Ando Lab Seminar March 9, 2018

Particle Swarm Optimization
for Gravitational Wave Astronomy

Yuta Michimura

Department of Physics, University of Tokyo



Contents
» Background
* Review of optimization methods

* Review of PSO application to
GW-related research

* PSO for KAGRA design



Background WWWWW

Gravitational waves have been detected [TEmE . wer] |

We have to focus more on how to extract physics from
GWs, rather than on how to detect them

The relationship between the detector sensitivity design and
how much physics we can get is not always clear

KAGRA and future detectors employ cryogenic cooling to
reduce thermal noise

Cryogenic cooling adds more complexity in sensitivity
design compared with room temperature detectors because
of the trade-off between mirror temperature and laser power

More clever design of the sensitivity of GW detector?



Room Temperature Detector Design

« Seismic noise: reduce as much as possible XAAAANAAANN
multi-stage vibration isolation, underground

« Thermal noise: reduce as much as possible
larger mirror

as thin as possible
to support mirror mass

thinner and longer suspensions .

* Quantum noise: optimize the shape
Input laser power
homodyne angle
signal recycling mirror reflectivity
detuning angle




Cryogenic Detector Design

« Seismic noise: reduce as much as possible XAAAANAAANN
multi-stage vibration isolation, underground hgat ¢ktrag¢tior

« Thermal noise: rediiceasrmtchas-possinle ﬁ
\

larger mirror

as thin as possible
to support mirror mass

thinner and longer suspensions .

-2nd onger P

| _ worse cooling power
mirror coolmgﬁ mirror heating |

DILEMMA
» Quantum noise: op/timéhe shape

Input laser power

homodyne angle

signal recycling mirror reflectivity
detuning angle




Optimization Problem

Designing cryogenic GW detector is tough because thermal
noise calculation and guantum noise optimization cannot be
done independently

Computers should do better than us

Examples of computer-aided design / optimization
MCMC for designing OPO
N. Matsumoto, Master Thesis (2011)
Machine learning for cavity mode-matching
LIGO-G1700771
Genetic algorithm for wave front correctlon
JGW-G1706299
Particle swarm optimization for filter deS|gn
LIGO-G1700841 LIGO-T1700541



http://t-munu.phys.s.u-tokyo.ac.jp/theses/matsumoto_m.pdf
https://dcc.ligo.org/LIGO-G1700771
https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=6299
https://dcc.ligo.org/LIGO-G1700841
https://dcc.ligo.org/LIGO-T1700541

Optimization Algorithms

 Gradient methods
- Gradient descent (2% ~'E)
- Newton’s method ......

« Derivative-free methods
- Local search (BRTIRERE) U T
- Hill climbing (W& DE)
- Simulated annealing (&2 X L)
- Evolutionally algorithms

- Genetic algorithm Metaheuristic
_ = . Ab
Swarm mtelllgen_ce_(ﬁ_%ﬂ@u) Stochastic
- Ant colony optimization .
optimization

- Particle swarm optimization
e Markov chain Monte Carlo .

« Machine learning (neural network, genetic programming...)
7




Hill Climbing

If neighboring solution is better, go that way

Cost function

Limitations
- can only find local maximum/minimum




« Even if neighboring solution is worse,
p — T

Simulated Annealing

 If neighboring solution is better, go that way

sometimes go that way

Cost function

flzy)—f(zi41)

[

Higher temperature
at first, T=0 at last

Limitations

- have to tune SA variables

|5

forms forms

(especially cooling schedule) for different applications

- takes time to find best solution
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Particle Swarm Optimization

Particles move based on own best position and entire
swarm’s best known position

Position and velocity: N
OWn DESt position g 04| pest position
TE(t+ 1) = xx(t) + vi(t) so far / so far

Vp(t + 1) = wug(t) + c1r1 (T — xk(t)) + core(T, — i (1))

inertia coefficient  coefficient ¢ (~1) ° /‘
(~1) random number r €[0,1] \
o
\
Advantages s
- simple, fast (parallelized) ° \.
Limitations

- no guarantee for mathematically correct solution
- tend to converge towards local maximum/minimum



Genetic Algorithm

* Individuals evolve based on Scientific Reports 6, 37616 (2016)
- SeleCtion 3 individuals (each with 4 genes)
Initial Random Population 0.51 0.33 0.02
- crossover (First Generation) g:;; g:g; g:g;
: G S —
B mUtatlon —P» Measure Fitnhess Fitness Score: 13% 04% 33%

Randomly pick parents,
Selection weighted by fitness values
(roulette wheel)

4, HRZRERT 4 e
Parents: Children:
- FE20RERHULEORIIZDFHEHRELS i Create 2 children by 0.51 0:02 0.51 0.02
Reproduction crossing over genes 0.11 0.31 0.11 0.31
DT BB U EEE. ; TREFS from each parent  0.72 0.82 0.82 0.72
AN B UETHE. IR, XX Z17, :
HADNED L B URHI. EIR, XX Z1T 0103 8 0.25 0,09
F1iER Fo "“'""”# """"""""""""""""""""""""""" (‘)'0'2'
ﬁ:” %ﬁif?f S - EIR- XX Mutati Ocassionally, randomly *° 0.31 Elitism
i utation mutate one gene 0.72 ; .
, é 0.02 Copy 'best’ genes to
wedd Bt - next generation

- -
e [}

* IS 0.02 0.02
.48 0.31 0.31
0.82 0.72 0.82

« Limitations —— New Generation - Base
- no guarantee for mathematically correct solution
- solution could be local maximum/minimum
- many variables for selection, crossover, mutation
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http://www.nicovideo.jp/watch/sm18721450
https://www.nature.com/articles/srep37616

Markov Chain Monte Carlo

Density of mtotal

Not primarily for optimization
Sample solutions with weighting
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(likelihood)

Gives posterior probability T
density functions, and gives Density of ta

T
284

parameter estimation errors
Also studied for use in GW
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http://dx.doi.org/10.1088/0264-9381/21/1/023

Machine Learning

Not optimization algorithms
Optimization algorithms are used for machine learning

. : - EEE DA A
Prediction using statistics — " = . s
(by Jamie LIGO-G1700902) i —
Limitations a3 1

~Aeafel « ¥ EX 4—

- heeds big data for
machine to learn Rt 4%1‘%’5&&1&

. 2 .
"o

HERET LR - @ ,ggibﬁﬁﬁ

)

HRESIEE iR

Machine learning for
BEC prOdUCtion http://blogs.itmedia.co.jp/itsolutionjuku/
Scientific Reports 6, 25890 (2016) 2015/07/post_106.html

In my opinion, too much computation for optimization of
function parameters 13



https://dcc.ligo.org/LIGO-G1700902
https://www.nature.com/articles/srep25890
http://blogs.itmedia.co.jp/itsolutionjuku/2015/07/post_106.html

Why Particle Swarm Optimization?

* Looks simple!

« Python package Pyswarm available
https://pythonhosted.org/pyswarm/
https://github.com/tisimst/pyswarm/

 PSO can be done with only
xopt, fopt = pso(func, Ib, ub)

1 N\
optimized parameter set \

lower / upper bounds

@ python’

cost function to be
minimized
Additional parameters: I
- swarm size
- minimum change of objective value
before termination

“there’s
no such thing
as a free

* I’'m not saying that PSO is the only lunch.”

best method for our use :


https://pythonhosted.org/pyswarm/
https://github.com/tisimst/pyswarm/

PSO for GW Related Research

« CBC search
Weerathunga & Mohanty, PRD 95, 124030 (2017)
Wang & Mohanty, PRD 81, 063002 (2010)
Bouffanais & Porter, PRD 93, 064020 (2016)

« CMBR analysis (WMAP data fit)
Prasad & Souradeep, PRD 85, 123008 (2012)

« Gravitational lensing
Rogers & Fiege, ApJ 727, 80 (2011)

« Continuous GW search using pulsar timing array
Wang, Mohanty & Jenet, ApJ 795, 96 (2014)

e Sensor correction filter design
Conor Mow-Lowry, LIGO-G1700841 LIGO-T1700541

« \Voyager sensitivity design? 15



https://doi.org/10.1103/PhysRevD.95.124030
https://doi.org/10.1103/PhysRevD.81.063002
https://doi.org/10.1103/PhysRevD.93.064020
https://doi.org/10.1103/PhysRevD.85.123008
http://iopscience.iop.org/article/10.1088/0004-637X/727/2/80/meta
http://iopscience.iop.org/article/10.1088/0004-637X/795/1/96/meta
https://dcc.ligo.org/LIGO-G1700841
https://dcc.ligo.org/LIGO-T1700541

Wang & Mohanty (2010)

« Particle swarm optimization and gravitational wave data

analysis: Performance on a binary inspiral testbed
PHYSICAL REVIEW D 81, 063002 (2010)

Particle swarm optimization and gravitational wave data analysis:
Performance on a binary inspiral testbed

Yan Wang
Department of Astronomy, Nanjing University, Nanjing, 210093, China”™

Soumya D. Mohanty
Center for Gravitational Wave Astronomy, Department of Physics and Astronomy, The University of Texas at Brownsville,
80 Fort Brown, Brownsville, Texas 78520, USA"'
(Received 6 January 2010; published 11 March 2010)

The detection and estimation of gravitational wave signals belonging to a parameterized family of
waveforms requires, in general, the numerical maximization of a data-dependent function of the signal
parameters. Because of noise in the data, the function to be maximized is often highly multimodal with
numerous local maxima. Searching for the global maximum then becomes computationally expensive,
which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach
to reducing computational costs in such applications. 'We report results from a first investigation of the
particle swarm optimization method in this context. The method is applied to a test bed motivated by the
problem of detection and estimation of a binary inspiral signal. Our results show that particle swarm
optimization works well in the presence of high multimodality, making it a viable candidate method for
further applications in gravitational wave data analysis.
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Motivation for PSO

Many local maxima in matched filtering
Computationally expensive to search for global maxima

Limiting search volume in parameter space, limiting the
length of SNR integration affect the sensitivity of a search

Computational efficiency is important

Stochastic method (e.g. MCMC) may be sensitive to design
variables and prior information

Wide variety of stochastic method should be explored
PSO has small number of design variables

Note for stochastic method: additional computational cost of
generating waveform on the fly



Setup

* Noise: ILIGO, single-detector

« Waveform: Upto 2PN,
fmin= 40 Hz and fmax=700 Hz
4 parameters (amplitude, time,
phase, 2 chirp-time(«—ml,m2) )
 Tuned two PSO design variables
(number of particles and change
In intertia coefficient w) In
a systematic (?) procedure
based on computational cost
and consistency of the result
between individual PSO runs

wlk] = wog — m(k — ko) /N,,

TABLE I. Computational cost of PSO on data with no signals.
For each combination of N, and N,, the mean number of fitness
function evaluations is listed along with the maximum (super-
script) and minimum (subscript) over 50 trials. The mean values
have been rounded off to the nearest integers.

N, =42 81 121
N, =20 83091758 162842} 465 2500635
40 1740124186 3169479 84 4463251 102
80 2892037333 52669% 5% 741153315
120 3856733430 699828 3% 101495590
160 48 14755 35¢ 86759109753 126 346,525

TABLE II. Probability of clustering for different combinations
of N, and N,. For each combination, the fraction of trials (in %)
P,. P, and P, for which the fitness, 7, and 7,5 values,
respectively, were found to be clustered are listed. The proba-
bility of clustering, shown in bold, is the maximum over P, P,

To

and P, .. The number of trials for each combination is 50.

N, =42 81 121
N, =20 (P,)66 60 70
(P,,)74 72 82

(P,,.)68 72 82

40 72 76 76
82 88 94

86 76 80

80 84 84 90
84 90 92

88 86 92

120 72 88 96
78 92 92

68 88 96

160 82 86 94
88 86 94

78 80 92




CO”CIUSlon /true value

| % I I J '/ =]
Looks OK . { o7
_ _ 0.9 r + x - - 1
Higher SNR gives better : o e
consistency in results,  *°| % <\+ bso
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as expected 3 v L g results
:u'? 081 + /ib/ ’ ’ * X .
. : 7 + X 1 =5.0,T, .=0.6)— e
Computational cost sl LOOEI
was ~7 times larger than # TF Y | eooome
. 04r v +
grid-based search R .
(because of n . : |
low-dimensionality) s 10 15 20 25 % 3
ro(sec)

With more dimensions,
PSO h Id b h FIG. 5 (color online). Estimation of parameter values for a
shou €C eapersignal SNR of 8.0. The true locations of the signals are indicated

by the * marker and each of the markers, @, +, * and X,
indicates an estimated location corresponding to one of the true
locations. The association between the markers and the true
signal locations is indicated in the figure. For each trfi§) signal
location, the simulation consisted of 50 trials.



Weerathunga & Mohanty (2017)

Performance of particle swarm optimization on the fully-
coherent all-sky search for gravitational waves from

compact binary coalescences
PHYSICAL REVIEW D 95, 124030 (2017)

Performance of particle swarm optimization on the fully-coherent all-sky
search for gravitational waves from compact binary coalescences

Thilina S. Weerathunga
Department of Physics and Astronomy, University of Texas San Antonio,
One UTSA Circle, San Antonio, Texas 78249, USA

Soumya D. Mohanty

Department of Physics and Astronomy, University of Texas Rio Grande Valley,
One West University Boulevard, Brownsville, Texas 78520, USA
(Received 13 April 2017; published 16 June 2017)

Fully coherent all-sky search for gravitational wave (GW) signals from the coalescence of compact
object binaries is a computationally expensive task. Approximations, such as semicoherent coincidence
searches, are currently used to circumvent the computational barrier with a concomitant loss in sensitivity.
We explore the effectiveness of particle swarm optimization (PSO) in addressing this problem. Our results,
using a simulated network of detectors with initial LIGO design sensitivities and a realistic signal strength,
show that PSO can successfully deliver a fully coherent all-sky search with <1 /10 the number of likelihood
evaluations needed for a grid-based search.
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Setup

HLVK network, with ILIGO noise

Waveform: Upto 2PN,
4 parameters (2 source locations, 2 chirp-time(«<~m1,m2) )

PSO design variables:
Np=40 (swarm size)
Niter=500 (number of iterations)

For stochastic optimization methods, including PSO,
convergence to the global maximum is not guaranteed

Indirect check: check if fithess function is better than true
signal parameters



Result: Detection Performance

Fithess function is better
IN MOsSt cases
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- .’ .
10.5 57,
. R - ./,
better BT R
10 ‘. o Voo L1
P 7’ o 7
s s s,
7 p s
95+ K ""1 ,’
- . AP s /,
3 of Y A
Q ’{ ./} ,’
[ ‘/ o 0,
8.5 . b i:",,;’. L7
. ’e y
-‘.o' " ’) [ ]
8 P S A not better
d.‘. /)." /: .
O AP /"
75 - 27t &,
T PN ]
'/4" Ve
. y
7r /‘; /,
7 Fd 1 L L L
7 8 9 10 11
F(Btruc)

FIG. 3. Comparison of the coherent search statistic p,, found
by PSO with the coherent fitness value I'(®,.) at the true signal
parameters, O,.. Each dot corresponds to one data realization,
from a total of 1440 realizations across all the source paramelters
used. Dashed lines show the 3%, 5%, and 10% drop from the
coherent fitness value. Black dots indicate data realizations for
which p.op < IOy ) With Ny,e = 12 independent PSO runs,
but recovered 10 pegp = I'(Op.) when N, = 24. The total
number of points below the diagonal is 95.
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Result: Source Location Estimate

e Est
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Estimated sky locations (red dots) associated with the set M1 (m; = 1.4 M, my, — 1.4 M) of sources. In each panel, the origin is

cenlered at the true location of the source. The axes show the deviation of the estimated values of a and 6 from their true values. Each panel also
shows the contour levels of the bivariate probability density function, estimated using kernel density estimation (KDE) [48], that enclose 68 % and 3
95% of the points. In these figures, the view has been zoomed in to show only the estimated locations that fall within or around the outer contour.



Result: Chirp Time Estimate

 Estimation looks OK
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FIG. 7. Histograms ol estimated chirp times, 7y and 7; 5, for all locations and mass set M1 (1.4 M and 1.4 M ). The true values of
the chirp times are shown by the red line in each plot. For each source sky location, the 7, and 7, 5 distributions are adjacent and on the

same row, with the 7,5 distribution always to the right of the 7, one.



Conclusion

Total number of fithess evaluations
Np * Niter * Nrun =40 * 500 * 12 = 2.4e5

This Is <1/10 of grid-based searches
PSO can also be used for non-Gaussian noise

Parameter estimation error comparison with Fisher
Information analysis is not meaningful (SNR is normalized to
9.0)

Comparison with Bayesian approach is also difficult (error in
Bayesian is different from frequentist one)



Prasad & Souradeep (2012)

« Cosmological parameter estimation using particle swarm

optimization
PHYSICAL REVIEW D 85, 123008 (2012)

Cosmological parameter estimation using particle swarm optimization

Jayanti Prasad™ and Tarun Souradeep"h
[UCAA, Post Bag 4, Ganeshkhind, Pune 411007, India
(Received 4 September 2011; revised manuscript received 16 May 2012; published 19 June 2012)

Constraining theoretical models, which are represented by a set of parameters, using observational data
is an important exercise in cosmology. In Bayesian framework this is done by finding the probability
distribution of parameters which best fits to the observational data using sampling based methods like
Markov chain Monte Carlo (MCMC). It has been argued that MCMC may not be the best option in certain
problems in which the target function (likelihood) poses local maxima or have very high dimensionality.
Apart from this, there may be examples in which we are mainly interested to find the point in the
parameter space at which the probability distribution has the largest value. In this situation the problem of
parameter estimation becomes an optimization problem. In the present work we show that particle swarm
optimization (PSO), which is an artificial intelligence inspired population based search procedure, can
also be used for cosmological parameter estimation. Using PSO we were able to recover the best-fit A cold
dark matter (LCDM) model parameters from the WMAP seven year data without using any prior guess
value or any other property of the probability distribution of parameters like standard deviation, as 1s
common in MCMC. We also report the results of an exercise in which we consider a binned primordial
power spectrum (to increase the dimensionality of problem) and find that a power spectrum with features
gives lower chi square than the standard power law. Since PSO does not sample the likelihood surface in a
fair way, we follow a fitting procedure to find the spread of likelihood function around the best-fit point.
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Motivation

MCMC may not be the best option for problems which have
local maxima or have very high dimensionality

It has been recommended to use grid-based search first,
and then MCMC

PSO: computational cost does not grow exponentially with
the dimensionality

But, unlike MCMC, PSO does not give error bars (have to
find some way to estimate)

ACDM model: six parameters

cold dark matter density (Q.h?), baryon density (Q,h?),
cosmological constant (Q,), primordial scalar power
spectrum index (n.), normalization (A,), reionization optical
depth (1)



Comparison between MCMC
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FIG. 1 (color online). In this figure the red line shows a

Markov chain which has been obtained from a typical run of

COSMOMC and the green line shows the trajectory of a PSO
particle, along the same dimension i.e. (), h%. The Markov chain
as well as a PSO trajectory can begin anywhere in the range and
progressively move towards the best-fit location. However, in the
case of PSO the particle approaches towards the best-fit location
(Gbest) in an oscillatory manor with successively decreasing
amplitude, which is not the case for a Markov chain since its step
size does not vary much. Only after a sufficient number of PSO
steps the particle positions and the Markov chain converge.
Since there are more number of points for the Markov chain
as compared to the PSO, we use x-scale such that we have five
Markov points for every PSO point.
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FIG. 2 (color online). In this figure the red and the green points
show the distribution of the positions of PSO particles and
samples from a Markov chain, respectively, in the same plane.
From the figure it can be noticed that in the initial stage the
scatter of PSO particles is very large (see Fig. 1 also), however,
close to the convergence all particles get confined in a very
compact region. The distribution of the sample points in the case
of Markov chain i1s much more symmetric than in PSO. We
suspect that this is due to the different role played by the
stochastic variables (random numbers) in PSO as compared to
that in the Markov chains. The nonsymmetric distribution makes
PSO less favorable if we want to find the shape of the likelihood
close to the best-fit values (in order to report errors) i280mpari-
son to the Markov chain.



6000

Fitting Result

e Consistent with MCMC
* 50 times less fithess function call
« Only search range as an input

1(1+1)/2mC [ K]
4000

2000

10 100

TABLE II. The first column in the above table shows the PSO fitting parameters and the second, third, fourth and fifth columns show
the search range, the location of Gbest, the average position of PSO particles and the error or standard deviation (which 1s computed by
fitting the sampled function) respectively. In the sixth and seventh columns we give the best fit (ML) and the average values of the
cosmological parameters derived from WMAP seven years likelihood estimation respectively. In the last column we give the difference
between our best-fit parameters (PSO parameters) and WMAP team’s best-fit parameters (difference between ML and Gbest values).
From this table it is clear that roughly there is good agreement between the PSO best-fit parameters and WMAP team’s best-fit
parameters from the seven year data.

Cosmological parameters from PSO
PSO best fit WMAP best fit [9]

Gbest Standard ML Difference
Variable Range (Xgrr = 7469.73) Mean Deviation (/\/3”- = 7486.57) Mean (Gbest-ML)
O, h? (0.01,0.04) 0.022036 0.022030  0.000456 0.02227 0.02249%000%_ —0.000234(—1.05%)
Q. (0.01.0.20) 0.112313 0.112435  0.005276 0.1116 0.1120 = 0.0056  0.000713 (0.63%)
Qy (0.50,0.75) 0.721896 0.720353  0.029047 0.729 0.7275005 —0.007104(—0.97%)
n, (0.50,1.50) 0.963512 0963278  0.011730 0.966 0.967 = 0.014  —0.002488(—0.25%)
A /1077 (1.0.4.0) 2.448498 2454202 0.106615 2.42 243+ 0.11 0.028498(1.17%)
T (0.01,0.11) 0.08009 0.083930  0.012113 0.0865 0.088 = 0.015  —0.00641(—7.41%)
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PPS with Features

Primordial power spectrum is usually considered featureless
PPS with power in bins (20 parameters in addition to Q_h?,

Q.h2 Q,, 1)

PSO fits better than MCMC

Xet> IS lower by 7

6000

I(141)/27C [ K]
4000

2000

FIG. 9 (color online). The red. black and blue lines in the
above figure represent the best-fit angular power spectrum re-
covered from PSO, standard LCDM power spectrum and the
binned power spectrum of WMAP seven year data, respectively.
Note that at low [ the angular power spectrum with binned PPS
fits better as compared to the standard power law PRS to the
observed data (the improvement in AX‘“ is around 7).



Summary on PSO

Small number of design variables
Almost no prior information necessary (only search range)
Computationally cheaper for higher dimensionality
No guarantee on convergence to the global optima
Potential for further research
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Particle Swarrm Optirnization for
KAGRA Sensitivity Design

32



* Developed python codes to optimize KAGRA sensitivity
using PSO (psokagra.py)

« Sensitivity calculation same as kagra_sensitivity.m by
Komori et al (JGW-T1707038)

Set initial IFO parameters randomly

v

> Calculate KAGRA sensitivity

v

Calculate cost function

Ugrda?;[]ee:eFrCS) < NO Sest value change
P (PSO) ass than threshold?

YES

DONE


https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7038

FO Parameters to Optimize

« Currently 8 parameters at maximum

IM mass,
temperature, and
wire parameters

are fixed

iInput power to BS (10)

iInput power
attenuation f_actor — wire length (I3)
(I0attenuation)

wire radius (r2)

safety factor
SRC detuning (phidet)— (wsafe)

(wl,w2) mirror

mirror fixed ratio radjus
thickness (radius)
(height)

Laser

SRM reflectivity (rSRM)

homodyne angle (xi)/

mirror mass
fixed aspect ratio (mass) 34



Lower bound Upper bound | KAGRA Default

Detuning angle [deq] 86.5 (or 60) * 90 86.5
Homodyne angle [deg] 90 180 135.1
Mirror temperature [K] 20 30 22
Power attenuation 0.01 1 1

SRM reflectivity 0.6 1 0.92 (85%)
Wire length [cm] 20 100 35

Wire safety factor 3 100 12.57
Mirror mass [kg] 22.8 100 22.8

, <1eeds more money

* Maximum detuning is 3.5 deg considering SRC nonlinear effect
(Aso+ CQG 29, 124008 (2012))

=<0
o
-

=

« Boundary condition:
If x>xmax, x=xmax; If x<xmin, Xx=xmin 35



Inspiral range for (equal mass) binary
- calculation same as kagra_sensitivity.m by Komori et al
(JGW-T1707038)
-10 Hz to f_ISCO, f73/nh?
- might change to ir_ajith.m by M. Ando et al in the future
(IMR waveform by Ajith+, PRL 106, 241101 (2011))

Binary parameter estimation error for given source
- calculation same as fisher analysis code by Nishizawa
based on Khan+, PRD 93 044007 (2016)
and Berti+, PRD 71, 084025 (2005)
-30 Hzto f ISCO
- only inspiral waveform for now

SNR for given binary source
- calculation same as fisher analysis code by Nishizawa

Detection rate yet to be done (takes too much time) 36



https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7038
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.241101
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.044007
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.71.084025

. - - i ©
 Binary parameters considered: . i

Fisher information matrix 9eometrical \aveform

GW detector network assumed: ;} — > = i,
aLIGO H1, L1 and AdV with gz -~ T, 0 ol o0
z Op - o I o‘-"' R ( l.q \Gf,":“‘,-;’ ]
Py “*LIGO-India (58.2%+kx90°%) :_; .. w )

factor

i =V (F-
\

df estimation error for
I-th parameter

P
g |20:h* (f)0;h(f)
2‘7—4%/2 2 Sk(f)

n0|se of k-th detector

their designed sensitiVItieS = g eoms i

—*LIGO Livingston (242.0°%)

~180 150 -120 -90 —60 -30 0 30 60 90 120 150 180

mc: chirp mass A (deg)
eta: symmetric mass ratio Raffai+ CQG 30, 155004 (2013)
tc, phic: time and phase for coalescence

dL: luminosity distance

chis, chia: symmetric/asymmetric spin  Xs/a = (X1 £ x2)/2
thetas, phis: colatitude / longitude of source

cthetai: inclination angle

psip: polarization angle

37


http://iopscience.iop.org/article/10.1088/0264-9381/30/15/155004/meta

PSO Design Variables

Size of the swarm (swarmsize)
- have to be tuned for each optimization (~100)

Minimum change of swarm’s best value before termination
(minfunc)

- precision you want to optimize the cost function (e.g. for
Inspiral range, 0.01 Mpc)

That's it!




Optimization Speed
O(1) minutes on my laptop, without multiprocessing
Sensitivity calculation takes ~0.1 sec

Inpiral range calculation takes ~0.00015 sec

Fisher matrix calculation takes ~0.075 sec
— sensitivity calculation limits the speed

~0.1 sec * ~100 particles * ~20 iterations = ~200 sec
for optimization

Tolerable amount of time! e



2 Params, for IR1.4

« phidet=86.4 deg, xi= 136.7 deg Search range
gives IR1.4= 152.623 Mpc for phidet = [85,90]
(Default: phidet= 86.5 deg, xi= 135.1 deg
gives IR1.4=152.598 Mpc)

180+ m 150
e C Istent %
_onS|s en S 160- 1402
with manual O
optimization 5140 130
-
120
2120
@)
g 110
< 100
> 100

85 86 87 88 89 90
detuning angle [deg]

BNS inspiral range [M



3 Params, for IR1.4

* phidet= 86.5 deg, xi=134.3 deg, Tm=21.6 K o1k

gives IR1.4= 152.794 Mpc J
(Default: phidet = 86.5 deg, xi = 135.1 deg, Tm =22 K
gives IR1.4= 152.598 Mpc) - 150

L

-
=
Y
o

« Consistent
: " 28
with manual -
optimization 130

-
M
o

/7 Mirror temperature [K]
BENS inspiral range [Mpc]

©

110

100
41



3 Params, for IR1.4

« Consistent with manual optimization

-+ allGO (IR1.4=197.219 Mpc)
m== bKAGRA Aug 2017 (IR1.4=152.598 Mpc)
mmmm Particle Swarm (IR1.4=152.794 Mpc)

10~2% ..

aaaaa _size=100 phidet=E6.5 deg !
min_func=1 0g-02 xi=133.3 deg*
—cost resuyl It Tm=21.6 K
default=-1.526a+02 I0=615.2 W
pso  =-1.528=+02 rSRM~2=0.846
[in 2.224+02 sec) 13=35.0 cm
r2=0.8 mm
- 2 2 mass=22.8 kg
w2=3.5cm

00 102 108
frequency (Hz)

42



3 Params, GW170817 Distance

« Similar to IR1.4 optimization

Better SNR gives smaller distance error | 4 = 40 Mpc

e,
| U
m— Particle SWarm (IR1.387=146.943 IOg (d L)

107213\ HLV  |26.1 %

psc 1'|‘E-1 :l |‘:'|:'.r-'l"'2 :lEdE

Il | D [ A B Y _size=100 phidet=E8 1 deg !
W rrin_func:l De-05 #i=131.5 deg ! 0
NG bbb dod o —cost res It Tm=227 K" 0
d defaulte1 7826-01 I0=793.3 W .

n 2.1e+02 I33

10-221 \: \ HLVK+ |17.6 %
\‘ s
IR N ”

10t 102 "'.'-103
frequency (Hz) 43



3 Params, GW170817 Inclination

« Almost same to distance optimization, as expected

cthetai=cos(28" )
-= allGO (IR1.382=195.147 Mpc)

== bKAGRA AUg 2017 (IR1.382=150.9 .
— R g 200 T (R 38 L cthetali

107213\ HLV  |0.231

pso =1.569e-01 rafM~2=0.846
=350

Il | D [ A B Y _size=100 phidet=£8 1 deg !
) min_func=1.0e-05 #i=131.9 deg !
N —Cast resu It Tm=22.7 k!
P default=1 587e-01 I0=793.2 W .

[in 2.924+02 sec) 13=35.0 cm

N _
I - v r2=0.8 mm
10_22__ . Sflgi%:ffﬁ“g HLVK+ 0157
= g ‘ -,
E .;:‘*.-.
“ - * "-+
n

10! 107 10°
frequency (Hz) 44




3 Params, GW170817 Polarization

« Similar to IR1.4 optimization

psip=0

e, -
 — u . = .3
m—Particie SWarm (IR1.385=149.944 PSIP [rad]

107213\ HLV  |1.01

swarm_size=100

¥ phidet=BG.5 deg !
— min_func=1.0e-05 #i=135.4 deg!
—cost result-- Tm=20.9 K !
N default=6.6B6=-01 I0=495.9W "
pso  =6.641e-01 rSRM~2=0.846
I [in 2.62+02 sec) 13=35.0 cm
1022 HLVK+ [0.664
— -
St -
| -
wn

frequency (Hz) 45



3 Params, GW170817 Localization

« ~120 Mpc, but better sensitivity at higher frequency

« half event rate, 1.5 times less error Bs, ps=(113.4° , 40° )

-- allGO (IR1.382=195.147 Mpc)

= BRiRA Aln 2077 (34,3027 150, ()s [deg]

HLV 0.0771

min_func=1.08-05 #i=02.1 dag !
uuuuuuuuu It Tm=30.0 K .

default=3.660e-02 0= 25QEDW

pso Zﬁd Oe Cl Ejr;l I2 0.846
s HLVK+ [0.0250
”
»”
”
”
”
”
”

0t 102 10
frequency (Hz) 46



3 Params, GW170817 SymSpin

« Almost identical to localization optimization

chis=0

allGO (IR1.382=195.147 Mpc)
bKAGRA Aug 2017 (IR1.382=150.9
Particle Swarm (IR1.382=123.225

chis [rad]

HLV

0.0453

1o

102 107
frequency (Hz)

aaaaa _size=100 phidet=E0.7 deg !
min_func=10e-05 #i=100.5deg!
—cast resyl It Tm=30.0 K!
default=4.451e-02 10=2596.0 W "
pso  =4.339e-02 rSRM~2=0.846
[in 7.524+01 sec) 13=35.0 cm
2=0.8 mm
HLVK+ |0.0434
2=3.5cm

47




3 Params, GW170817 AsymSpin

« Almost identical to localization optimization

chia=0

-- allGO (IR1.382=195.147 Mpc)

frequency (Hz)

Bafticle Swarim (k1 3832 121 765] chia [rad]
HLV 0.563
Tl e e
i T HLVK ~ 10.555
pso - =5431e-01 rafM~2=0.846
[in 1.724+02 sec) I3i3;é']r§m
2%, | |HLVK+ |0.543
35¢cm
-
”
”
”
-~
”
”
”
|
‘-__ i.-""'
&

48




3 Params, gwi170817mod Distance
« Modified sky location from (113.4° ,40° )to (195" , 40" )

« SNR 140/116/38/77 to 74/74/115/58 dL = 40 Mpc

o,
| U
m— Particle SWarm (IR1.387=150.624 IOg (d L)

HLV 17.5 %

phidet=BG.5 deg !
min_func=1.0e-05 #i=134.7 deg! H LV K 1 6 1 0/
—cost result-- Tm=22.1 K ! 0
default=1.612e-01 I0=6B3.1W "
pso =1.612e-01 rSRM~2=0.846
[in 1.924+02 sec) 13=35.0 cm 0

=0

HLVK+ [16.1 %

AN Gives"élightly
AR\ | 5 ~different result for

‘ ] different location

10! 107 10°
frequency (Hz) 49




3 Params, cwi170817mod Localization

« Almost identical with original GW170817 localization even

with different sky location 0s, ps=(195° | 40° )

-- allGO (IR1.382=195.147 Mpc)

= P e
— Paticic owarm (R1 3832124185 ()s [deg]

HLV 0.0534

aaaaa _size=100 phidet=E0.4 deg !

min_func=10e-05 xi=104.3 d=g!

—cost resuyl It Tm=30.0 K!

default=2 894e-02 10=2596.0 W "

pso  =2.300e-02 rSRM~2=0.846

[in 3.524+01 sec) 13=35.0 cm
r2=0.8 mm
HLVK+ |0.0230
w2=3.5cm

0t 107 108
frequency (Hz) 50



3 Params, GW170817 Distance

 No Virgo case

-- allGO (IR1.382=195.147 Mpc)
me= pKAGRA Aug 2017 (IR1. 382

SWErm_size=

xi=134.2 deg!

phidet=E7.5 deg !

Tm=21.8K
I0=647.5 W
rSRM~2=0.846
13=35.0 cm
r2=0.8 mm
mass=22.8 kg
w2=35cm

...

%
%

1o

102
frequency (Hz)

10°

150.9
= Particle Swarm (IR1.382=148.055

72

dL = 40 Mpc

log(dL)

HL 193 %

HL K [21.5%

HL K+ [21.3%

e

7
"

Gives slightly
- different

different
RSP flg ration

result for
network

51




3 Params, GW170817 Localization

« Almost identical with original GW170817 localization even

with no Virgo case

10-21\

1022

strain (/VHz)

10‘23-;

o

Os, ps=(113.4" ,40° )

-- allGO (IR1.382=195.147 Mpc)
me= pKAGRA Aug 2017 (IR1.382=150.9
mmmm Pariicle Swarm (IR1.382=122.910

()s [deg]

HL

3.34

1o

107

frequency (Hz)

avarm size=100 phidet=E9.7 dag !
min_func=10e-05 %i=03.5 deg!
EEEEEEEEE It— Tm=30.0 K
default=8.913e-02 I0=2506.0 W "
pso - =5.7T728e-02 SRM~2=0.846
[in 2.72+02 sec) 13=35.0 cm
2=0.8 mm
HL K+ [0.0573
2=3.5cm

52




Thoughts on Parameter Estimation

KAGRA sensitivity design can be done with PSO easily

IR optimization is basically optimum for distance, inclination,
polarization estimations (depends on source location and
detector network configuration)

For sky localization and spin parameters, higher frequency
sensitivity Is important
Even with higher frequency optimization at the cost of

Inspiral range degradation, improvement in binary
parameter estimation is small

IR optimization (event rate optimization) seems like a
reasonable choice



* Input power at maximum is good for IR1.4

4 Params, for IR1.4

-+ allGO (IR1.4=197.219 Mpc)
m==  bKAGRA Aug 2017 (IR1.4
mmmm Particle Swarm (IR1.4=152.

ost result-
def Il:l

[in 11+|:|

aaaaa size=100
rrin func_l IZIE-'JZ

psa =-15 23 +Cl2

phidet=EG.5 deg !
xi=133.G deg !
Tm=21.6 K
ID=613.0 W !
1SRM~2=0.846
13=35.0 cm

...

5

2.5
91

IR1.4 [Mpc]

3 params

153

4 params

153

O params

6 params

{ params

8 params

frequency (Hz)

54




5 Params, for IR1.4

« SRM reflectivity of 88% gives slightly better IR1.4

IR1.4 [Mpc]

s ELIGD (IR1.4=197.219 I"-"I_C} |
— BEAe S iR A 156 1] 3 params | 153
4 params | 153
R | [m
i | 5 params | 158
pso  =-1.5Ble+02 SJ.H 2 :lg -1
[in 2.0e+02 sec) IE;:EIGT;;;?
6 params
J [ params
P ”
oL 8 params
/ P

1o

102 107
frequency (Hz)

55



6 Params, for IR1.4

Wire length is shorter the better for IR1.4

-+ allGO (IR1.4=197.219
m==  bKAGRA Aug 2017
mmmm Particle Swarm (IR1.4=163.514]

IR1.4 [Mpc]

Mpc)
(IR1.4=152.5

3 params

153

frequency (Hz)

4 params | 153
; 5 params | 158
) 6 params | 164
[ params
8 params
10! 102 103
56




/ Params, for IR1.4

Default wire radius is OK for IR1.4

-+ allGOo fIR1.4=19?.2{ 9 Mpc)

IR1.4 [Mpc]
— BAAe S (R B Teaess] 3 params | 153

aaaaa size=100 phidat=86.5 deg !

10_21'5 '-, 4 params | 153

min_func=1.0a-02 xi=113.0deg !
—ast result—- T=22.6 K 5 paral I lS 1 5 8
default=-1.5262402 I0=1360.0 W !

psa - =-1.647e402 rSRM*2=0.955 !

[in 3.524+02 sec) 13=22.1cm !
r2=0.8 mm !

10—22_: mass=226 kg 6 params 164
[\ A 7 params | 165

R\ - 8 params

frequency (Hz) o5/



8 Params, for IR1.4

« Heavier mirror gives very good IR1.4

. lees KAGRA+ Heavy concept

10_21-;

- allGO (IR1.4=197.219 I"-g )

IR1.4 [Mpc]

frequency (Hz)

! I BACAde 27 M52 3 params | 153
4 params | 153
S, pwh | |5 params | 158
Tl e [

6 params | 164
4 { params | 165

”
Pty 8 params | 256

\” ;
101 102 103
58




7/ Params, GW170817 Localization

« Gives KAGRA+ HF concept (without squeezing)

0s, ¢s=(113.4"

,40° )

-= allGO (IR1.382=195.147 Mpc)
= bKAGRA Aug 2017 (IR1. 382 150.9
mmmm Particle Swarm (IR1.382=108.724 |

()s [deg]

HLV

0.0771

_size= phidet=E9.4 deg !
min_func:l Oe-05 #i=118.1deg

HLVK

0.0366

uuuuuuu It Tm=25.2 K.!
def ult=3.660e-02 I0=116835.8 W'
psc 1 38e-02 rSRM=2=0. 9?3

n 3.42+02 sec) 13=20.0 cm !
r2=5.7 mm
mass=22.8 kg

w2=3.5cm

HLVK+

0.0154

>

.....

1o

102
frequency (Hz)

59




/ Params/Large Detune, for IR100

* Gives KAGRA+ LF concept (without IM and ambient heat

- |

parameter tuning) IR100 [Mpc]

= ooz,
— Partlclesv:rjagrmum{ =235 Default | 353

LF 1613

= _size=10H phidet=>60.0 deg !
#i=125.8 deg!
Tm=30.0 K!

def ult=-3. 53 +02 N=3.5W!

psc =-1.61 3 Cl rSRM*2=0. 'EilIZI

n 3.624+02 5 13=93.4 cm'!

r2=0.2 mm
mass=22.8 kg
w2=35cm

0t 107 108
frequency (Hz) 60



Thoughts on KAGRA+

Even with large degradation in inspiral range, parameter
estimation improvement with HF is limited

Design changes in cryogenics are necessary to realize LF

Heavy mirror improves inspiral range a lot (which leads to
reduction in distance, inclination, polarization angle error)

Anyway, broader sensitivity improvement is good?

| also want to see optimization for detection rate (and
detection rate with PE error smaller than threshold)

| also want to include IM mass and wire, squeezing
parameters, ambient heat parameters for optimization

Kabs = 2BsubtmPmich + Yeoalcire + Krad

JGW-T1707038



https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7038

4 Params, for IR1.4 with Excess

 PSO can be used to optimize configuration with excess

noise during commissioning IR1.4 [Mpc]

. Elkfg Riﬂﬁ% '4?%)%?%&91“-1@%{} g
m— Particle SWArm {|R1{.4='ﬂ 221 Default |71

aaaaa _size=100 phidet=E8 4 deg !
min_func=1.0e-02 xi=116.9 deg ! "
—cost resu It Tm=30.0 K' H h t m ‘t
default=-7.080e+01 I0=2506.0 W' Ig er e era u re
pso  =-B.485e+01 ISAM~2=0.846

13=35.0 cm

. | glves better IR1.4
with.&Xcess noise
”

0t 107 108
frequency (Hz) 62



First demonstration of PSO for GW detector design

Maybe | don’t want to go into too much details of what is the
best figure of merit

How to validate PSO result, and show that PSO is useful?
Focus on KAGRA upgrade and not PSO?



Summary

GW astronomy started, and we need new figure of merits to
design the sensitivity of GW detectors

Cryogenics add more complexity in GW detector sensitivity
design

Developed a tool to optimize KAGRA sensitivity using
particle swarm optimization

PSO can be implemented easily, and it looks like it gives
reasonable results with tolerable amount of time

Cost functions available so far
- inspiral range (SNR)
- strain
- binary parameter estimation error from Fisher analysis

To be done:
- optimization for detection rate
- add more IFO parameters to be optimized (IM, squeezing, etc.) ,
- faster calculation



