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• Gravitational waves have been detected

• We have to focus more on how to extract physics from 

GWs, rather than on how to detect them

• The relationship between the detector sensitivity design and 

how much physics we can get is not always clear

• KAGRA and future detectors employ cryogenic cooling to 

reduce thermal noise

• Cryogenic cooling adds more complexity in sensitivity 

design compared with room temperature detectors because 

of the trade-off between mirror temperature and laser power

• More clever design of the sensitivity of GW detector?

Background
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• Seismic noise: reduce as much as possible

multi-stage vibration isolation, underground

• Thermal noise: reduce as much as possible

larger mirror

thinner and longer suspensions

• Quantum noise: optimize the shape

input laser power

homodyne angle

signal recycling mirror reflectivity

detuning angle

Room Temperature Detector Design
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• Seismic noise: reduce as much as possible

multi-stage vibration isolation, underground

• Thermal noise: reduce as much as possible

larger mirror

thinner and longer suspensions

mirror cooling

• Quantum noise: optimize the shape

input laser power

homodyne angle

signal recycling mirror reflectivity

detuning angle

Cryogenic Detector Design
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as thin as possible

to support mirror mass

DILEMMA

worse cooling power

mirror heating

heat extraction



• Designing cryogenic GW detector is tough because thermal 

noise calculation and quantum noise optimization cannot be 

done independently

• Computers should do better than us

• Examples of computer-aided design / optimization

MCMC for designing OPO

N. Matsumoto, Master Thesis (2011)

Machine learning for cavity mode-matching

LIGO-G1700771

Genetic algorithm for wave front correction

JGW-G1706299

Particle swarm optimization for filter design

LIGO-G1700841 LIGO-T1700541

Optimization Problem
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http://t-munu.phys.s.u-tokyo.ac.jp/theses/matsumoto_m.pdf
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https://dcc.ligo.org/LIGO-T1700541


• Gradient methods

- Gradient descent (最急降下法)

- Newton’s method ……

• Derivative-free methods

- Local search (局所探索法)

- Hill climbing (山登り法)

- Simulated annealing (焼きなまし法)

- Evolutionally algorithms

- Genetic algorithm

- Swarm intelligence (群知能)

- Ant colony optimization 

- Particle swarm optimization

• Markov chain Monte Carlo

• Machine learning (neural network, genetic programming…)

Optimization Algorithms
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Stochastic 

optimization



• If neighboring solution is better, go that way

• Limitations

- can only find local maximum/minimum

Hill Climbing
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• If neighboring solution is better, go that way

• Even if neighboring solution is worse, 

sometimes go that way

• Limitations

- have to tune SA variables

(especially cooling schedule) for different applications

- takes time to find best solution

Simulated Annealing
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• Particles move based on own best position and entire 

swarm’s best known position

• Position and velocity: 

• Advantages

- simple, fast (parallelized)

• Limitations

- no guarantee for mathematically correct solution

- tend to converge towards local maximum/minimum

Particle Swarm Optimization
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• Individuals evolve based on 

- selection

- crossover

- mutation

• Limitations

- no guarantee for mathematically correct solution

- solution could be local maximum/minimum

- many variables for selection, crossover, mutation

Genetic Algorithm
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Scientific Reports 6, 37616 (2016)

http://www.nicovideo.jp/watch/sm18721450
https://www.nature.com/articles/srep37616


• Not primarily for optimization

• Sample solutions with weighting

(likelihood)

• Gives posterior probability

density functions, and gives

parameter estimation errors

• Also studied for use in GW

parameter estimation

• Limitations

- slow

- needs prior information

Markov Chain Monte Carlo

12CQG 21, 317 (2004)

Andrey Andreyevich Markov

http://dx.doi.org/10.1088/0264-9381/21/1/023


• Not optimization algorithms

• Optimization algorithms are used for machine learning

• Prediction using statistics
(by Jamie LIGO-G1700902)

• Limitations

- needs big data for

machine to learn

• Machine learning for

BEC production

Scientific Reports 6, 25890 (2016)

• In my opinion, too much computation for optimization of 

function parameters

Machine Learning
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http://blogs.itmedia.co.jp/itsolutionjuku/

2015/07/post_106.html

https://dcc.ligo.org/LIGO-G1700902
https://www.nature.com/articles/srep25890
http://blogs.itmedia.co.jp/itsolutionjuku/2015/07/post_106.html


• Looks simple!

• Python package Pyswarm available

https://pythonhosted.org/pyswarm/

https://github.com/tisimst/pyswarm/

• PSO can be done with only

xopt, fopt = pso(func, lb, ub)

• I’m not saying that PSO is the only

best method for our use

Why Particle Swarm Optimization?
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optimized parameter set

cost function to be 

minimized

lower / upper bounds

Additional parameters:

- swarm size

- minimum change of objective value

before termination

https://pythonhosted.org/pyswarm/
https://github.com/tisimst/pyswarm/


• CBC search

Weerathunga & Mohanty, PRD 95, 124030 (2017)

Wang & Mohanty, PRD 81, 063002 (2010)

Bouffanais & Porter, PRD 93, 064020 (2016)

• CMBR analysis (WMAP data fit)

Prasad & Souradeep, PRD 85, 123008 (2012)

• Gravitational lensing

Rogers & Fiege, ApJ 727, 80 (2011)

• Continuous GW search using pulsar timing array

Wang, Mohanty & Jenet, ApJ 795, 96 (2014)

• Sensor correction filter design

Conor Mow-Lowry, LIGO-G1700841 LIGO-T1700541

• Voyager sensitivity design?

PSO for GW Related Research
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https://doi.org/10.1103/PhysRevD.95.124030
https://doi.org/10.1103/PhysRevD.81.063002
https://doi.org/10.1103/PhysRevD.93.064020
https://doi.org/10.1103/PhysRevD.85.123008
http://iopscience.iop.org/article/10.1088/0004-637X/727/2/80/meta
http://iopscience.iop.org/article/10.1088/0004-637X/795/1/96/meta
https://dcc.ligo.org/LIGO-G1700841
https://dcc.ligo.org/LIGO-T1700541


• Particle swarm optimization and gravitational wave data 

analysis: Performance on a binary inspiral testbed

Wang & Mohanty (2010)
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• Many local maxima in matched filtering

• Computationally expensive to search for global maxima

• Limiting search volume in parameter space, limiting the 

length of SNR integration affect the sensitivity of a search

• Computational efficiency is important

• Stochastic method (e.g. MCMC) may be sensitive to design 

variables and prior information

• Wide variety of stochastic method should be explored

• PSO has small number of design variables

• Note for stochastic method: additional computational cost of 

generating waveform on the fly

Motivation for PSO
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• Noise: iLIGO, single-detector

• Waveform: Upto 2PN, 

fmin= 40 Hz and fmax=700 Hz

4 parameters (amplitude, time, 

phase, 2 chirp-time(←m1,m2) )

• Tuned two PSO design variables 

(number of particles and change

in intertia coefficient w) in 

a systematic (?) procedure

based on computational cost

and consistency of the result

between individual PSO runs

Setup
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• Looks OK

• Higher SNR gives better

consistency in results,

as expected

• Computational cost

was ~7 times larger than

grid-based search

(because of 

low-dimensionality)

• With more dimensions,

PSO should be cheaper

Conclusion
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• Performance of particle swarm optimization on the fully-

coherent all-sky search for gravitational waves from 

compact binary coalescences

Weerathunga & Mohanty (2017)
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• HLVK network, with iLIGO noise

• Waveform: Upto 2PN, 

4 parameters (2 source locations, 2 chirp-time(←m1,m2) )

• PSO design variables:

Np=40 (swarm size)

Niter=500 (number of iterations)

• For stochastic optimization methods, including PSO, 

convergence to the global maximum is not guaranteed

• Indirect check: check if fitness function is better than true 

signal parameters

Setup
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• Fitness function is better

in most cases

Result: Detection Performance
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better



• Estimation looks OK

Result: Source Location Estimate
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• Estimation looks OK

Result: Chirp Time Estimate
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• Total number of fitness evaluations

Np * Niter * Nrun = 40 * 500 * 12 = 2.4e5

• This is <1/10 of grid-based searches

• PSO can also be used for non-Gaussian noise

• Parameter estimation error comparison with Fisher 

information analysis is not meaningful (SNR is normalized to 

9.0)

• Comparison with Bayesian approach is also difficult (error in 

Bayesian is different from frequentist one)

Conclusion
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• Cosmological parameter estimation using particle swarm 

optimization

Prasad & Souradeep (2012)
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• MCMC may not be the best option for problems which have 

local maxima or have very high dimensionality

• It has been recommended to use grid-based search first, 

and then MCMC

• PSO: computational cost does not grow exponentially with 

the dimensionality

• But, unlike MCMC, PSO does not give error bars (have to 

find some way to estimate)

• ΛCDM model: six parameters

cold dark matter density (Ωch
2), baryon density (Ωbh

2), 

cosmological constant (ΩΛ), primordial scalar power 

spectrum index (ns), normalization (As), reionization optical 

depth (τ)

Motivation
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Comparison between MCMC
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MC

almost same step side

PSO (stretched x5)

oscillation with decreasing amplitude
PSO

MC



• Consistent with MCMC

• 50 times less fitness function call

• Only search range as an input

Fitting Result
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• Primordial power spectrum is usually considered featureless

• PPS with power in bins (20 parameters in addition to Ωch
2, 

Ωbh
2, ΩΛ, τ)

• PSO fits better than MCMC

χeff
2 is lower by 7

PPS with Features
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• Small number of design variables

• Almost no prior information necessary (only search range)

• Computationally cheaper for higher dimensionality

• No guarantee on convergence to the global optima

• Potential for further research

Summary on PSO
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Particle Swarm Optimization for

KAGRA Sensitivity Design
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• Developed python codes to optimize KAGRA sensitivity 

using PSO (psokagra.py)

• Sensitivity calculation same as kagra_sensitivity.m by 

Komori et al (JGW-T1707038)

PSO for KAGRA Design
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Calculate cost function

Calculate KAGRA sensitivity

Set initial IFO parameters randomly

Best value change

less than threshold?

Update IFO 

parameters

(PSO)

NO

YES

DONE

https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7038


• Currently 8 parameters at maximum

IFO Parameters to Optimize
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input power to BS (I0)

mirror mass

(mass)

wire radius (r2)

safety factor 

(wsafe)

wire length (l3)

input power 

attenuation factor 

(I0attenuation)

mirror

thickness

(height)

mirror

radius

(radius)

beam 

radius

(w1,w2)

fixed aspect ratio

fixed ratio
SRM reflectivity (rSRM)

mirror 

temperature

(Tm)

SRC detuning (phidet)

homodyne angle (xi)

IM mass, 

temperature, and

wire parameters 

are fixed

Laser



• Boundary condition:

if x>xmax, x=xmax; if x<xmin, x=xmin

IFO Parameter Search Range
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Lower bound Upper bound KAGRA Default

Detuning angle [deg] 86.5 (or 60) * 90 86.5

Homodyne angle [deg] 90 180 135.1

Mirror temperature [K] 20 30 22

Power attenuation 0.01 1 1

SRM reflectivity 0.6 1 0.92 (85%)

Wire length [cm] 20 100 35

Wire safety factor 3 100 12.57

Mirror mass [kg] 22.8 100 22.8

* Maximum detuning is 3.5 deg considering SRC nonlinear effect 

(Aso+ CQG 29, 124008 (2012))
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• Inspiral range for (equal mass) binary

- calculation same as kagra_sensitivity.m by Komori et al 

(JGW-T1707038)

- 10 Hz to f_ISCO, f-7/3/h2

- might change to ir_ajith.m by M. Ando et al in the future

(IMR waveform by Ajith+, PRL 106, 241101 (2011))

• Binary parameter estimation error for given source

- calculation same as fisher analysis code by Nishizawa

based on Khan+, PRD 93 044007 (2016)

and Berti+, PRD 71, 084025 (2005)

- 30 Hz to f_ISCO

- only inspiral waveform for now

• SNR for given binary source

- calculation same as fisher analysis code by Nishizawa

• Detection rate yet to be done (takes too much time)

Cost Functions
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https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7038
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.241101
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.044007
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.71.084025


• Fisher information matrix

• GW detector network assumed:

aLIGO H1, L1 and AdV with

their designed sensitivities

• Binary parameters considered:
mc: chirp mass

eta: symmetric mass ratio

tc, phic: time and phase for coalescence

dL: luminosity distance

chis, chia: symmetric/asymmetric spin

thetas, phis: colatitude / longitude of source

cthetai: inclination angle

psip: polarization angle

Fisher Analysis
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Raffai+ CQG 30, 155004 (2013)

estimation error for

i-th parameter

waveformgeometrical

factor

noise of k-th detector

http://iopscience.iop.org/article/10.1088/0264-9381/30/15/155004/meta


• Size of the swarm (swarmsize)

- have to be tuned for each optimization (~100)

• Minimum change of swarm’s best value before termination 

(minfunc)

- precision you want to optimize the cost function (e.g. for 

inspiral range, 0.01 Mpc)

• That’s it!

PSO Design Variables

38



• O(1) minutes on my laptop, without multiprocessing

• Sensitivity calculation takes ~0.1 sec

• Inpiral range calculation takes ~0.00015 sec

• Fisher matrix calculation takes ~0.075 sec

→ sensitivity calculation limits the speed

• ~0.1 sec * ~100 particles * ~20 iterations = ~200 sec

for optimization

• Tolerable amount of time!

Optimization Speed
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• phidet= 86.4 deg, xi= 136.7 deg

gives IR1.4= 152.623 Mpc

(Default: phidet= 86.5 deg, xi= 135.1 deg

gives IR1.4= 152.598 Mpc)

• Consistent

with manual

optimization

2 Params, for IR1.4
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Search range

for phidet = [85,90]



• phidet= 86.5 deg, xi= 134.3 deg, Tm= 21.6 K

gives IR1.4= 152.794 Mpc

(Default: phidet = 86.5 deg, xi = 135.1 deg, Tm =22 K

gives IR1.4= 152.598 Mpc)

• Consistent

with manual

optimization

3 Params, for IR1.4

41

Resolution: 1 K



• Consistent with manual optimization

3 Params, for IR1.4
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• Similar to IR1.4 optimization

Better SNR gives smaller distance error

3 Params, GW170817 Distance
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dL = 40 Mpc

log(dL)

HLV 26.1 %

HLVK 17.8 %

HLVK+ 17.6 %



• Almost same to distance optimization, as expected

3 Params, GW170817 Inclination
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cthetai=cos(28°)

cthetai

HLV 0.231

HLVK 0.159

HLVK+ 0.157



• Similar to IR1.4 optimization

3 Params, GW170817 Polarization
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psip=0

psip [rad]

HLV 1.01

HLVK 0.668

HLVK+ 0.664



• ~120 Mpc, but better sensitivity at higher frequency

• half event rate, 1.5 times less error

3 Params, GW170817 Localization
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θs, φs=(113.4°, 40°)

Ωs [deg]

HLV 0.0771

HLVK 0.0366

HLVK+ 0.0250



• Almost identical to localization optimization

3 Params, GW170817 SymSpin

47

chis=0

chis [rad]

HLV 0.0453

HLVK 0.0445

HLVK+ 0.0434



• Almost identical to localization optimization

3 Params, GW170817 AsymSpin
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chia=0

chia [rad]

HLV 0.563

HLVK 0.555

HLVK+ 0.543



• Modified sky location from (113.4°,40°) to (195°, 40°)

• SNR 140/116/38/77 to 74/74/115/58

3 Params, GW170817mod Distance
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dL = 40 Mpc

log(dL)

HLV 17.5 %

HLVK 16.1 %

HLVK+ 16.1 %

Gives slightly 

different result for 

different location



• Almost identical with original GW170817 localization even 

with different sky location

3 Params, GW170817mod Localization
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θs, φs=(195°, 40°)

Ωs [deg]

HLV 0.0534

HLVK 0.0289

HLVK+ 0.0230



• No Virgo case

3 Params, GW170817 Distance
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dL = 40 Mpc

log(dL)

HLV 193 %

HLVK 21.5 %

HLVK+ 21.3 %

Gives slightly 

different result for 

different network 

configuration



• Almost identical with original GW170817 localization even 

with no Virgo case

3 Params, GW170817 Localization

52

θs, φs=(113.4°, 40°)

Ωs [deg]

HLV 3.34

HLVK 0.0891

HLVK+ 0.0573



• KAGRA sensitivity design can be done with PSO easily

• IR optimization is basically optimum for distance, inclination, 

polarization estimations (depends on source location and 

detector network configuration)

• For sky localization and spin parameters, higher frequency 

sensitivity is important

• Even with higher frequency optimization at the cost of 

inspiral range degradation, improvement in binary 

parameter estimation is small

• IR optimization (event rate optimization) seems like a 

reasonable choice 

Thoughts on Parameter Estimation
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• Input power at maximum is good for IR1.4

4 Params, for IR1.4
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IR1.4 [Mpc]

3 params 153

4 params 153

5 params

6 params

7 params

8 params



• SRM reflectivity of 88% gives slightly better IR1.4

5 Params, for IR1.4
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IR1.4 [Mpc]

3 params 153

4 params 153

5 params 158

6 params

7 params

8 params



• Wire length is shorter the better for IR1.4

6 Params, for IR1.4
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IR1.4 [Mpc]

3 params 153

4 params 153

5 params 158

6 params 164

7 params

8 params



• Default wire radius is OK for IR1.4

7 Params, for IR1.4
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IR1.4 [Mpc]

3 params 153

4 params 153

5 params 158

6 params 164

7 params 165

8 params



• Heavier mirror gives very good IR1.4

• Gives KAGRA+ Heavy concept

8 Params, for IR1.4
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IR1.4 [Mpc]

3 params 153

4 params 153

5 params 158

6 params 164

7 params 165

8 params 256



• Gives KAGRA+ HF concept (without squeezing)

7 Params, GW170817 Localization
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θs, φs=(113.4°, 40°)

Ωs [deg]

HLV 0.0771

HLVK 0.0366

HLVK+ 0.0154



• Gives KAGRA+ LF concept (without IM and ambient heat 

parameter tuning)

7 Params/Large Detune, for IR100
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IR100 [Mpc]

Default 353

LF 1613



• Even with large degradation in inspiral range, parameter 

estimation improvement with HF is limited

• Design changes in cryogenics are necessary to realize LF

• Heavy mirror improves inspiral range a lot (which leads to 

reduction in distance, inclination, polarization angle error)

• Anyway, broader sensitivity improvement is good?

• I also want to see optimization for detection rate (and 

detection rate with PE error smaller than threshold)

• I also want to include IM mass and wire, squeezing 

parameters, ambient heat parameters for optimization

Thoughts on KAGRA+
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JGW-T1707038

https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7038


• PSO can be used to optimize configuration with excess 

noise during commissioning

4 Params, for IR1.4 with Excess
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IR1.4 [Mpc]

Default 71

Opt 85

Higher temperature 

gives better IR1.4 

with excess noise



• First demonstration of PSO for GW detector design

• Maybe I don’t want to go into too much details of what is the 

best figure of merit

• How to validate PSO result, and show that PSO is useful?

• Focus on KAGRA upgrade and not PSO?

Paper in Preparation
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• GW astronomy started, and we need new figure of merits to 

design the sensitivity of GW detectors

• Cryogenics add more complexity in GW detector sensitivity 

design

• Developed a tool to optimize KAGRA sensitivity using 

particle swarm optimization

• PSO can be implemented easily, and it looks like it gives 

reasonable results with tolerable amount of time

• Cost functions available so far
- inspiral range (SNR)

- strain

- binary parameter estimation error from Fisher analysis

• To be done:
- optimization for detection rate

- add more IFO parameters to be optimized (IM, squeezing, etc.)

- faster calculation

Summary
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