November 14, 2023

Unstable optical levitation for testing gravity-induced quantum entanglement

Yuta Michimura

LIGO Laboratory, California Institute of Technology

yuta@caltech.edu

Research Center for the Early Universe, University of Tokyo

michimura@phys.s.u-tokyo.ac.jp

Overview

- We want to test quantum nature of gravity by gravity-induced quantum entanglement
- To seek for the best setup, we estimated the amount of entanglement for trapped/free-falling/inverted oscillators coupled by gravity
- Inverted oscillators are most efficient
 - Generate gravity-induced entanglement exponentially
 - Most resistant to decoherence
- Optical levitation with sandwich configuration is convenient to realize such experiments

T. Fujita, Y. Kaku, A. Matsumura, YM, <u>arXiv:2308.14552</u>

Quantum Gravity?

- Is gravity quantum?
- Will superposition of position states of massive object indicate superposition of gravitational field?

- We need experimental evidences
- As a first step, we can verify if quantum entanglement can be induced by Newtonian gravity

BMV Experiment Proposals

• Gravity-induced entanglement can be tested with adjacent matter interferometers

Krisnanda+ Proposal

 Free-falling masses can generate gravity-induced entanglement more & faster than trapped masses

Decoherence Effects

- Decoherence estimates suggest
 T < 1 K and P < 10⁻¹⁶ Pa are required
- Also, free-fall time and height are in the orders of ~1 sec and ~10 m
- Sounds tough…

Table 3. Free-fall times *t* and heights $h = \frac{1}{2}gt^2$, with $g \simeq 9.8$ m s⁻², required to generate the amount *E* of entanglement at fixed values of temperature T and pressure *P* for the proposals of BM and Krisnanda.

Proposal	T (K)	P (Pa)	Ε	<i>T</i> (s)	$H(\mathbf{m})$
BM	1	10^{-16}	10^{-2}	0.15	0.1
	1	10^{-16}	10^{-1}	1.5	11
	1	10^{-15}	No generation	/	/
	10^{-2}	10^{-15}	No generation	/	/
Krisnanda	1	10^{-16}	10^{-2}	1.1	6.2
	1	10^{-16}	10^{-1}	2.9	42
	1	10^{-15}	No generation	/	/
	10^{-2}	10^{-15}	10^{-2}	1.2	7.6

S. Rijavec+, New J. Phys. 23, 043040 (2021)

What is the Best Oscillator?

- We computed the amount of entanglement for arbitrary quadratic potential
- Hamiltonian

T. Fujita, Y. Kaku, A. Matsumura, YM, arXiv:2308.14552

Inverted Oscillators are the Best

• Logarithmic negativity when $\lambda \equiv \lambda_1 = \lambda_2$

Preparing Inverted Oscillators

- Optical anti-spring with detuned cavity
 - Higher power is required for more anti-spring
 - Radiation pressure fluctuation will be a decoherence

source

- In the end, you get $\kappa \leftarrow$ Cavity decay rate

- $\mu_{\rm shot} = \overline{|\Delta|}$ Detuning - Hard to make this small (we need like μ <10⁻¹³)
- Anti-spring in transversal motion

- Decoherence μ_{shot} is suppressed by θ^2 , where θ is cavity axis tilt

- Transversal motion can be measured by wavefront sensor

Sandwich Optical Levitation

- Proposed configuration to trap a mirror all optically YM, Y. Kuwahara+, Optics Express 25, 13799 (2017)
- Trap in transversal motion demonstrated

Procedure to Switch the Trap

• First, trap strongly to prepare narrow wavefunctions

Procedure to Switch the Trap

- First, trap strongly to prepare narrow wavefunctions
- And then switch to anti-trap to broaden the wavefunction fast (this can be done by effectively switching the cavity geometry)

Example Setup

 $\overline{2\,\mathrm{g}/\mathrm{cn}}$

laser

AOM

HWP

UM1

 a_{U2}

UM₂

PBS

• To prepare 1 kHz anti-spring for 0.1 mg mirror

 $\mu << \eta = 2.7 \times 10^{-13} \omega_{\rm kHz}$

- Requires T < ~1 K and P < ~10⁻¹⁷ Pa (as usual)
- ~1 kHz anti-spring can be created with intra-cavity power of ~30 kW
- Time to generate $E_N = 10^{-2}$

$$\tau_{\text{ent}} = 4.2\omega_{\text{kHz}}^{-1/3} \sec \text{ for free-fall}$$

$$I = 1.3 \times 10^{-2}\omega_{\text{kHz}}^{-1/3} \sec \text{ laser}$$

$$T_{\text{ent}} = 1.3 \times 10^{-2}\omega_{\text{kHz}}^{-1/3} \sec \text{ laser}$$

$$I = 1.3 \times 10^{-2}\omega_{\text{kHz}}^{-1/3} \sec \text{ laser}$$

Is Fast Good?

- The process can be repeated multiple times
 - Also, now that the oscillator is not free-falling, height is not required, and repeatable
- Air pressure requirement could be relaxed

 Entanglement speed is so fast that no molecule
 will hit the oscillator during the measurement time
 - Mean free time of the scattering

$$\tau_{\rm air} = 0.64 \sec \left(\frac{R}{0.2 \,\mathrm{mm}}\right)^{-2} \left(\frac{p}{10^{-17} \,\mathrm{Pa}}\right)^{-1} \left(\frac{T}{1 \,\mathrm{K}}\right)^{-1/2}$$

- More rigorous study necessary for treating random force under extremely low pressure

Summary

m

- We want to test quantum nature of gravity by gravity-induced quantum entanglement
- Inverted oscillators are most efficient

 Generate gravity-induced entanglement
 exponentially
 - Most resistant to decoherence
- Optical levitation with sandwich configuration is convenient to realize such experiments

Updates on Levitation Mirrors

- Chenyue Gu from Ping Koy Lam's Group visited UTokyo for mirror characterization
- Using cavity scan
- ϕ 1 inch, 25 um thick, T~10ppm RoC measured to be -250 \pm 50 mm in X -580 \pm 280 mm in Y

Updates on Levitation Mirrors

 Giovanni Guccione's team continues to characterize in ANU (both φ1inch and φ3 mm ones)

Bonus Slides

Optical Levitation of Mirror

- Support a mirror with radiation pressure alone
- Free from suspension thermal noise
- Large coupling compared with optical tweezers

Sandwich Configuration

- Mirror levitation have never been realized
- Simpler configuration than previous proposals YM, Y. Kuwahara+, Optics Express 25, 13799 (2017)
- Proved that stable levitation is possible and SQL can be reached mirror q₃, q₁, q₂

S. Singh+: PRL 105, 213602 (2010)

G. Guccione+: PRL 111, 183001 (2013)

Reaching SQL

- Constraint on design: intra-cavity power to support the mass
- 0.2 mg fused silica mirror, Finesse of 100, 13 W + 4 W input

Experiment to Verify the Stability

 Verified the stability with a torsion pendulum and a dummy mirror T. Kawasaki, ..., YM, Yaw motion PRA 102, 053520 (2020) Measured optical geometrical spring agreed with expectation le-5 Estimated 3.0 H Measured 2.5 Horizontal motion 2.0 1.5 1.0 0.5 0.0 22 10 20 30 40

Spring constant (N/m)

Intracavity power (W)

Fabrication of Levitation Mirrors

- mg and mm-scale curved mirror necessary

 e.g. For levitation demonstration
 φ 3 mm, 0.1 mm thick (~1.6 mg for fused silica)
 RoC = ~30 mm convex
 R > 99.95 %
- Two approaches
 - 1. Coat thin fused silica mirror to bend the mirror
 - 2. Photonic crystal mirror to
 - create effective curvature

AVANCÉS

MATÉRIAUX

New Approach for Fused Silica

2014 Approach

Thin Fused Silica Mirror Updates

- Sep 2020: R>~90% φ1 inch mirrors arrived
 - Two samples, measured to be (1) R=92(1)%, RoC=500 $^{+2000}_{-200}$ mm (2) R=88(1)%, RoC=400 $^{+800}_{-200}$ mm

No AR coating yet

Coating thickness x2 -> RoC x~1/2

-> RoC x~1/16 -> Diameter x2

- Somehow concave, although convex is expected probably we measured flipped mirror
- Jan 2021: T=10ppm φ1 inch mirrors arrived
 - Expected to have RoC of -450 mm ~6 um thick coating
- June 2021: Cut T=10ppm φ3 mm mirrors arrived
 - 27 remained
 - Substrate thickness x1/4 - cleaning of the protective layer wasn't great & many broke during the process
- Oct 2021: φ1 inch 25 um thick wafers arrived
- Jan 2022: Coating made it like a Pringles