The 3rd QFilter Workshop (Online)

Updates on the Optical Levitation Experiment

Yuta Michimura,

Department of Physics, University of Tokyo michimura@phys.s.u-tokyo.ac.jp

Hiroki Chiyoda, Takuya Kawasaki, Jerome Degallaix

Optical Levitation of Mirror

- Support a mirror with radiation pressure alone
- Free from suspension thermal noise
- Large coupling compared with optical tweezers

Sandwich Configuration

- Mirror levitation have never been realized
- Simpler configuration than previous proposals YM, Y. Kuwahara+, Optics Express 25, 13799 (2017)
- Proved that stable levitation is possible and SQL can be reached mirror with 0.2 mg mirror

S. Singh+: PRL 105, 213602 (2010)

G. Guccione+: PRL 111, 183001 (2013)

Rh

Stability of Levitation

- Rotational motion is stable with gravity
- Vertical motion is stable with optical spring
- Horizontal motion is stable with cavity axis change
- Curved mirror is necessary!

Reaching SQL

- Constraint on design: intra-cavity power to support the mass
- 0.2 mg fused silica mirror, Finesse of 100, 13 W + 4 W input

Experiment to Verify the Stability

 Verified the stability with a torsion pendulum and a dummy mirror T. Kawasaki, ..., YM, Yaw motion PRA 102, 053520 (2020) Measured optical geometrical spring agreed with expectation e-5 Estimated 3.0 Æ Measured 2.5 Horizontal motion 2.0 1.5 1.0 0.5 0.06 10 2030 40

Spring constant (N/m)

Intracavity power (W)

Fabrication of Levitation Mirrors

- mg and mm-scale curved mirror necessary

 e.g. For levitation demonstration
 φ 3 mm, 0.1 mm thick (~1.6 mg for fused silica)
 RoC = ~30 mm convex
 R > 99.95 %
- Two approaches
 - 1. Coat thin fused silica mirror to bend the mirror
 - 2. Photonic crystal mirror to
 - create effective curvature

MATÉRIALIX

AVANCÉS

New Approach for Fused Silica

2014 Approach

Thin Fused Silica Mirror Updates

- Sep 2020: R>~90% φ1 inch mirrors arrived
 - Two samples, measured to be

No AR coating yet

- (1) R=92(1)%, $RoC=500^{+2000}_{-200}$ mm
- (2) R=88(1)%, RoC=400⁺⁸⁰⁰₋₂₀₀ mm
- Somehow concave, although convex is expected probably we measured flipped mirror
- Jan 2021: T=10ppm φ1 inch mirrors arrived
 - Expected to have RoC of -450 mm ~^{6 um thick coating}
- June 2021: Cut T=10ppm φ3 mm mirrors arrived
 - 27 remained

- cleaning of the protective layer wasn't great & many broke during the process

Now trying to make 25 um thick wafers
 Final cut process could be skipped

Substrate thickness x1/4

-> RoC x~1/16 -> Diameter x2

Photonic Crystal Mirror

- Effective curvature possible by modulating the filling factor M. S. Seghilani+, Optics Express 22, 5962 (2014)
- So far trying Si photonic crystal mirror without modulation So far achieved 95(5) % reflectivity

Summary

- Milligram scale mirror can be levitated with realistic parameters YM, Y. Kuwahara+, Optics Express 25, 13799 (2017)
- Succeeded in experimentally verifying the stability of the levitation
 T. Kawasaki, ..., YM, PRA 102, 053520 (2020)
- Trying two approaches for the fabrication of a milligram mirror with high reflectivity and curvature
 - Coated thin fused silica mirror

R~90% achieved with RoC~500 m Next: thinner wafer with thicker coating

- Photonic crystal mirror

R~95% achieved without modulation Next: higher reflectivity and modulation