
Laser Interferometry for

Gravitational Wave Observations

1. Laser Interferometers

Yuta Michimura
Department of Physics, University of Tokyo

TianQin Summer School 2019 @ Sun Yat-sen University July 25, 2019



Self Introduction
• Yuta Michimura (道村唯太)

Department of Physics, University of Tokyo

• Laser interferometric 

gravitational wave detectors

- KAGRA

- DECIGO

• Fundamental physics with

laser interferometry

- Lorentz invariance test

- Macroscopic quantum 

mechanics

- Axion search

etc… 2



Aim of This Lecture
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• Learn how laser interferometric gravitational wave 

detector works and learn how to calculate quantum 

noise of the detector

• You should be able to 

design your own interferometer

after the lectures
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Gravitational Waves

7

• Ripples in space-time

• Stretches and squeezes length

• Amplitude: fraction of length change (strain)

• Plus (+) and cross (x) polarizations



Detection of GWs
• Most common detector: laser interferometer

• Rai Weiss (MIT) proposed in 1960s

8
LIGO-P720002

Internal report (1972)



Constant 
power when
no GW

Laser Interferometric GW Detector
• measure differential arm length change
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Power 
changes 
with GW

Laser Interferometric GW Detector
• measure differential arm length change
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Amplitude of GW is Tiny
• For example, GW150914 had h ~ 10-21
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1
 k

m

吊るされた鏡

Laser
source

Photodiode
光の干渉

半透明鏡

10-18 m for 1 km arm

Size of hydrogen atom: 10-11 m

Size of proton: 10-15 m

1 km



Michelson Interferometer
• Let’s look into how Michelson interferometer works
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• Electro-magnetic waves

• Electric field can be written as

Laser Beam
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amplitude

phaseangular
frequency
of laser

wavelength

phase at 
distance L

Electric 
field: E

Magnetic 
field

Speed of light: c



Photodiodes
• Photodiodes (PDs)

Convert photons into electrons

Detects light power (square of amplitude)

We can only detect power

change

Phase change cannot be

detected directly
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Beam Splitter
• Split beam in two

• Half in power, 1/√2 in amplitude

• Sign flip in back reflection
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Output of Michelson Interferometer
• What is the power detected at the photodiode?
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Output of Michelson Interferometer
• What is the power detected at the photodiode?
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From Y-am From X-arm

Differential arm length

Input power



• Power changes with differential arm length change

(interference)

Output of Michelson Interferometer
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Laser

Bright fringe in every 
half wavelength change 
in differential arm length



• Ratio between power change and length change

Output of Michelson Interferometer
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Differential arm length 
change can be detected 
from power change at 
the photodiode

Laser



How to Further Enhance the Signal
• Longer arms gives larger length change due to 

gravitational waves

• But making arm length very long is tough

(especially on Earth)

• Use Fabry-Pérot cavity

laser light go back-and-forth many times to

effectively enhance the arm length
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Fabry-Pérot Cavity
• Made from two parallel mirrors
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input mirror end mirror
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Fabry-Pérot Cavity
• Let’s calculate electric field inside the cavity
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infinite geometric series with  
a common ratio of

Intra-Cavity Field
• Intra-cavity field can be expressed as
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input field



Reflected Field
• Reflected field can be expressed as
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infinite geometric series with  
a common ratio of



Intra-Cavity Power
• Power inside

the cavity
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Intra-cavity power 
can be much higher 
than input power
on resonance

resonance

constructive
interference



Intra-Cavity Power
• Power inside

the cavity
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Almost no intra-cavity
power at anti-resonance

anti-resonance

destructive
interference



Finesse
• Power inside

the cavity
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Resonance Spacing

Full width
half maximum

Sharpness of the resonance
can be evaluated with 

Spacing

FWHM

Higher finesse for
higher reflectivity

Finesse



Cavity Build-up
• Power inside

the cavity
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Cavity build-up

with
r1~1, r2=1

Intra-cavity power at resonanceResonance



Phase of Reflected light
• Reflected field
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Phase of the reflected 
beam changes 
drastically at the 
resonance 

Cavity build-up



Michelson and Fabry-Pérot
• The phase of the reflected light is different by

→ FP is more sensitive to mirror displacement

by        (~ finesse)

but linear range is smaller
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Laser Laser



Fabry-Pérot-Michelson Interferometer

• Displacement sensitivity

higher by

• Commonly used in

ground-based

gravitational wave

detectors
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Laser



High-Frequency Response
• The effect of gravitational waves

cancel at high frequencies
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Michelson

FPMI

For a given frequency, 
there is a limit where 
longer arm length and 
higher finesse won’t 
help increasing the 
sensitivity

Laser



Summary
• Gravitational waves create differential arm length 

change in Michelson interferometer

• Differential arm length change create power 

change at the output of the Michelson 

interferometer

• The signal can be enhanced by a factor of

by using Fabry-Pérot cavities

• The sensitivity at low frequencies can be increased 

with longer arm length and higher finesse
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Finesse
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