July 25, 2019

#### Laser Interferometry for Gravitational Wave Observations

# 2. Quantum Noise

#### Yuta Michimura

Department of Physics, University of Tokyo

#### Contents

- Laser Interferometers (July 25 PM) Michelson interferometer Fabry-Pérot interferometer
- Quantum Noise (July 25 PM)
   Shot noise and radiation pressure noise Standard quantum limit
- Sensitivity Design (July 26 AM) Force noise and displacement noise Inspiral range and time to merger Space interferometer design
- Status of KAGRA (July 26 AM) Status of KAGRA detector in Japan Future prospects

#### Strain Sensitivity of aLIGO

3

#### Mostly limited by quantum noise



## Strain Sensitivity of KAGRA

• Mostly limited by quantum noise



# **Quantum Noise**

 Originated from quantum fluctuation of light Shot noise

Fluctuation of number of photons to photodiode Radiation pressure noise

Fluctuation of number of photons to mirror

• Let's calculate quantum noise limited sensitivity of gravitational wave detectors!

#### Shot Noise

 Number of photons to photodiodes fluctuates  $N \pm v$ Photodiode Photon energy hc Quantum fluctuation of power Number of  $2hcP_{\rm PD}$  $\delta P_{
m shot}$ photons Shot noise  $p_1$ spectrum Quantum efficiency 6

# Shot Noise Limit of Michelson

- Power change  $\frac{\partial P_{\rm PD}}{\partial L} = \frac{2\pi P_0}{\lambda} \sin \frac{4\pi L_{-}}{\lambda}$
- Shot noise

(recall Lecture 1)

$$\delta P_{\rm shot} = \sqrt{\frac{2hcP_{\rm PD}}{\eta\lambda}} = \sqrt{\frac{hcP_0}{\eta\lambda} \left(1 - \cos\frac{4\pi L_-}{\lambda}\right)}$$

Shot noise limited sensitivity

$$\delta L_{\rm shot} = \delta P_{\rm shot} \left(\frac{\partial P_{\rm PD}}{\partial L_{-}}\right)^{-1} \to \frac{1}{2\pi} \sqrt{\frac{hc\lambda}{2\eta P_0}}$$

$$\frac{\sqrt{1-\cos\phi}}{\sin\phi} = \frac{\sqrt{2\sin^2\frac{\phi}{2}}}{2\sin\frac{\phi}{2}\cos\frac{\phi}{2}} = \frac{1}{\sqrt{2\cos\frac{\phi}{2}}}$$

Better shot noise with higher input power Best at dark fringe (where  $P_{PD}=0$ ) 7

# **Radiation Pressure Noise**

Number of photons to mirror fluctuates

 $N \pm v$ 



# Susceptibility

- Equation of motion of a suspended mirror  $m\ddot{x} = -\gamma'\dot{x} - \frac{mg}{l}x + f$ • Transfer function from force to displacement

$$H(\omega) = \frac{X(\omega)}{F(\omega)} = \frac{1}{m} \frac{1}{-\omega^2 + \omega_0^2 + i\frac{\omega\omega_0}{Q}}$$



 $\mathcal{M}$ 

 $\mathcal{X}$ 

# Standard Quantum Limit

Shot noise is lower with higher power

$$h_{\rm shot} = \frac{1}{2\pi L} \sqrt{\frac{hc\lambda}{2P_0}}$$

 Radiation pressure noise is lower with lower power

$$h_{\rm rad} = \frac{1}{m\omega^2 L} \sqrt{\frac{8hP_0}{c\lambda}}$$

Trade-off



 $\sqrt{2}$  for two arms m is mirror mass (m/2 is reduced mass)Assuming BS with infinite mass

 Standard Quantum Limit (SQL) for Michelson  $\hbar \equiv h/(2\pi)$ 

from Uncertainty principle

$$h_{\rm SQL} = \sqrt{2h_{\rm shot}h_{\rm rad}} = \sqrt{\frac{4\hbar}{m\omega^2 L^2}}$$
<sup>10</sup>

# Input Power and Sensitivity

SQL cannot be beaten by changing power



# Use of Fabry-Pérot Cavities



# **High-Frequency Response** Recap of Lecture 1

ase

 The effect of gravitational waves cancel at high frequencies



For a given frequency, there is a limit where longer arm length and higher finesse won't help increasing the sensitivity

# **FPMI Quantum Noise**

- Shot noise
  - $h_{\rm shot} = \frac{1}{2\pi L} \sqrt{\frac{hc\lambda}{2P_0}} \frac{\pi}{2\mathcal{F}} \sqrt{1 + (\omega\tau)^2} \tau \equiv \frac{2L\mathcal{F}}{\pi c}$
- Radiation pressure noise

$$h_{\rm rad} = \frac{2}{m\omega^2 L} \sqrt{\frac{8hP_0}{c\lambda}} \frac{2\mathcal{F}}{\pi} \frac{1}{\sqrt{1+(\omega\tau)^2}}$$

2 for two mirrors of a cavity m is mirror mass (m/4 is reduced mass)

Standard Quantum Limit (SQL) for FPMI

$$h_{\rm SQL} = \sqrt{2h_{\rm shot}h_{\rm rad}} = \sqrt{\frac{8\hbar}{m\omega^2 L^2}}$$

14

#### **Finesse Dependence**

• Too high finesse narrows the detector bandwidth



# **Arm Length Dependence**

• Longer arm is better (but not at high frequencies)



#### **Mirror Mass Dependence**



# Sensitivity Curves of GW Detectors

- Now you know how to calculate quantum noise limited sensitivity
- Let's look at the designed sensitivity curves of current and proposed GW detectors
- B-DECIGO

Space-based Fabry-Pérot interferometer

• LISA, TianQin

Space-based Optical transponder (similar to Michelson interferometer)

 Advanced LIGO, KAGRA Ground-based Fabry-Pérot-Michelson interferometer (with recycling cavities)



# **B-DECIGO**





# LISA





# TianQin





# **Optical Transponder**

- LISA and TianQin uses small amount of light (1-100 pW) due to very long arm length
- Amount of light scales with  $1/L^2$   $\rightarrow$  shot noise floor stays the same (cut-off frequency shifts by 1/L)



More power received with shorter arm

$$h_{\rm shot} = \frac{1}{2\pi L} \sqrt{\frac{hc\lambda}{2P_0}}$$

# Advanced LIGO





# KAGRA





#### **Resonant Sideband Extraction**



# Some Details Neglected

- LISA, TianQin and DECIGO are triangular
- DECIGO is locked Fabry-Pérot interferometer (not Fabry-Pérot-Michelson interferometer)
- There are other sensing noises such as photodiode noise, laser frequency noise, oscillator phase noise etc...
- There are many other classical noises
  - Seismic noise
  - Gravity gradient noise (Newtonian noise)
  - Suspension thermal noise
  - Mirror coating thermal noise
  - Other force/displacement noises
    - $\rightarrow$  To be addressed some in next Lecture  $^{27}$

# Summary

- Standard Quantum Limit (SQL) sets certain limit to the sensitivity of laser interferometers
- SQL can be reduced with larger mirror mass and longer arm length
- Higher power shifts the detector band to higher frequencies
- Higher finesse increases the sensitivity at the most sensitive band, but reduces the bandwidth
- LISA and TianQin use small fraction of power, and the detector band can be shifted by changing the arm length
- Resonant Sideband Extraction technique is used in groundbased detectors to effectively change finesse and power

#### **Slides Available Online**

- 1. Laser Interferometers (July 25 PM) https://tinyurl.com/YM20190725-1
- 2. Quantum Noise (July 25 PM) https://tinyurl.com/YM20190725-2
- 3. Sensitivity Design (July 26 AM) https://tinyurl.com/YM20190725-3
- 4. Status of KAGRA (July 26 AM) https://tinyurl.com/YM20190725-4







