Ando Lab Seminar

June 1, 2018

GWADW2018 Report

Yuta Michimura Department of Physics, University of Tokyo

Overview

- More talks on 3G
 3G detectors are slowly getting real (S. Ballmer)
- 3G > 2G+ >> O3
- Coordinated R&D for 3G
- Good progress in Newtonian noise, coating, 2um squeezing, radiation pressure studies
- No parallel sessions
 - good that I can attend every talks
 - parallel sessions allow discussion among smaller number of people
- No panel discussion, no workshop lunch, not many questions, few posters
 - not very workshop-like

Ando Lab Related Talks

- Izumi, Enomoto: KAGRA status hard working, good progress, comment on FPMI
- Somiya: KAGRA+ no question!!
- Michimura: Sensitivity optimization comment on weighting for SRC detuning
- Miyoki: Underground comment on water NN and seismometer
- Shimoda: TOBA question on vibration from cryo
- Komori: Radiation pressure question on finesse asymmetry and beam position

KAGRA and KAGRA+

- Very low visibility We should be experts on cryogenics, underground, water Newtonian noise, detuned RSE etc. but we are not...
- Only two management level professors attended Are we really joining O3???
- Not official KAGRA+ Lacking details compared with A+ and AdV+ Sounds very uncertain

Selected Talks

- Evan Hall LIGO-G1800954 Metrics for evaluating 3G network performance
- Rana Adhikari LIGO-G1800988 TIANGO (deci Hertz space IFO)
- Jeff Kissel LIGO-G1800953 Absolute Calibration of a Galactic GW Detector Network
- Gabriele Vajente <u>LIGO-G1800874</u> Machine Learning and Controls in GW Detectors
- Fulvio Ricci LIGO-G1801019 **3G Infrastracture**
- Gabriele Rosi LIGO-G1801039 Magia Advanced: atom interferometry for gravity tests and GW detection

Figure of Merit for 3G (Evan)

- What is the figure of merit to optimize 3G network?
- Top 1%? Median? Rare events?
- Did calculation of some metrics using fixed 3G detector locations and sensitivity
 - CBC SNR
 - CBC distance uncertainty
 - CBC localization
 - number of highly eccentric systems, highly precessing systems

TIANGO (Rana)

- DECIGO band
- x100 worse sensitivity but simple Michelson

Absolute Calibration (Jeff)

- Less calibration uncertainty necessary for 3G e.g. ~0.1 % for SNR of ~1000
- Newtonian Gravitational Calibrators?
- Need to begin checking calibration between other detectors (PTA, space-based, ...)

What about Space and Galactic Detectors?

• LISA (phase meters and microthrusters)

Pulsar Timing Arrays (timing systems)

- Time Delay Interferometry More clocks and Frequency Refs.
 - needs to measure individual, ~1e6 m arm lengths to ~10m precision
 - needs clocks synchronized at the ~50 nsec level

8

ML for Controls (Gabriele)

- ML applied for
 - image processing for beam centering
 - non-linear noise subtraction
 - error signal reconstruction (40m PRMI) not yet applied for real locking

H1:SUS-ETMY_L3_CAL_LINE_OUT_DO

3G Infrastracture (Fulvio)

- Realistic and detailed study of ET infrastracture
- Newtonian noise and residual gas noise as a facility
 limit

CAVERN DIMENSIONS

COST - SUMMARY TABLE

	ET book p.313	Triangle "realistic"	L
TUNNELS	280	727	367
CAVERNS	110	97	60
ACCESSES	61	164	117
TOTAL	451	988	544

cost in Meuros, no contingency

EXCAVATED VOLUME

	ET book p.313 (no excavation factor)	Triangle "realistic" (excavation factor 1.3)	L (excavation factor 1.3)
TUNNELS	1.081	4.458	1.482
CAVERNS	0.426	0.831	0.654
ACCESSES	0.236	1.786	1.057
TOTAL	1.742	7.075	3.193

volume in Mm³

42

MAGIA (G. Rosi)

- Atom interferometry for big G measurement G. Rosi+ <u>Nature 510, 518 (2014)</u> (1.5e-4 level) see, also, my seminar slides on <u>20150430</u>
- Aims 1e-5 accuracy

Cancelling gravity gradients

We simultaneously interrogate three clouds with the Raman interferometer for two source masses configurations. During the π pulse the frequency of the Raman lasers is changed by Δv^* .

For the three gravity gradiometers (1-2, 2-3, 1-3) we measure the linear dependence $\Phi(\Delta v)$ vs Δv (Φ gradiometric phase)

Gravity gradient is traslated into a frequency!

Towards a improved AI determination of G

Metrologia 55, 50 (2018)

*D'amico et al. "Canceling the Gravity Gradient Phase Shift in Atom Interferometry" Phys. Rev. Lett. 119, 253201 (2017)

...and more talks

- Harald Lueck <u>LIGO-G1800984</u> sapphire upto 233 kg, 520 mm dia. absorption improving (20 ppm/cm in smaller samples)
- Hang Yu <u>LIGO-T1800077</u> arm cavity ASC by compensating Sidles-Sigg instability using H-infinity and mu-syntheses (simulation)
- Gabriele Vajente <u>LIGO-G1800920</u> good summary on coating thermal noise has summary table on coating parameters for 2G+ and 3G
- Stefan Hild <u>LIGO-T1800221</u> Benchmark Parameter Set for Configuration Comparisons of Future Gravitational Wave Detectors

Upcoming GWADW

- 2019: Elba!
- 2020: Japan!
 - Toyama: 12
 - Okinawa: 18
 - Hokkaido: 18

