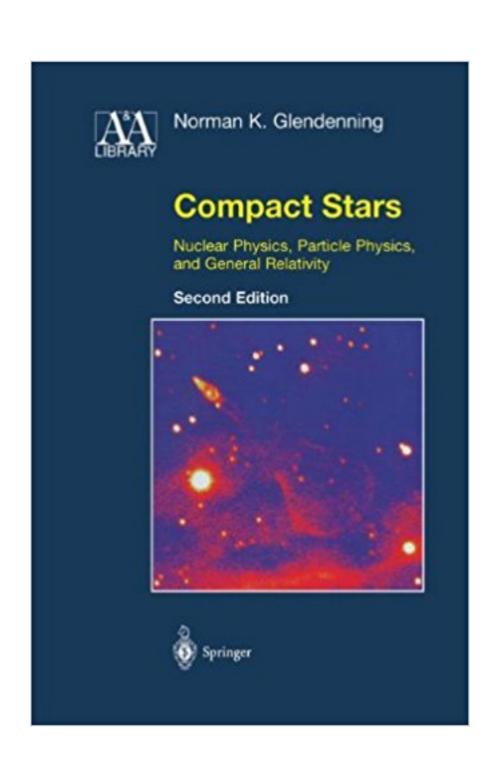
Class of reading in turn

2018:

Graduate student

↑ My photo of license.Appear to criminals ...

"Compact Stars"



- About compact stars
 - White Dwarf
 - Neutron Stars
- You can buy this with \$100 (Amazon)

- 1. Some assumption we will use
- 2. Derive Oppenheimer-Volkoff eq. (dp/dr)
- 3. Derive Equation of State (eq. of energy density & pressure)
- 4. Properties of Compact stars (mass of stars)

- 1. Some assumption we will use
- 2. Derive Oppenheimer-Volkoff eq. (dp/dr)
- 3. Derive Equation of State (eq. of energy density & pressure)
- 4. Properties of Compact stars (mass of stars)

1: Some assumption

Compact stars are

static

- charge neutral
- zero temperature (= degenerate)
- composed of "p", "e", "n" ideal gas in its lowest energy state

Charge neutral

$$\frac{(Z_{net}e)e}{R^2} \le \frac{GMm}{R^2} < \frac{G(Am)m}{R^2}$$

$$\therefore \frac{Z_{net}}{A} < \left(\frac{m}{e}\right)^2 \sim 10^{-36}$$

The net charge per nucleon is very small.

Znet: net charge

A: number of baryons

M: mass of stars

R: radius of stars

m: mass of particles

Zero temperature

(Gravitational Units: G=c=hbar=kb=1)

$$E_F > m_e = 0.511 \text{MeV} \sim 6 \times 10^9 \text{K}$$

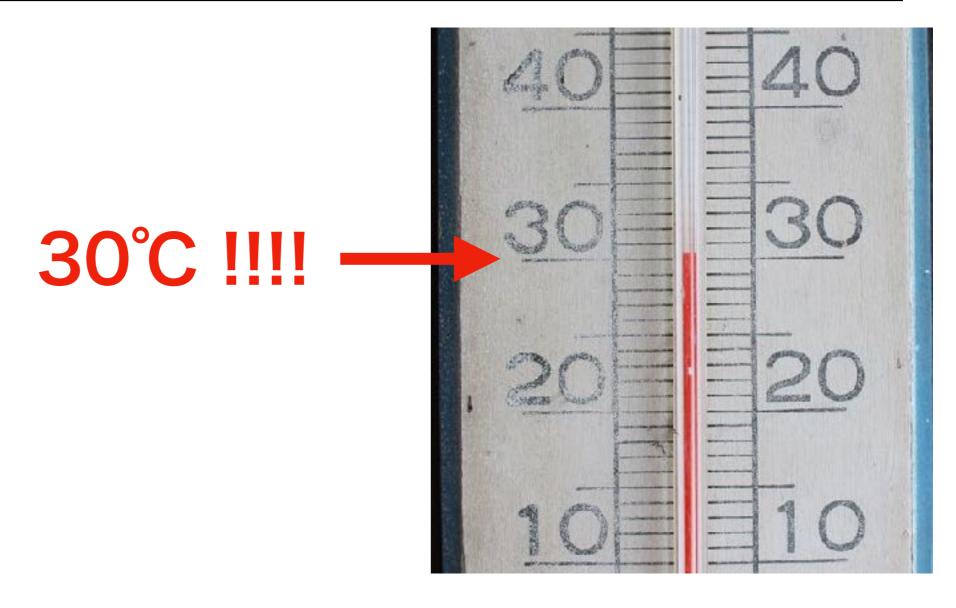
 $T_{star} \sim 10^{6 \sim 7} \text{ K}$

$$T_{star} << E_F = \sqrt{k_F^2 + m^2}$$

(degeneracy condition)

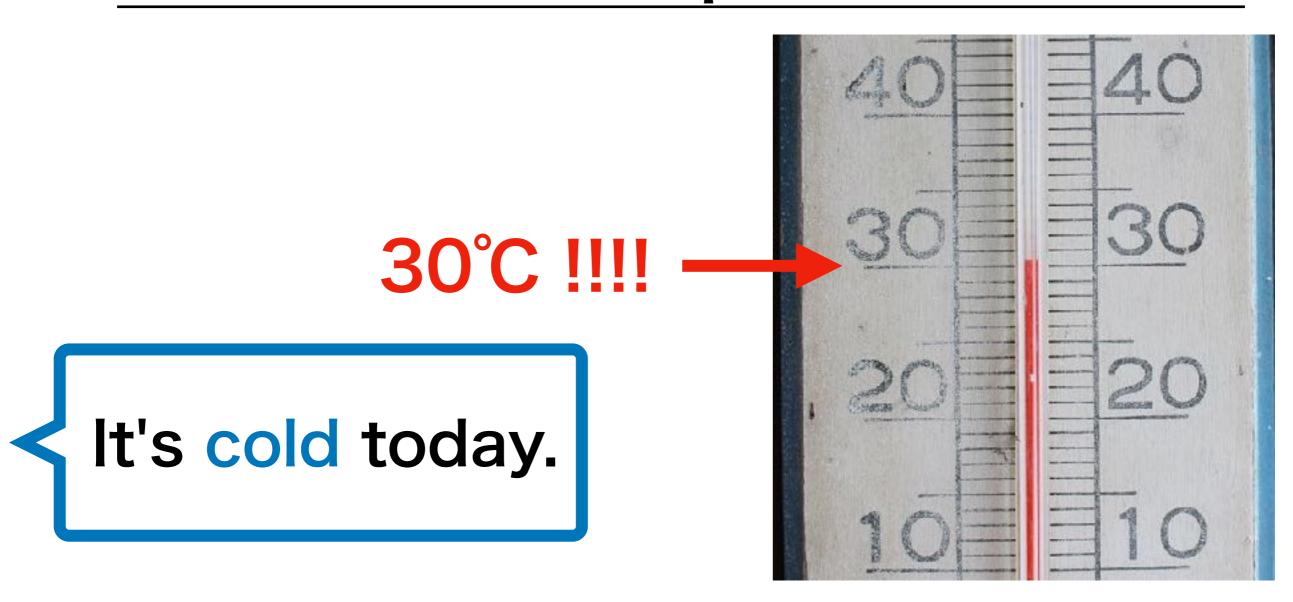
Compact stars satisfy the degeneracy condition. We consider "cold stars" in this sense.

Zero temperature



Compact stars satisfy the degeneracy condition. We consider "cold stars" in this sense.

Zero temperature



Compact stars satisfy the degeneracy condition. We consider "cold stars" in this sense.

- 1. Some assumption we will use
- 2. Derive Oppenheimer-Volkoff eq. (dp/dr)
- 3. Derive Equation of State (eq. of energy density & pressure)
- 4. Properties of Compact stars (mass of stars)

- 1. Some assumption we will use
- 2. Derive Oppenheimer-Volkoff eq. (dp/dr)
- 3. Derive Equation of State (eq. of energy density & pressure)
- 4. Properties of Compact stars (mass of stars)

Assume static and isotropic universe,

$$d\tau^{2} = e^{2\nu(r)}dt^{2} - e^{2\lambda(r)}dr^{2} - r^{2}d\theta^{2} - r^{2}\sin^{2}\theta d\phi^{2}$$

and solve Einstein eq,

$$G^{\mu
u} = -8\pi G T^{\mu
u}$$
 $_{arepsilon : \, {
m energy \, density}}$ $_{T^{\mu
u}} = {
m diag}(\epsilon,p,p,p)$ p:pressure

(in explicitly writing, ...)

In explicitly writing,

$$G_0^0 = e^{-2\lambda} \left(\frac{1}{r^2} - \frac{2\lambda'}{r} \right) - \frac{1}{r^2} = -8\pi G \epsilon(r)$$

$$G_1^1 = e^{-2\lambda} \left(\frac{1}{r^2} + \frac{2\nu'}{r} \right) - \frac{1}{r^2} = 8\pi G p(r)$$

$$G_2^2 = e^{-2\lambda} \left(\nu'' + \nu'^2 - \lambda' \nu' + \frac{\nu' - \lambda'}{r} \right) = 8\pi G p(r)$$

$$G_3^3 = G_2^2 = 8\pi G p(r)$$

 ε : energy density

p:pressure

$$M(r) = 4\pi \int_0^{\pi} \epsilon(r) r^2 dr$$

$$e^{-2\lambda} = \left(1 - \frac{2GM(r)}{r}\right)^{-1}$$

vanishing λ , ν , then we derive O-V eq,

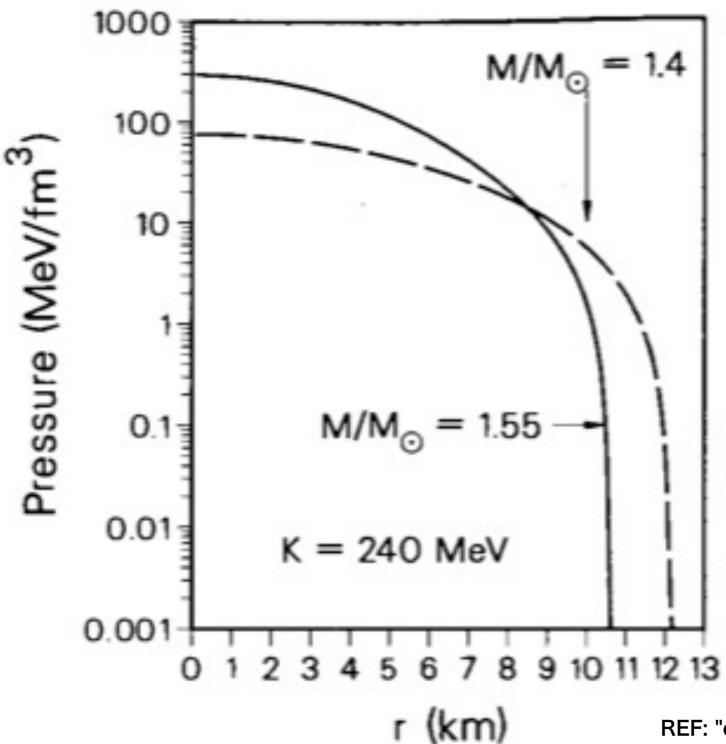
$$\frac{dp}{dr} = -\frac{\left[\epsilon(r) + p(r)\right]\left[M(r) + 4\pi r^3 p(r)\right]}{r\left[r - 2M(r)\right]}$$

 ε : energy density

p:pressure

dp/dr < 0

the amount of overlaying material decreases with the radial coordinate.



$$\frac{dp}{dr} = -\frac{\left[\epsilon(r) + p(r)\right] \left[M(r) + 4\pi r^3 p(r)\right]}{r \left[r - 2M(r)\right]}$$

- 1. Some assumption we will use
- 2. Derive Oppenheimer-Volkoff eq. (dp/dr)
- 3. Derive Equation of State (eq. of energy density & pressure)
- 4. Properties of Compact stars (mass of stars)

- 1. Some assumption we will use
- 2. Derive Oppenheimer-Volkoff eq. (dp/dr)
- 3. Derive Equation of State (eq. of energy density & pressure)
- 4. Properties of Compact stars (mass of stars)

Equation of State

Here we use the degenerate condition.

$$\frac{1}{L^3} \sum_{k} \cdots \to \int \frac{d^3k}{(2\pi)^3} \cdots = \frac{1}{2\pi^2} \int_0^{k_F} k^2 dk \cdots$$

Then we can write

energy density
$$\epsilon = \frac{\gamma}{2\pi^2} \int_0^k \sqrt{k^2 + m^2} \ k^2 dk$$

number density $\rho = \frac{\gamma}{2\pi^2} \int_0^k k^2 dk$
pressure $p = \frac{1}{3} \frac{\gamma}{2\pi^2} \int_0^k \frac{k^2}{\sqrt{k^2 + m^2}} \ k^2 dk$

Ando lab. Intermediate Seminar (May 9th, 2018)

Equation of State

About pressure, let us recall a thermodynamic relationship,

$$p = -\left(\frac{\partial E}{\partial V}\right)_S = -\frac{\partial (\epsilon/\rho)}{\partial (1/\rho)} = \rho^2 \frac{\partial}{\partial \rho} \left(\frac{\epsilon}{\rho}\right)$$

energy density
$$\epsilon = \frac{\gamma}{2\pi^2} \int_0^k \sqrt{k^2 + m^2} \ k^2 dk$$
number density $\rho = \frac{\gamma}{2\pi^2} \int_0^k k^2 dk$
pressure $p = \frac{1}{3} \frac{\gamma}{2\pi^2} \int_0^k \frac{k^2}{\sqrt{k^2 + m^2}} \ k^2 dk$

Ando lab. Intermediate Seminar (May 9th, 2018)

Equation of State

In explicitly writing,

$$\epsilon = \frac{1}{4\pi^2} \left[\mu k \left(\mu^2 - \frac{1}{2} m^2 \right) - \frac{1}{2} m^4 \ln \left(\frac{\mu + k}{m} \right) \right]$$

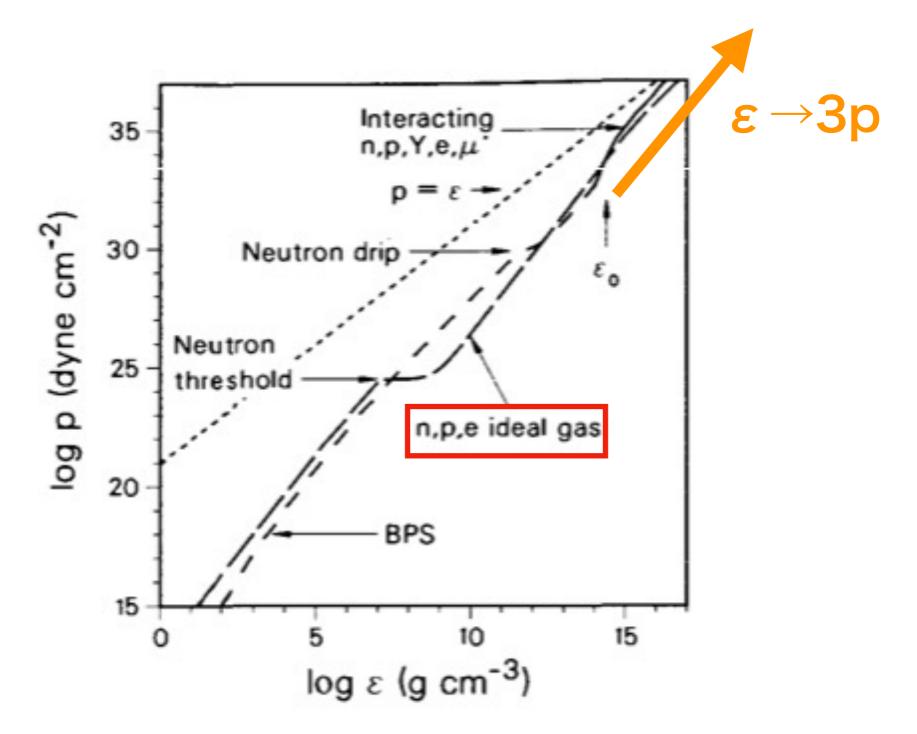
$$\rho = \frac{k^3}{3\pi^2}$$

$$p = \frac{1}{12\pi^2} \left[\mu k \left(\mu^2 - \frac{5}{2} m^2 \right) + \frac{3}{2} m^4 \ln \left(\frac{\mu + k}{m} \right) \right]$$

with

Fermi energy
$$\mu = \sqrt{k^2 + m^2}$$

p-ε relation



- 1. Some assumption we will use
- 2. Derive Oppenheimer-Volkoff eq. (dp/dr)
- 3. Derive Equation of State (eq. of energy density & pressure)
- 4. Properties of Compact stars (mass of stars)

- 1. Some assumption we will use
- 2. Derive Oppenheimer-Volkoff eq. (dp/dr)
- 3. Derive Equation of State (eq. of energy density & pressure)
- 4. Properties of Compact stars (mass of stars)

4. Properties of Compact stars

O-V eq:

$$\frac{dp}{dr} = -\frac{\left[\epsilon(r) + p(r)\right] \left[M(r) + 4\pi r^3 p(r)\right]}{r \left[r - 2M(r)\right]}$$

$$\frac{dM(r)}{dr} = 4\pi r^2 \epsilon(r)$$

EoS:

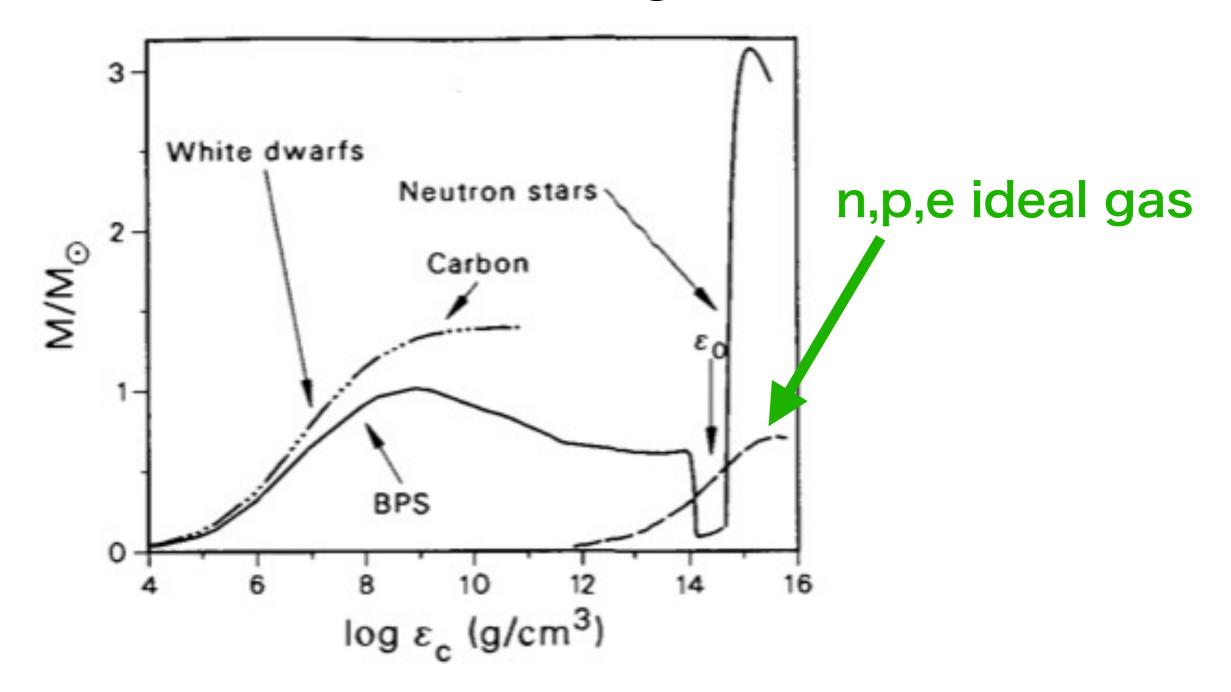
$$\epsilon = \epsilon(p)$$

We can solve them by numerical analysis with initial conditions at r=0

$$M(0) = 0, \quad \epsilon(0) \equiv \epsilon_c, \quad p(0) = p(\epsilon = \epsilon_c)$$

4. Properties of Compact stars

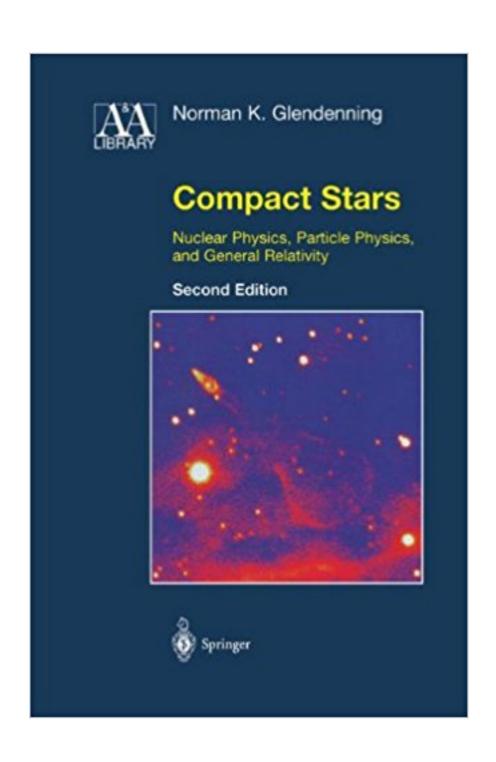
Solution over a broad range of central densities



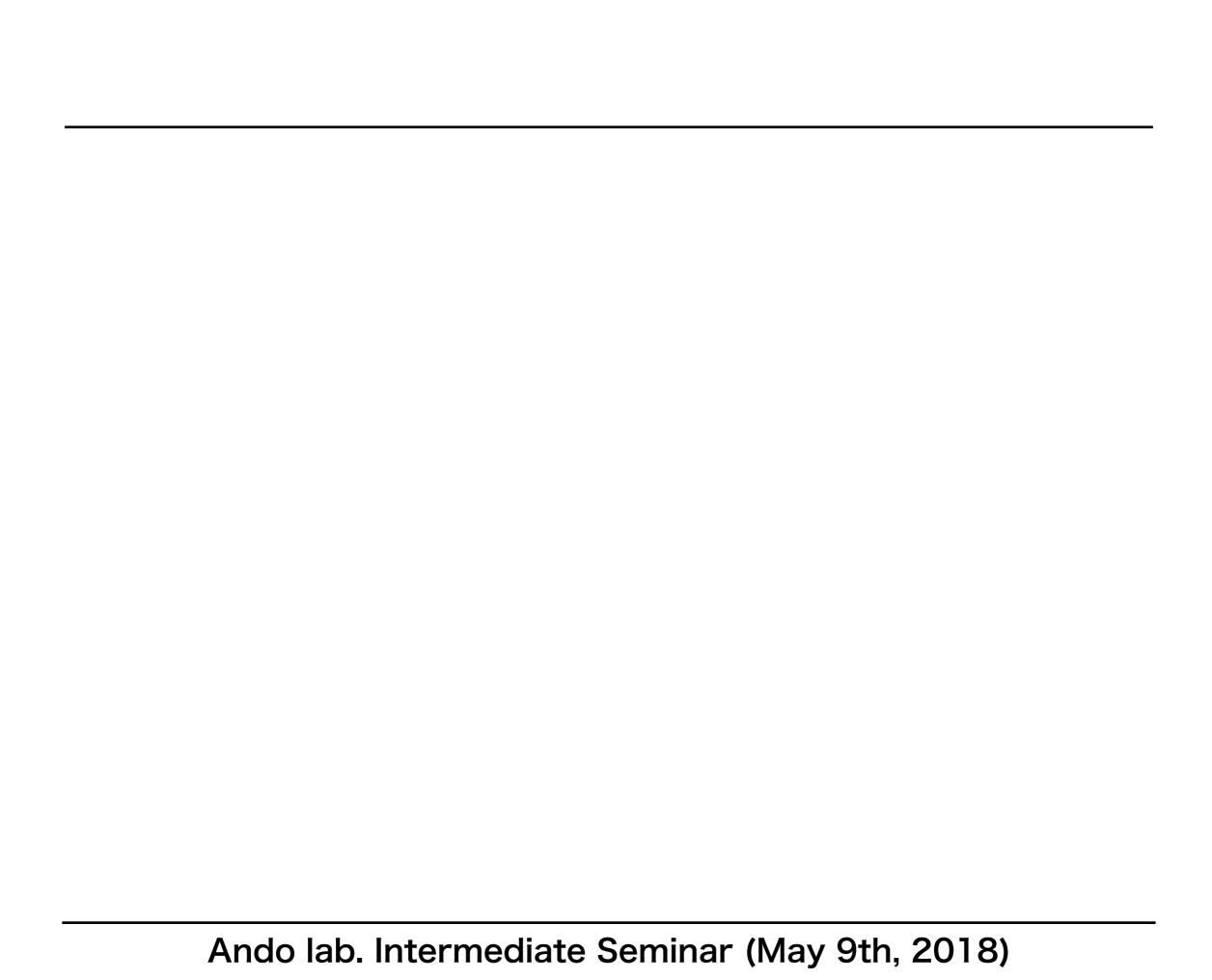
and summary

- 1. Some assumption we will use
- 2. Derive Oppenheimer-Volkoff eq. (dp/dr)
- 3. Derive Equation of State (energy density & pressure)
- 4. Properties of Compact stars (mass of stars)

Thank you for listening!



If you are interested in compact stars, buy and read it.



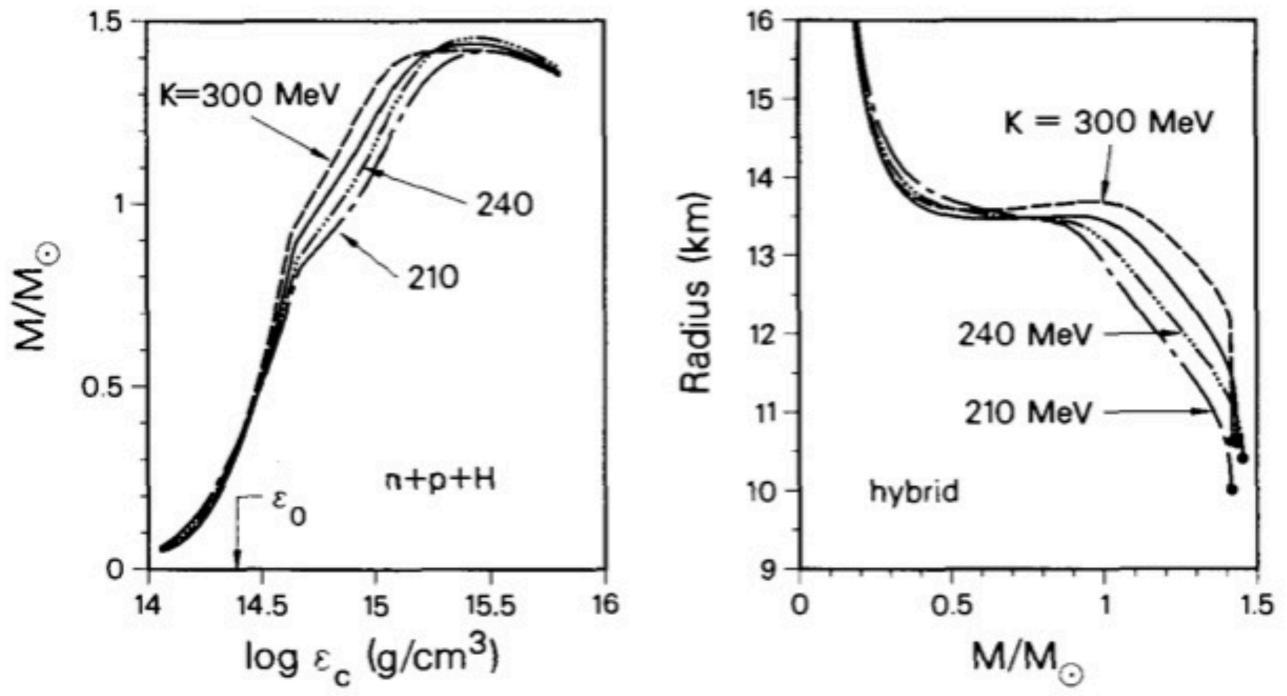
For accurate calculation

- finite temperature (adds Fermi distribution)
- strong interaction term (makes EoS stiff)
- another baryon species (hyperon)
- property of nuclear matter (isospin-sym.)
- the rotation of stars (changes the metric)
- quark deconfinement

For accurate calculation

- finite temperature (adds Fermi distribution)
- strong interaction term (makes EoS stiff)
- another baryon species (hyperon)
- property of nuclear matter (isospin-sym.)
- the rotation of stars (changes the metric)
- quark deconfinement

M-R relation

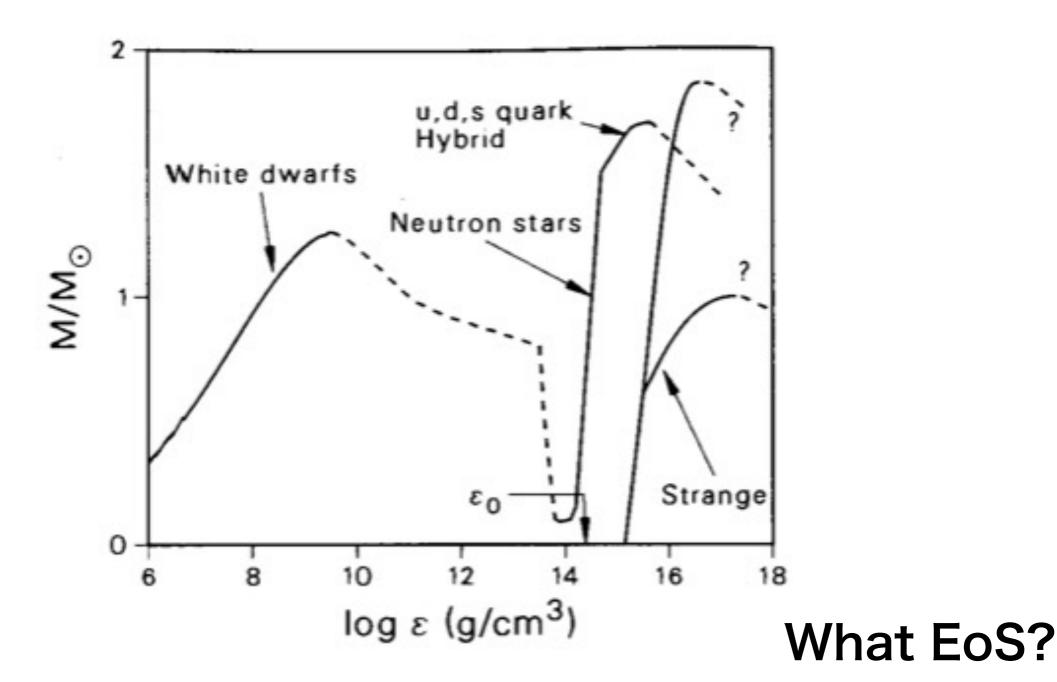


hybrid stars: n,p,e + quark

K is parameter of stiffness

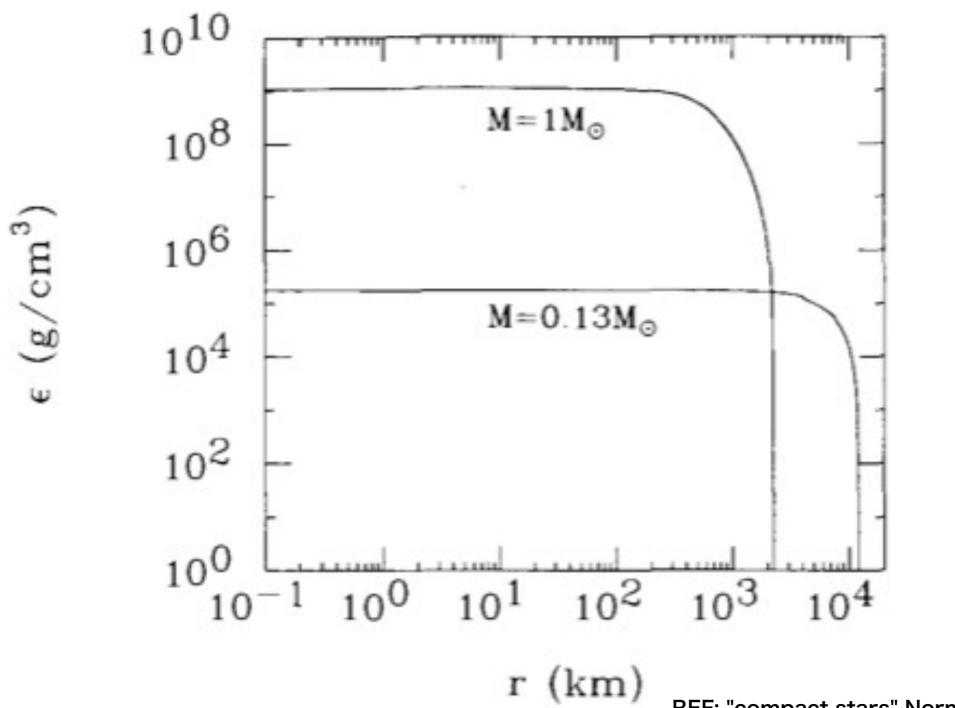
4. Properties of Compact stars

Solution over a broad range of central densities



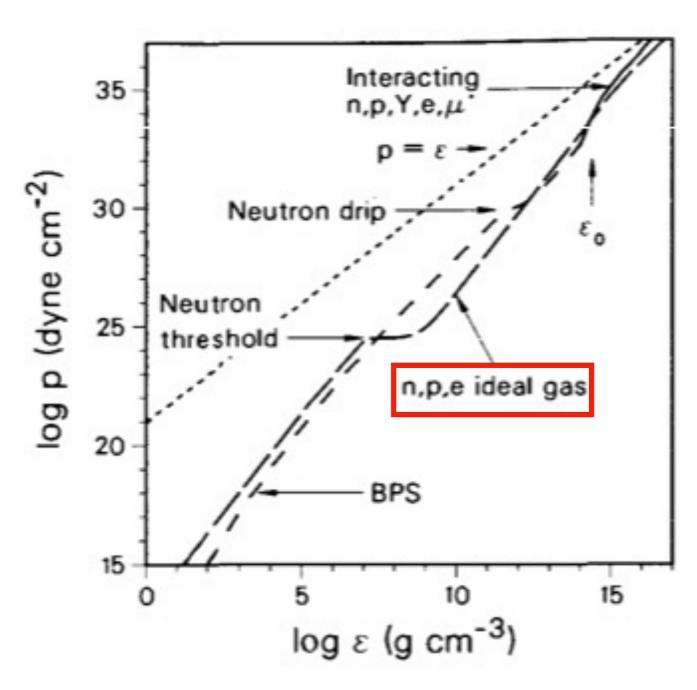
4. Properties of Compact stars

mass-energy distribution in two WD



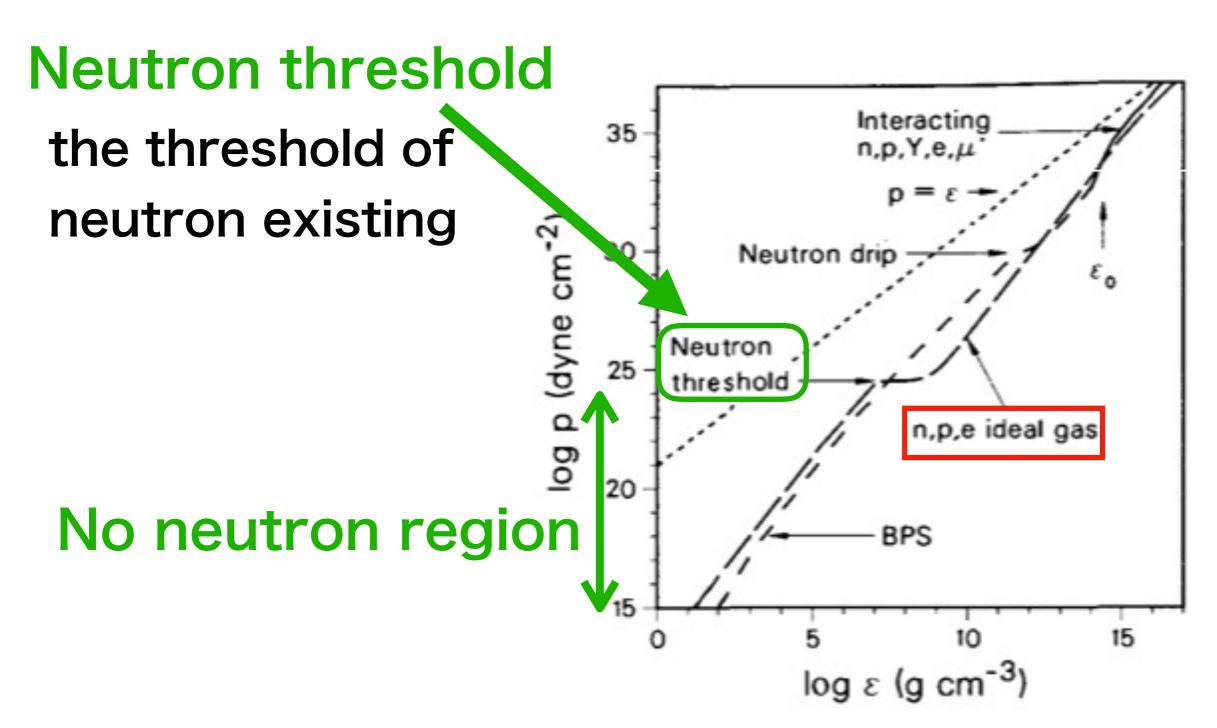
BPS

p - ε relation

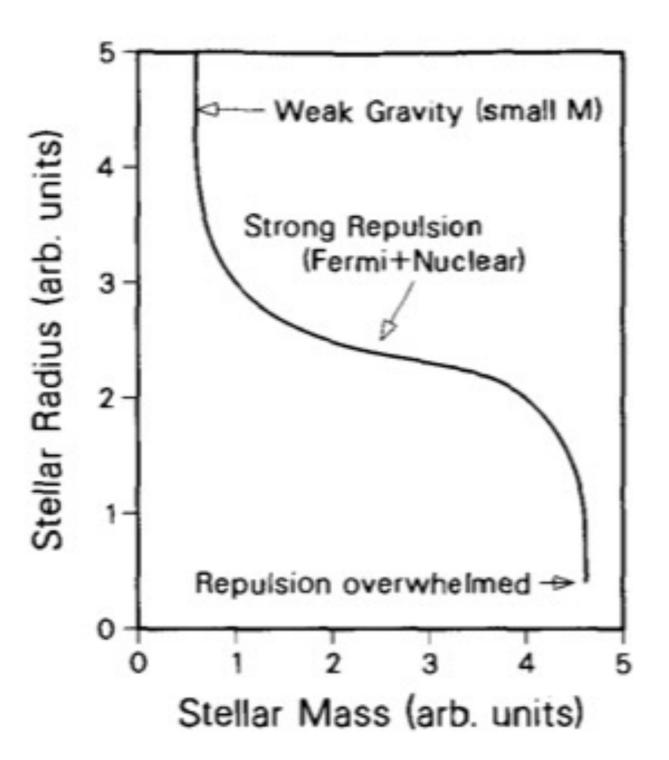


REF: "compact stars" Norman K. Glendenning p99

p-ε relation



M-R relation



qualitative explanation