KAGRA International Workshop 4 (June 30th, 2018) # Lock Loss study of bKAGRA phase 1 Yuki Miyazaki (M1, Ando lab., Univ. of Tokyo) # Table of contents 1. About lock loss study 2. The ratio of cause of Lock loss 3. What kind of EQ causes Lock loss? (Classifying EQs as to its safeness) #### KAGRA detector #### Underground - in Kamioka, Japan - Silent & Stable environment #### Cryogenic Mirror - 20K - sapphire substrate #### 3km baseline © ICRR, university of Tokyo ref. H.Yuzurihara "bKAGRA phase1 operation", Area Workshop 2018 Early Summer #### Current roadmap of KAGRA #### **IKAGRA** Room temperature Michelson interferometer Test run on March-April 2016 #### **bKAGRA** phase-1 Cryogenic temperature Michelson interferometer Test run on April-May 2018 ←Today's talk #### **bKAGRA** phase-2 Installation and Commissioning Improve sensitivity May 2018 ~ #### **bKAGRA** phase-3 Cryogenic Fabry-Perot Interferometer Observation run and Join O3 ref. H.Yuzurihara "bKAGRA phase1 operation", Area Workshop 2018 Early Summer # About bKAGRA #### **Operation time:** 2018/04/28 09:00:00 ~ 05/07 06:00:00 (JST) # Importance of this study Ando Lab. Seminar (June 22th, 2018) # About bKAGRA #### **Operation time:** 2018/04/28 09:00:00 ~ 05/07 06:00:00 (JST) # About bKAGRA #### **Operation time:** 2018/04/28 09:00:00 ~ 05/07 06:00:00 (JST) # Important Channels | | Channel name | |--------|---------------------------------------| | MICH | K1:GRD-LSC_MICH_STATE_N | | IMC | K1:GRD-IMC_LOCK_STATE_N | | VIS_BS | K1:GRD-VIS_BS_STATE_N | | VIS_EX | K1:GRD-VIS_ETMX_STATE_N | | VIS_EY | K1:GRD-VIS_ETMY_STATE_N | | SEIS | K1:PEM-IY0_SEIS_{NS/WE/Z}_SENSINF_OUT | # Gardian channels Ando Lab. Seminar (June 22th, 2018) # SEIS channel bKAGRA phase1 bKAGRA phase1 Ando Lab. Seminar (June 22th, 2018) # Priority of identifying the cause # Priority of identifying the cause # Ratio of LockLoss # Ratio of LockLoss # Ratio of LockLoss 1) BS trip --> Lock Loss MICH GARDIAN VIS_BS 1 BS trip --> Lock Loss 2 Lock Loss --> BS trip MICH_GARDIAN VIS_BS ## 2 Lock Loss --> BS trip - 1 BS trip --> Lock Loss - 2 Lock Loss --> BS trip We cannot distinguish completely these 2 types! # Was the LL due to BS? - In data, ALL "LL caused by BS" show MICH went down after BS went down. - The delay time was (2~4)/16 sec. Ando Lab. Seminar (June 22th, 2018) # Was the LL due to BS? - In data, ALL "LL caused by BS" show MICH went down after BS went down. - The delay time was (2~4)/16 sec. ### What makes the delay? - Each Guardian runs on independent MEDM. - MICH Guardian used Samp=16Hz channel to watch other Guardians. - The delay was due to calculators. ## We can't distinguish which actually went down first. # Was the LL due to BS? - What percentage of it was due to flow 1 and flow 2? - Flow 1: BS trip is surely accompanied by LL. - Flow 2: LL is not always accompanied by BS trip. #### Relation between "MICH" & "VIS_BS" Not always happens! 2 Lock Loss --> BS trip Locked) feedback Interferometer may cause trip **BS** tripped) Something triggers **Lock Loss** VIS_BS MICH GARDIAN Ando Lab. Seminar (June 22th, 2018) #### Was the LL due to BS? - What percentage of it was due to flow 1 and flow 2? - Flow 1: BS trip is surely accompanied by LL. - Flow 2: LL is not always accompanied by BS trip. # Discuss! about whether this 46% was due to BS trip. Please give me some advice... #### Was the LL due to BS? I think the most was due to BS. - MICH down was so delayed compared to BS down. - LL is not always accompanied by BS trip. What do you think? # Discuss! about whether this 46% was due to BS trip. Please give me some advice... ### Table of contents 1. About lock loss study 2. The ratio of cause of Lock loss 3. What kind of EQ causes Lock loss? (Classifying EQs as to its safeness) ### Table of contents 1. About lock loss study 2. The ratio of cause of Lock loss 3. What kind of EQ causes Lock loss? (Classifying EQs as to its safeness) # LL caused by EQ # LL caused by EQ ## Importance of this study We can know which EQ should be danger for KAGRA - → If EQ happens while operating, getting information of EQ, we can cope with it appropriately - keep operating if the EQ is weak - control interferometer strongly - stop control intentionally to save interferometer # LL caused by EQ ## Velocity of Earthquake ## Velocity of Earthquake ## Velocity of Earthquake #### Notice - From many EQs, we want to separate them into safe EQ and danger EQ. - However, by seeing signal of seismometer, we cannot conclude which EQ made this seismic vibration because the expected time of arrival has some range and many of them was overlapped. - It is usual some EQs come simultaneously, so we cannot distinguish completely. ### Notice So I separated EQs into 3 types. While each arrival time range, I checked whether LL happened and whether RMS of seismic vibration was big. Ando Lab. Seminar (June 22th, 2018) ## Summary of this study - We can separate EQs into safe one and danger one roughly. - This study will teach us how we cope with EQs according to their distance and magnitude. ### Table of contents 1. About lock loss study 2. The ratio of cause of Lock loss 3. What kind of EQ causes Lock loss? (Classifying EQs as to its safeness) ## End. ## supplemental slide #### Duty cycle of bKAGRA phase-1 - We archived to control (lock) the interferometer. - After 5th day, there were 3 big earthquakes and high micro-seismic day. - Longest lock was 11.3 hours. Ref: Yuzurihara "bKAGRA phase1 operation" Area Workshop 2018 Early Summer ### The value of threshold - This value have some arbitrariness. - It should have been decided on the RMS when LL happens. - But ... Ando Lab. Seminar (June 22th, 2018) #### The value of threshold - This value have some arbitrariness. - It should have been decided on the RMS when LL happens. - It is difficult to decide precisely the threshold of RMS which cause LL. - I set the value with some reason. - 1 The big EQ exceeds the threshold. - 2 All EQs whose RMS was bigger make LL. - → The value does not too small - 3 This is as same as the threshold of ... ## PEM Site Map Ando Lab. Seminar (June 22th, 2018) Ando Lab. Seminar (June 22th, 2018) ## Future plan of this topic The most cause of LL seems VIS_BS, but it cannot be concluded. I have to check other channels. - VIS-ETM{X/Y}_TM_OPLEV_TILT_{PIT/YAW}_OUT - GRD-VIS_{PR2/PR3}_STATE_N Ando Lab. Seminar (June 22th, 2018) ### Ratio of LockLoss #### **iKAGRA** #### investigation conducted on 132 LLs #### Most: IMC 61% #### **bKAGRA** #### investigation conducted on 94 LLs IMC: 5% Most: VIS-BS 46% #### RMS of EX-SEIS EY-SEIS #### mistook selecting channel! ### Boolean of feedback (iK) ## RMS of SEIS (iKAGRA) Ando Lab. Seminar (June 22th, 2018) ### EQ leading to LL (iKAGRA) | GPS | 波形 | mag | magtype | place | |------------|-----|-----|---------|------------------------------| | 1144590935 | P | 6.9 | mww | 75km SE of Mawlaik, Burma | | 1144672013 | P | 6.2 | mww | 3km W of Kumamoto-shi, Japan | | 1144681444 | P | 6.0 | mww | 5km ENE of Uto, Japan | | 1144772723 | P&S | 7.0 | mww | 1km E of Kumamoto-shi, Japan | | 1144778608 | S | 5.4 | mwr | 15km ENE of Ozu, Japan | | 1145091152 | S? | 5.3 | mww | 6km NNE of Yatsushiro, Japan | | 1145190001 | S? | 5.9 | mww | 65km ENE of Namie, Japan | | 1145581243 | S? | 4.4 | mb | 29km N of Shinshiro, Japan | 表 1 ロックロスを引き起こした地震の情報をまとめたもの. GPS:地震発生時刻, mag:マグニチュード, magtype:マグニチュードの定義, place:震源場所 The USGS Earthquake Hazards Program のデータを使用. マグニチュードの定義は、mww:centroid moment tensor から計算したモーメントマグニチュード、mwr:moment tensor から計算したモーメントマグニチュード、mb:短期間の表面波に対して振幅から計算したマグニチュード ## EQJi 13574 #### 縦軸が違う #### どの地震を表しているのか図示してわかりやすく Ando Lab. Seminar (June 22th, 2018) ## EQJi_1435 #### 縦軸が違う Ando Lab. Seminar (June 22th, 2018) ## Ratio of LockLoss ### **iKAGRA** #### investigation conducted on 132 LLs Most: IMC 61% ### **bKAGRA** #### investigation conducted on 94 LLs Most: VIS-BS 72% ### Ratio of LockLoss #### investigation conducted on 94 LLs VIS-BS: 72% # For KIW4 poster Ando Lab. Seminar (June 22th, 2018)