The 2nd QFilter Workshop @ Kyoto

February 25, 2020

Recent news from optical levitation experiment

Yuta Michimura

Department of Physics, University of Tokyo

UTokyo Group

- Working on macroscopic quantum mechanics experiments at milligram-scale optomechanical systems
 - optical levitation (this talk)

experiment mostly done by Naoki Kita

- suspended disk (Takuya Kawasaki's talk)
- Also frequency dependent squeezing generation experiment at NAOJ Mitaka (Naoki Aritomi's talk)

Macroscopic Quantum Mechanics

- Quantum mechanics do not depend on scales
- But macroscopic quantum superposition has never been observed (double-slit experiment upto 25 kDa (4e-23 kg)) Nature Physics 15, 1242 (2019)

- Two possibilities at macroscopic scales
 - Quantum mechanics is valid, but too much classical decoherence
 - Quantum mechanics should be modified
 - (e.g. non-linear Schrödinger Eq., Gravitational decoherence ...)

Optomechanical Systems

SQL not yet reached above Planck mass scale

Optomechanical Systems

SQL not yet reached above Planck mass scale

Optical Levitation

- Support a mirror with radiation pressure alone, rather than suspending it with a lossy wire
- Both suspended mirror and levitated mirror will be ultimately limited by thermal noise from residual gas and mirror coating

Sandwich Configuration

- Optical levitation have never been realized
- Simpler configuration than previous proposals YM, Kuwahara+, <u>Optics Express 25, 13799 (2017)</u>
- Proved that stable levitation is Levitated possible and SQL can be reached mirror

S. Singh+: PRL 105, 213602 (2010)

G. Guccione+: PRL 111, 183001 (2013)

Rh

Stability of Levitation

- Rotational motion is stable with gravity
- Vertical motion is stable with optical spring
- Horizontal motion is stable with cavity axis change

Reaching SQL

 0.2 mg fused silica mirror, Finesse of 100, 13 W + 4 W input

Experiment to Verify the Stability

- Especially, stability of the horizontal motion is special for this sandwich configuration
- Experiment with torsion pendulum ________
 is underway to measure
 the restoring force

Experiment to Verify the Stability

 Resonant frequency of torsion pendulum increased when optical cavity is locked
 → Successfully measured the restoring force

Fabrication of Levitation Mirrors

- So far, fused silica mirror with dielectric multilayer coating have been tried
- Cracks due to coating stress

	For SQL	Prototype	For suspended experiment
Mass	0.2 mg	~1.6 mg	~ 7 mg
Size (mm)	φ 0.7 mm t 0.23 mm	φ 3 mm t 0.1 mm	φ 3 mm t 0.5 mm
RoC	30 mm convex	30 ± 10 mm convex (measured: 15.9 \pm 0.5 mm)	100 mm concave (previously flat ones were used)
Reflectivity	97 % (finesse 100)	>99.95 % (measured: >99.5%)	99.99%
Comment	<u>Optics Express 25,</u> <u>13799 (2017)</u>	Only one out of 8 without big cracks	Succeeded 12

Thin Fused Silica Substrate

- 1 inch dia. x 0.1 mm thick available from Mark Optics
- Coating stress to introduce curvature
- Possible coating by LMA?
- Substrate procurement next FY

Photonic Crystal Mirror ?

- High reflectivity demonstrated, also in the context of gravitational wave detector to reduce coating thermal noise
 - D. Friedrich+, <u>Optics Express 19, 14955 (2011)</u>
 R=99.2 % @ λ=1064 nm

- X. Chen+, Light: Science & Applications 6, e16190 (2017)

R = 0 to 99.9470 \pm 0.0025% @ λ =1 μ m

Curved Mirror Seems Possible

- D. Fattal+, <u>Nature Photonics 4, 466 (2010)</u> R = 80-90% RoC = 20 \pm 3 mm
- Beam focusing confirmed

Curved Mirror Seems Possible

 M. S. Seghilani+, <u>Optics Express 22, 5962 (2014)</u> R > 99%
 RoC = 20 mm

Distributed Bragg reflector (DBR) for high reflectivity

Other Proposals

- Polarization-independent beam focusing by high-contrast grating reflectors
 W. Su+, <u>Optics Communications 325, 5 (2014)</u>
 - curved mirror by grating with parabolic surface too small for us!
 - ~9 um focal length
 - focusing consistent with diffraction limit
- Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects
 O. Ilic & H. A. Atwater, Nature Photonics 13, 289 (2019)
 - levitation by tailoring asymmetric scattering of light

Fig. 2. (a) Schematic of a 2D HCG focusing reflector. The intensity distribution of the focused beam when (b) TE and (c) TM waves illuminate from the bottom side. The wavelength of the incident light is $1.55 \, \mu$ m, and the white line is the position of focal point. FWHMs are both 1.17 λ .

Possible Photonic Crystal Mirror

- DBR (distributed Bragg reflector) for high reflectivity, 2D photonic crystal for effective curvature?
- Got Si₃N₄ membrane sample (1 mm x 1 mm x 200 um thick; 0.6 mg only membrane) from Usami group
- Collaboration with Iwamoto group

SiO₂: 2.2g/cm³, n=1.45 Si: 2.3 g/cm³, n=3.67 Si₃N₄: 3.2 g/cm³, n=2.01

Transmission vs Mirror Mass

 Mirror reflectivity can be smaller if the mirror mass is smaller and with higher input power

Summary

- Optical levitation of a mirror is a promising way to prepare a system to test quantum mechanics at macroscopic scales
- Milligram scale mirror can be levitated with realistic parameters
- Succeeded in experimentally verifying the stability of the levitation
- Next step is the fabrication of a milligram mirror with high reflectivity and curvature
- Will try thin substrate with curvature from coating stress
- Alternative solution: photonic crystal mirror ?