July 26, 2019

Laser Interferometry for Gravitational Wave Observations

4. Status of KAGRA

Yuta Michimura

Department of Physics, University of Tokyo

Contents

- Laser Interferometers (July 25 PM) Michelson interferometer Fabry-Pérot interferometer
- Quantum Noise (July 25 PM)
 Shot noise and radiation pressure noise Standard quantum limit
- Sensitivity Design (July 26 AM) Force noise and displacement noise Inspiral range and time to merger Space interferometer design
- Status of KAGRA (July 26 AM) Status of KAGRA detector in Japan Future prospects

Global Network of GW Telescopes

Advanced LIGO (operation)

Advanced LIGO

Advanced Virgo (operation)

LIGO-India (approved)

KAGRA (construction)

3

Observation Scenario

Solved and Unsolved Mysteries

- Binary black holes
 - Origin of massive black holes?
 - Intermediate mass black holes?
 - Quasi-normal modes not yet
- Binary neutron stars
 - coincidence with short gamma-ray bursts (but too faint; why?)
 - speed of gravitational waves measured
 - do all heavy elements come from BNS mergers?
 - Remnant?
 - Equation of state?
 - Hubble constant tension
- Other sources not detected yet

- NS-BH, Supernovae, Pulsars, Primordial gravitational waves.....

What's Next?

- More sensitive, multiple detectors
 - Better source localization with multiple detectors Better multi-messenger observations
 - Polarization resolvable with multiple detectors Better inclination angle estimation
 Better Hubble constant measurement
 Non-GR polarization search
 - Twofold sensitivity improvement gives
 x8 event rate
 x1/2 parameter estimation error
 - x1/2 parameter estimation error
- Next to join observation: KAGRA

KAGRA Project

- Underground cryogenic interferometer in Japan
- Funded in 2010
- 97 institutes, 460 collaborators (162 authors)

as of Sept 2018

KAGRA

Location of KAGRA

Location of KAGRA

KAGRA Site

• Located inside Mt. Ikenoyama

O KIN

CLIO Super-Kamiokande

3 km

Office Control room

2: No Mar

KAGRA Tunnel entrance

Google

KAGRA Site

• Located inside Mt. Ikenoyama

Kamioka

KAGRA Tunnel

 two 3-km long vacuum pipes for laser beams to go back and forth

Interferometer Configuration

Design Sensitivity

• Binary neutron star (BNS) range 153 Mpc

Observation Scenario

Target Sensitivity for O3

• Aims for 8-25 Mpc in binary neutron star range

Comparison with LIGO/Virgo

• Aims for 8-25 Mpc in binary neutron star range

If KAGRA Joins O3

- Improves sky coverage, network duty factor, source parameter estimation
- Some parameter degeneracy can be resolved with four detectors (e.g. polarization)

BNS sky localization improves by ~15-30 % if KAGRA is 25 Mpc

<u>JGW-T1910330</u>

Calculation

by S. Haino

(L: 120 Mpc, V: 60 Mpc, K: 15 Mpc)

Test of GR with CBC Polarization

- Fourth detector necessary to distinguish four polarizations H. Takeda+, PRD 98, 022008 (2018)
- Number of detectors matters!

Error in vector-x mode amplitude

Recent News from KAGRA

Test Mass Suspension

.....

7-stage pendulum over two stories

Test Mass Susppension

Shielding Inside Cryostat

Observation Scenario

Advanced LIGO Upgrade: A+

Advanced Virgo Upgrade: AdV+

How about KAGRA?

• Upgrade study formally started in December 2018

How about KAGRA?

Sensitivity Optimization

- Simultaneous tuning of multiple interferometer parameters necessary
- Developed a code to optimize the sensitivity with Particle Swarm Optimization

Possible Near Term Upgrade Plans

 Based on technical feasibility, facility and budget constraints (~5M USD)

Possible Longer Term Upgrade

 Reaches BNS range of 300 Mpc by combining technologies (~20M USD)

Possible Longer Term Upgrade

• Comparable to A+ (325 Mpc) and AdV+ (300 Mpc)

Horizon Distance Comparison

O(10²) events/year with designed sensitivity (~2021)

35

Horizon Distance Comparison

• O(10³) events/year with upgrades (~2024)

Science Targets for Each Bands

Low frequency

IMBHs and their spectroscopy (Stochastic GW background, cosmic string)

• Broadband

Test of gravity Formation scenario of stellar-mass BBHs Multi-messenger observations Hubble constant (Supernovae and X-ray binaries)

• High frequency

NS physics (EOS, post-merger, ejecta) Multi-messenger observations Hubble constant BH spectroscopy with stellar-mass BBHs (Isolated pulsars and magnetors)

(Selected) Science Comparison

 Sensitivity improvement in different bands give different science cases

	LF	40kg	FDSQZ	HF	Longer
IMBH event rate					
NS event rate					
NS tidal deformability					
Hubble constant by BBH					
Hubble constant by BNS					
GW polarization test					
Stellar-mass BH spectroscopy					
IMBH spectroscopy					

Better Worse

+100% + 50% + 15% - 15% - 50% - 100%

* Compared with bKAGRA, assumed A+ and AdV+ Network

* Summarized by A. Nishizawa et al. <u>JGW-G1909934</u>

Effective Progression of Upgrades?

- Low frequency is uncertain since many low frequency excess noises exist
- 40 kg mirror would be feasible but even larger mirror is required for longer term
- Higher power laser and frequency dependent squeezing are attractive in terms of feasibility
- HF plan has better sensitivity than A+ and AdV+ at high frequencies
- Higher power laser → Squeezing → Frequency dependent squeezing → Larger mirror might be an effective progression

Next Generation Detectors

- Laser interferometric detector with 10-40 km arms
- Places not decided yet

Cosmic Explorer

Next Generation Detectors

- Einstein Telescope
 - 10 km、200 kg silicon mirror, underground
 10 K and room temperature interferometers
 - Two candidate locations (decide by 2022) Sardinia, Italy Bergium-Germany-Netherlands border
 - Final design by 2023
 - Anticipate to start installation from 2032
- Cosmic Explorer
 40 km, 320 kg silicon mirror, 120 K
- KAGRA is pioneering cryogenic and underground

Sensitivity of Next Generations

• An order of magnitude improvement

Horizon Distance

Summary

- KAGRA is an underground cryogenic GW detector pioneering technologies for next generation detectors
- First observing run with LIGO and Virgo expected late 2019
- KAGRA joining the observation improves sky coverage, network duty factor, source parameter estimation
- KAGRA upgrade study on-going, aiming for the upgrade by ~2024
- Twofold sensitivity improvement (300 Mpc in BNS range) is feasible for KAGRA

Slides Available Online

- 1. Laser Interferometers (July 25 PM) https://tinyurl.com/YM20190725-1
- 2. Quantum Noise (July 25 PM) https://tinyurl.com/YM20190725-2
- 3. Sensitivity Design (July 26 AM) https://tinyurl.com/YM20190725-3
- 4. Status of KAGRA (July 26 AM) https://tinyurl.com/YM20190725-4

Additional Slides

2G/2G+ Parameter Comparison

	KAGRA	AdVirgo	aLIGO	A+	Voyager
Arm length [km]	3	3	4	4	4
Mirror mass [kg]	23	42	40	80	200
Mirror material	Sapphire	Silica	Silica	Silica	Silicon
Mirror temp [K]	22	295	295	295	123
Sus fiber	35cm Sap.	70cm SiO ₂	60cm SiO ₂	60cm SiO ₂	60cm Si
Fiber type	Fiber	Fiber	Fiber	Fiber	Ribbon
Input power [W]	67	125	125	125	140
Arm power [kW]	340	700	710	1150	3000
Wavelength [nm]	1064	1064	1064	1064	2000
Beam size [cm]	3.5 / 3.5	4.9 / 5.8	5.5 / 6.2	5.5 / 6.2	5.8 / 6.2
SQZ factor	0	0	0	6	8
F. C. length [m]	none	none	none	16	300

47 LIGO parameters from LIGO-T1600119, AdVirgo parameters from JPCS 610, 01201 (2015)

KAGRA Detailed Parameters

K. Komori *et al.*, <u>JGW-T1707038</u>

• Optical parameters

- Mirror transmission: 0.4 % for ITM, 10 % for PRM, 15.36 % for SRM
- Power at BS: 674 W
- Detune phase: 3.5 deg (DRSE case)
- Homodyne phase: 135.1 deg (DRSE case)

• Sapphire mirror parameters

- TM size: 220 mm dia., 150 mm thick
- TM mass: 22.8 kg
- TM temperature: 22 K
- Beam radius at ITM: 3.5 cm
- Beam radius at ETM: 3.5 cm
- Q of mirror substrate: 1e8
- Coating: tantala/silica
- Coating loss angle: 3e-4 for silica, 5e-4 for tantala
- Number of layers: 22 for ITM, 40 for ETM
- Coating absorption: 0.5 ppm
- Substrate absorption: 50 ppm/cm

• Suspension parameters

- TM-IM fiber: 35 cm long, 1.6 mm dia.
- IM temperature: 16 K
- Heat extraction: 5800 W/m/K at 20 K
- Loss angle: 5e-6/2e-7/7e-7 for CuBe fiber/sapphire fiber/sapphire blade

• Inspiral range calculation

- SNR=8, fmin=10 Hz, sky average constant 0.442478
- Seismic noise curve includes vertical coupling, vibration from 48 heatlinks and Newtonian noise from surface and bulk

KAGRA Cryopayload

Figure by T. Ushiba and A. Hagiwara

3 CuBe blade springs

(SUS, 65 kg)

Platform

Marionette (SUS, 22.5 kg)

Intermediate Mass (SUS, 20.1 kg, 16 K)

Test Mass (Sapphire, 23 kg, 22 K) MN suspended by 1 Maraging steel fiber (35 cm long, 2-7mm dia.) MRM suspended by 3 CuBe fibers

Heat link attached to MN

IM suspended by 4 CuBe fibers (24 cm long, 0.6 mm dia) IRM suspended by 4 CuBe fibers

4 sapphire blades

TM suspended by 4 sapphire fibers (35 cm long, 1.6 mm dia.) RM suspended by 4 CuBe fibers

KAGRA Cryostat Schematic

Possible KAGRA Upgrade Plans

Y. Michimura+, <u>PRD 97, 122003 (2018);</u> <u>JGW-T1809537</u>

Possible KAGRA Upgrade Plans

Y. Michimura+, <u>PRD 97, 122003 (2018);</u> <u>JGW-T1809537</u>

		bKAGRA	LF	HF	40kg	FDSQZ	Combined
detuning angle (deg)	$\phi_{ m det}$	3.5	28.5	0.1	3.5	0.2	0.3
homodyne angle (deg)	5	135.1	133.6	97.1	123.2	93.1	93.0
mirror temperature (K)	$T_{ m m}$	22	23.6	20.8	21.0	21.3	20.0
SRM reflectivity (%)	$R_{ m SRM}$	84.6	95.5	90.7	92.2	83.2	80.9
fiber length (cm)	$l_{\rm f}$	35.0	99.8	20.1	28.6	23.0	33.1
fiber diameter (mm)	d_{f}	1.6	0.45	2.5	2.2	1.9	3.6
mirror mass (kg)	\overline{m}	22.8	22.8	22.8	40	22.8	100
input power at BS (W)	I_0	673	4.5	3440	1500	1500	3470
maximum detected squeez	ing (dB)	0	0	6.1	0	5.2 (FC)	5.1 (FC)
$100 M_{\odot}$ - $100 M_{\odot}$ inspiral rat	nge (Mpc)	353	2099	114	412	318	702
$30M_{\odot}$ - $30M_{\odot}$ inspiral range	e (Mpc)	1095	1094	271	1269	855	1762
$1.4M_{\odot}$ - $1.4M_{\odot}$ inspiral ran	ge (Mpc)	153	85	156	202	179	307
median sky localization er	ror (deg^2)	0.183	0.507	0.105	0.156	0.119	0.099