Ando Lab Midterm Seminar

April 24, 2019

Prospects for the First Year of Reiwa 令和元年度の抱負

Yuta Michimura

Department of Physics, University of Tokyo

Contents

- Looking back on the year 2018
- My plans and expectations for the year 2019
- Hot topics
 - DANCE: Dark matter Axion riNg Cavity Experiment
 - Optical levitation of photonic crystal mirror
 - Lorentz invariance test in space
 - C-DECIGO: km scale GW detector in space

My Plans 2018

Frequently Asked Questions

- What percent of your time is spent to KAGRA?
- How often do you go to Kamioka?

Effort Report for 2018

2018

			May			
Sun	Mon	Tue	Wed	Thu	Fri	Sat
		1	2	3	4	5
6	7	8	9	10	11A	12A
13A	14A	15A	16A	17A	18A	19A
20A	21A	22	23	24J	25J	263
27	28J	<mark>29</mark>	30	31		

September

Sun Mon Tue Wed Thu Fri Sat

18 19

25K

12K 13K

1

29

	Julie								
Sun	Mon	Tue	Wed	Thu	Fri	Sat			
					1	2			
3	4A	5A	6A	7 <mark>A</mark>	8A	9A			
10A	11A	12A	13A	14A	15A	16A			
17A	18A	19A	20A	21A	22A	23A			
24A	25A	26A	27A	28A	29A	30A			

Juno

		00	tobe	er		
Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6
7	8	9К	10 K	11 K	12K	13
14	15	1 6T	17	18	19T	201
21 K	22K	23K	2 <mark>4</mark> K	25	26	27
28]	293	303	31			

July								
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
1A	2A	ЗA	4A	5A	6A	7A		
8 A	9A	10A	11A	12A	13A	14A		
15A	16A	17A	18A	19A	20A	21A		
22A	23A	24A	25A	26A	27A	28A		
29A	30A	31A						

August									
Sun Mon Tue Wed Thu Fri Sat									
			1A	2A	ЗA	4 A			
5A	6A	7A	8 A	9A	10A	11A			
12A	13A	14A	15A	16A	17A	18A			
19	20	21	22	23	24J	253			
263	27	28	29	30	31				

	November						
Sun Mon Tue Wed Thu Fri Sat							
			1J	2J	3		
4	5T	6	7	8 K	9K	10K	
11 K	12	13T	14	15	16	17	
18T	19	20	21T	22T	23	24	
25	26	27	2 <mark>8</mark>	29	30		
25	26	27	28	29	30		

2

9

3K

Effort Report for 2018

- 53 % effort on KAGRA (including KAGRA+)
 65 % effort if excluding Virgo
- 43 days / year (3.6 days/month) at Kamioka
 4.8 days/month if excluding Virgo period

00	KAGRA	99.0	days	37.1%		Home	191	days
00	KAGRA+	43.7	days	16.4%	J	Japan	20	days
00	Quantum	10.1	days	3.8%	К	Kamioka	43	days
<u>00</u>	Lorentz	0.0	days	0.0%	т	Tokyo-area	24	days
00	Axion	10.3	days	3.9%	А	Abroad	87	days
00	DECIGO	5.0	days	1.9%				
<u>00</u>	Virgo	46.9	days	17.6%				
<u>00</u>	Duties	34.3	days	12.9%				
00	Others	17.7	days	6.6%				

* Number of days spent was counted for each topic based on my personal record. If n topics on the same day, 1/n was allocated for each topic.

Effort Report for 2019 (so far)

2019

			May							June	•		July				August		
Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri Sat	Sun Mon	Tue Wed	Thu Fri Sat	5	Sun Mon Tue Wed	ſhu F	ri Sat
5	6	7	1 8	2 9	3 10	4 11	2	3	4	5	00	KAGRA	27.9	days	32.4%		Home	67	days
12	13	14	15	16	17	18	9	10	11	12	00	KAGRA+	10.2	days	11.8%	J	Japan	11	days
19 26	20 27	21 28	22 29	23 30	24 31	25	23	17 24	18 25	19 26	00	Quantum	9 . 4	days	10.9%	Κ	Kamioka	8	days
							30				00	Lorentz	1.9	days	2.3%	т	Tokyo-area	7	days
		Sej	oteml	ber					0	ctob	00	Axion	7.9	days	9.1%	Α	Abroad	19	days
Sun 1	Mon 2	Tue 3	Wed 4	Thu 5	Fri 6	Sat 7	Sun	Mon	Tue 1	Wed 2	00	DECIGO	7.5	days	8. <mark>8</mark> %				
8	9	10	11	12	13	14	6	7	8	9	00	Virgo	0.5	days	0.6%				
15 22	16 23	17 24	18 25	19 26	20 27	21 28	13 20	14 21	15 22	16 23	<u>00</u>	Duties	8.7	days	10.1%				
29	30						27	28	29	30	00	Others	12.1	days	14.1%			1	7

My Expectations JFY2018

But we wrote many papers than before

- Great!
- But only one paper on experimental result
- We have to complete our experiments at some point

Research Progress in a Topic

・きちんとした研究では、仕上げの段階で最も時間と労力を要する、
 (Finishing stage of a research will take time and effort).

・当初の目標設定に対して,必ずしも完璧に到達するわけでない.

(The achievement is not always at the level of original goal).

→ 研究には果てはない. 知見が散逸する前に, どこかで線引きしてまとめる判断も重要.

Earthquake-induced prompt gravity signals identified in dense array data in Japan

- Masaya Kimura, Nobuki Kame, Shingo Watada, Makiko Ohtani, Akito Araya, Yuichi Imanishi, Masaki Ando and Takashi Kunugi
- Earth, Planets and Space 71, 27 (2019)
- Demonstration of Displacement Sensing of a mg-Scale Pendulum for mm- and mg-Scale Gravity Measurements
 - Nobuyuki Matsumoto, Seth B. Cataño-Lopez, Masakazu Sugawara, Seiya Suzuki, Naofumi Abe, Kentaro Komori, Yuta Michimura, Yoichi Aso, and Keiichi Edamatsu
 - Phys. Rev. Lett. 122, 071101 (2019)
 - arXiv:1809.05081

KAGRA: 2.5 generation interferometric gravitational wave detector

- KAGRA Collaboration
- Nature Astronomy 3, 35 (2019)
- o arXiv:1811.08079

2018

- Optical Ring Cavity Search for Axion Dark Matter
 - Ippei Obata, Tomohiro Fujita, Yuta Michimura
 - Phys. Rev. Lett. 121, 161301 (2018)
 - o arXiv:1805.11753

Polarization test of gravitational waves from compact binary coalescences

- Hiroki Takeda, Atsushi Nishizawa, Yuta Michimura, Koji Nagano, Kentaro Komori, Masaki Ando, Kazuhiro Hayama
- Phys. Rev. D 98, 022008 (2018)
- arXiv:1806.02182

· Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector

- Yuta Michimura, Kentaro Komori, Atsushi Nishizawa, Hiroki Takeda, Koji Nagano, Yutaro Enomoto, Kazuhiro Hayama, Kentaro Somiya, Masaki Ando
- o Phys. Rev. D 97, 122003 (2018)
- o arXiv:1804.09894

Space Gravitational Wave Antenna DECIGO and B-DECIGO

- Seiji Kawamura et al.
- International Journal of Modern Physics D 27, 1845001 (2018)

Seismic cross-coupling noise in torsion pendulums

- o Tomofumi Shimoda, Naoki Aritomi, Ayaka Shoda, Yuta Michimura, and Masaki Ando
- Physical Review D 97, 104003 (2018)
- arXiv:1802.06542

 Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions

- Kentaro Komori, Yutaro Enomoto, Hiroki Takeda, Yuta Michimura, Kentaro Somiya, Masaki Ando, and Stefan W. Ballmer
- Physical Review D 97, 102001 (2018)
- arXiv:1803.00585
- Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
 - KAGRA Collaboration, LIGO Scientific Collaboration, Virgo Collaboration
 - Living Reviews in Relativity 21, 3 (2018)
 - arXiv:1304.0670

Summary of JFY2018

- Couldn't go to Kamioka very much than I had anticipated
- Many MIF related things not designed yet
- Done a lot of small tasks, but no highlight?
 - axion papers (good continuation so far)
 - bKAGRA Phase 1 paper & Nature Astronomy article
- Virgo visit was very good
- High school lectures for the first time
- New people related to axion, FF, Q-LEAP and QFilter
- Need to accelerate Lorentz violation, optical levitation and axion experiments
- Need to summarize current experiments
- Too many topics?

My Plans JFY2019

- Achieve 20 Mpc
- Complete remaining things
 - in-vac PDs and QPDs, beam dumps
 - optical table cover and tubes
 - beam shutter, new OMC
 - upgraded MZM
- Finish KAGRA+ paper and FPC White Paper
- Interferometer modeling
 - ASC
 - ITM inhomogeneity
 - parametric instability
- Some space mission proposal
- DANCE Act 1
- New mirror for optical levitation

My Expectations JFY2019

- The best arm length stabilization
- Achieve 10⁻¹⁵ /rtHz @ 0.1 Hz (or at least the best sensitivity)
- Demonstrate DECIGO interferometer controls
- Summarize DECIGO system requirements
- Squeezed angle rotation at some frequency
- Start Lorentz violation search with upgraded setup
- Horizontal restoring force confirmation for optical levitation
- Q measurement at cryogenic temperatures
- 3 PhD theses and 2 Master theses !!!!!
- New staff member in our group (from slightly different field)

Schedules in JFY2019

- June 18: ICRR Seminar @ Kashiwa
- June: KIW6 @ Wuhan
- July: GR22 and Amaldi13 @ Valencia
- August: KAGRA F2F @ Toyama
- September: LVC @ Warsaw (??)
- September: TAUP2019 @ Toyama (?)
- September: 日本物理学会 @ 山形大学
- October: GWPAW2019 @ RESCEU (?)
- November: 量子エレクトロニクス研究会 @ 山中寮
- December: KAGRA F2F @ RESCEU
- December: 理論懇 @ 国立天文台
- March: 日本物理学会 @ 名古屋大学

Dark matter Axion search with RiNg Cavity Experiment

DANCE

- Ring cavity Experiment Is sensitive for Wide range of Axions
- Prototype experiment: DANCE Act-1

Things We Need to Check

- Resonance of circular polarization
- Resonant frequency difference between s-pol and p-pol
- Sensitivity calculations for ADBC type detection
- Data analysis methods (should be similar to continuous GW)

- Some new idea to search for heavier axions (shorter coherent time)
- Some new idea to search for lighter axions (astrophysical observations?)

Optical Levitation of Photonic Crystal Mirror

Photonic Crystals

- I'm not sure what they are, but they look interesting
- Variety of ways for realization, variety of applications

A Variety of WGGs

High Reflectivity

 Demonstrated R=99.2 % @ 1064 nm for future GW detectors to reduce coating thermal noise Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity D. Friedrich+, Optics Express 19, 14955 (2011)

- Reflectivity of 0 to <u>99.9470±0.0025%</u> @ 1µm
 - high dependence on incident angle polarization wavelength
 - freedom for design

↔ you need careful tuning
 High-finesse Fabry-Perot cavities with bidimensional Si3N4
 LKB group
 photonic-crystal slabs
 X. Chen+, Light: Science & Applications 6, e16190 (2017)

Curved Mirror

- Flat dielectric grating reflectors with focusing abilities
 D. Fattal+, <u>Nature Photonics 4, 466 (2010)</u>
- 450 nm thick Si on a quartz substrate
- Phase of the reflected beam depends on grating period
- Curved mirror can be realized by changing the grating period along the radial direction

Reflectivity isPhase isnot so dependentdependent

Curved Mirror

Curved Mirror with High Reflectivity

- Photonic crystal-based flat lens integrated on a Bragg mirror for high-Q external cavity low noise laser
 M. S. Seghilani+, <u>Optics Express 22, 5962 (2014)</u>
- Phase of reflected beam is dependent on filling factor

Distributed Bragg reflector (DBR) for high reflectivity

Fig. 3. (a) Phase of the reflected plane waves by PCM as a function of the filling factor at work wavelength $\lambda_0 = 1010nm \pm 10nm$ (PC thickness=280nm, Spacer thickness=142nm, a=280nm). (b) Corresponding PCM reflectivity, black arrows show the optical resonance effect moving when the wavelength changes.

Filling factor $f = h_r/a$

Curved Mirror with High Reflectivity

 Curved mirror can be realized by changing the filling factor along the radial direction

Optical Levitation

• We had difficulties in fabricating a mirror

	For SQL	Prototype	For suspended experiment
Mass	0.2 mg	~1.6 mg	~ 7 mg
Size (mm)	φ 0.7 mm t 0.23 mm	φ 3 mm t 0.1 mm	φ 3 mm t 0.5 mm
RoC	30 mm convex	30 ± 10 mm convex (measured: 15.9 \pm 0.5 mm)	100 mm concave (previously flat ones were used)
Reflectivity	97 % (finesse 100)	>99.95 % (measured: >99.5%)	99.99%
Comment	<u>Optics Express 25,</u> <u>13799 (2017)</u>	Only one without big cracks	Succeeded

- Can we put photonic crystal to (effectively) make curvature?
- Can we keep high reflectivity?
- Sandwich configuration possible?

Other Approaches?

- Proposition
 Polarization-independent beam focusing by high-contrast grating reflectors
 W. Su+, Optics Communications 325, 5 (2014)
 - curved mirror by grating with parabolic surface too small for us!
 - -~9 um focal length
 - focusing consistent with diffraction limit
- Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects
 O. Ilic & H. A. Atwater, Nature Photonics 13, 289 (2019)
 - levitation by tailoring asymmetric scattering of light

Fig. 2. (a) Schematic of a 2D HCG focusing reflector. The intensity distribution of the focused beam when (b) TE and (c) TM waves illuminate from the bottom side. The wavelength of the incident light is $1.55 \,\mu$ m, and the white line is the position of focal point. FWHMs are both 1.17 λ .

Lorentz Invariance Test in Space

Lorentz Invariance Test

- We can reach $\frac{\delta c}{c} \sim 10^{-17}$ level if noise increase from rotation is negligible (with 1 year observation).
- Maybe we can realize quiet rotation in space!

Proposed Setup

System Requirements

- Frequency noise: 1e-13 /rtHz
 ground demonstration done for odd, stationary
- Laser: 10 mW, 1550 nm
 - DPF: 50x40x20 cm, 15 kg (~25 W, ~30 V)
 - LPF: 25x25x15 cm, 5 kg
 - No need for DPF, LPF level lasers. Frequency stabilization not necessary
- Temperature stability: 400 nK/rtHz (CMRR 1/100, silicon dn/dT)
 - <400 nK/rtHz at lab for odd confirmed by Takeda
 - ~100 μK/rtHz @ 0.1 mHz for LISA <u>RSI 89, 045004 (2018)</u>
- Attitude control: <~ 1deg,
 needs satellite spin (@ ~0.1Hz?)
- Observation period: 1 year
 - continuous observation not necessary
 - ~0.01 MB/sec data rate

Possible Satellites

- Micro-satellite (数億円)
 50 cm cubic, ~50 kg
- CubeSat

1U = 10 cm cubic, 1kg

DOA = Dead On Arrival

Michael Swartwout, <u>"Reliving 24 Years in the</u> next 12 Minutes: A Statistical and Personal History of University-Class Satellites"

Figure 13. Mission Status for All University-Class Missions (1994-2017)

19.2%

Further Investigation Necessary

- Rotation
 - satellite rotation or rotation inside the satellite
 - rotation speed
 - rotation stability, vibrations
 - effect of gravity gradient to even parity experiment
- Laser source
 - smaller laser source
- Cavity
 - even parity setup
 - more compact

Space-Time Asymmetry Research

https://web.stanford.edu/~sbuchman/publications-PDF/ Technology%20Development%20for%20Space%20Time%20Asy mmetry%20Research%20(STAR)%20Mission.pdf

STAR was not Selected in 2008

http://www.stanford.edu/group/lisasymposium/LISA8_Byer.pdf

STAR Review Summary (MOO 2008)

AO Evaluation Categories TMC (Technical, Management, Cost) (30% weight) Sci. Implem. Science Mgmt & Sched. (30% weight) (40% weight) Mission Instruments Flight Sys. Cost Design TMC Summary Strengths 2 Maj Str STAR 12 Min Str 8 Maj Weak CatIV 16 Min Weak Weakness NASA Small Explorers "High" Overall Risk (SMEX) mission

Science Major Strengths (5): Free flying observatory; Possibility of measuring violations in Lorentz invariance; Improved limits on violations of Lorentz invariance; Expert team; Instrument has rich heritage Science Major Weaknesses (2): Not clear STAR measurements will be ahead of ground observations; no discussion of stretching of cavities by Earth's gravitational gradient TMC Major Strength (2): Redundant science payload; excellent science team TMC Major Weaknesses (8): Inadequate instrument tech development plans (three examples given); Orbit of 850 km won't decay in 25 years; Cost and workforce information inconsistent with schedule and required work; No dedicated PM; Inexperienced spacecraft team; Inadequate schedule detail

km-scale Space Gravitational Wave Detector

Motivations

- Demonstration of multiband gravitational wave detection
 Detect BBHs and BNSs a few days before the merger
- IMBH search with unprecedented sensitivity

Existing Space GW Projects

	LISA	TianQin	B-DECIGO
Arm length	2.5e6 km	1.7e5 km	100 km
Interferometry	Optical transponder	Optical transponder	Fabry-Pérot cavity
Laser frequency stabilization	Reference cavity, 1064 nm	Reference cavity, 1064 nm	lodine, 515 nm
Orbit	Heliocentric	Geocentric, facing J0806.3+1527	Geocentric (TBD)
Flight configuration	Constellation flight	Constellation flight	Formation flight
Test mass	1.96 kg	2.45 kg	30 kg
Force noise req.	8e-15 N/rtHz Achieved PRL 120, 061101 (2018)	7e-15 N/rtHz CQG 33, 035010 (2016)	1e-16 N/rtHz 37

Horizon Distance

Horizon Distance

C-DECIGO

- Target sensitivity
 C-DECIGO
 = B-DECIGO x 30
 = DECIGO x 300
- For GW150914
 ⁴Department *E-mail: iso and GW170817
 Received Fell like binaries, C-DECIGO can measure coalescence time to
 < ~150 sec a few days before the merger

S. Isoyama+, PTEP 2018, 073E01 (2018)

Multiband gravitational-wave astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO

Soichiro Isoyama^{1,*}, Hiroyuki Nakano², and Takashi Nakamura^{3,4}

¹International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal-RN 59078-970, Brazil

²Faculty of Law, Ryukoku University, Kyoto 612-8577, Japan

³Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan *E-mail: isoyama@yukawa.kyoto-u.ac.jp

Received February 27, 2018; Revised June 13, 2018; Accepted June 14, 2018; Published July 30, 2018

An evolving Japanese gravitational-wave (GW) mission in the decihertz band, B-DECIGO (DECihertz laser Interferometer Gravitational wave Observatory), will enable us to detect GW150914-like binary black holes, GW170817-like binary neutron stars, and intermediatemass binary black holes out to cosmological distances. The B-DECIGO band slots in between the aLIGO-Virgo-KAGRA-IndIGO (hectohertz) and LISA (millihertz) bands for broader bandwidth; the sources described emit GWs for weeks to years across the multiple bands to accumulate high signal-to-noise ratios. This suggests the possibility that joint detection would greatly improve the parameter estimation of the binaries. We examine B-DECIGO's ability to measure binary parameters and assess to what extent multiband analysis could improve such measurement. Using non-precessing post-Newtonian waveforms with the Fisher matrix approach, we find for systems like GW150914 and GW170817 that B-DECIGO can measure the mass ratio to within < 0.1%, the individual black-hole spins to within < 10%, and the coalescence time to within < 5 s about a week before alerting aLIGO and electromagnetic facilities. Prior information from B-DECIGO for aLIGO can further reduce the uncertainty in the measurement of, e.g., certain neutron star tidally induced deformations by a factor of ~ 6 , and potentially determine the spin-induced neutron star quadrupole moment. Joint LISA and B-DECIGO measurement will also be able to recover the masses and spins of intermediate-mass binary black holes at percent-level precision. However, there will be a large systematic bias in these results due to post-Newtonian approximation of exact GW signals.

Force Noise

- Requires 1e-16 N/rtHz for $mL = 90 \, \mathrm{kg} \cdot \mathrm{km}$

Quantum Noise and Topology

- Optical transponder (LISA/TianQin-style) Cannot dig the bucket unless you increase the size of the test mass
- Michelson interferometer
 - arm length: 30 km
 - mirror mass: 3 kg (diffraction loss is small enough)
 - input power: 3 W (arm should be long to reduce power) gives you C-DECIGO target
- Fabry-Perot interferometer (DECIGO-style)
 - arm length: 3 km
 - mirror mass: 30 kg
 - finesse: 300
 - input power: 0.01 W gives you C-DECIGO target (one example)

Michelson or Fabry-Perot

Fabry-Perot seems reasonable choice

Mirror Mass and Arm Length

• Force noise requirement

$$h_{\rm f} = \frac{f}{m\omega^2 L} = \frac{1 \times 10^{-16} \,\mathrm{N}/\sqrt{\mathrm{Hz}}}{90 \,\mathrm{kg} \cdot \mathrm{km} \,\omega^2}$$
Say, this is 3
• Radiation pressure noise

$$h_{\rm rp} = \frac{1}{m\omega^2 L} \frac{4\mathcal{F}}{\pi} \sqrt{\frac{16\pi\hbar P}{c\lambda}} = k_{\rm safe} h_{\rm f}$$
There's no point in reducing the finesse and input power if force noise is larger,

- If you fix requirement for f , requirement for mL is set

in terms of sensitivity.

- If you fix P , finesse ${\mathcal F}$ is set
- Assuming g-factor g=0.3 and L, beam size is calculated
- This gives you the minimum mirror mass from diffraction loss (assume fused silica, aspect ratio t/d = 1)
- Also, if you fix initial alignment accuracy, minimum mirror diameter d is determined from $d/L \eqno(46)$

Mirror Mass and Arm Length 6. W. finesse 40? finesse 10 km, 10 kg seems better than 3 km, 30 kg From ore sensi <u>ල</u> 10³ IC. TO NITH Not allowed 10² allowed from force noise on aspect ratio) cf. GRACE-FO 30 kg, 3 km does 220 km FF Not allowed **C-DECIGO** from initial **B-DECIGO** 10 kg, 10 km 10^{0} alignment 10^{1} 10^{0} 10^{2}

arm length [km]

mass

from diffraction **IOSS** (depends much launched May 2018

cf. star tracker can do better than 1 arcsec $(\sim 5 \text{ urad})$ 47

C-DECIGO Summary

- Multiband gravitational wave astronomy
 - Measure coalescence time of O1/O2 binaries within a few minutes, a few days before the merger
- IMBH search
 - O(10³) Msun IMBH within the whole universe
 - Better than ET/CE and LISA
- C-DECIGO design parameters
 - Arm length: 10 km
 - (Does this reduce the cost? Or increase the feasibility?)
 - Mirror mass: 10 kg
 - Force noise: <1e-16 N/rtHz (same as B-DECIGO)
 - finesse: 400
 - input power: 0.01 W (no high power amp necessary?)
- Better to do B-DECIGO if the cost is similar

Findings

- To do original science in 3G-LISA era,
 - Force noise < ~1e-16 N/rtHz
 - $mL > 90 \,\mathrm{kg} \cdot \mathrm{km}$
 - $\sqrt{m}L > 3\sqrt{30}\sqrt{\mathrm{kg}}\cdot\mathrm{km}$ are required
- Fabry-Perot seems more feasible
- Although beam size will be smaller for shorter arm length, it requires heavier mass to keep force noise requirement the same (~ a few kg is the minimum for the test mass)
- Longer arm length is better due to SQL but
 - initial alignment accuracy will be tougher
 - higher power laser will be necessary due to lower finesse (diffraction loss)

Summary

Reviewed

 Experiments all look
 Interesting and
 We should take
 Action !

