Optical Levitation of a Mirror for Realizing Macroscopic Entanglement

Yuta Michimura

Department of Physics, University of Tokyo

Self Introduction

- Yuta Michimura Department of Physics, University of Tokyo
- Interferometry in gravitational wave detectors
 - KAGRA
 - DECIGO
- Test of fundamental physics using laser interferometers
 - Lorentz invariance
 - Macroscopic quantum mechanics
 - Axion search etc.....

Overview

- Test of macroscopic quantum mechanics super position of position states of mg-scale mirrors
- Optical levitation of a mirror no suspension thermal noise sandwich configuration reaching standard quantum limit is feasible

YM+, Optics Express 25, 13799 (2017)

Technical challenge
 fabrication of mg-scale mirrors

Macroscopic Quantum Mechanics

- Quantum mechanics is scale-invariant
- But superposition of macroscopic objects are not observed
- Many interpretations
 - too much classical decoherence
 - non-linear Schrödinger Eqs.
 - gravity decoherence
- Test of quantum mechanics at various scales necessary to look into classical-quantum boundary

Previous Experiments

- Benchmark for realizing quantum mechanics test: reaching the standard quantum limit (SQL)
- Not yet achieved at mg-scale

Previous Experiments

- Benchmark for realizing quantum mechanics test: reaching the standard quantum limit (SQL)
- Not yet achieved at mg-scale

Previous Experiments

- Benchmark for realizing quantum mechanics test: reaching the standard quantum limit (SQL)
- Not yet achieved at mg-scale

Optical Levitation of a Mirror

• Thermal decoherence due to mechanical support can be avoided with optical levitation

Sandwich Configuration

- Simple configuration than previous proposals
- Upper cavity to stabilize the levitated mirror

Levitated mirror

S. Singh+: PRL 105, 213602 (2010)

G. Guccione+: PRL 111, 183001 (2013)

Rh

Stability of the Levitation

- Rotationally stable due to gravity
- Vertically stable due to optical spring
- Horizontally stable due to beam axis tilt

Reaching the SQL is Feasible

• 0.2 mg mirror, 13 W + 4 W input, finesse 100

Technical Challanges

- Fabrication of mg-scale mirrors mm-scale diameter, curved, HR/AR coated
- Experimental demonstration of the stability
- Procedure for tuning the alignment, power, detuning for the levitation experiment using torsion pendulum ongoing
- Laser frequency noise
 0.1 mHz/√Hz @ 20 kHz

Mirror We Need

Fabrication Prototype

- Ordered (to company S)
 - mass 1.6 mg
 - φ 3mm, t 0.1 mm
 - RoC 30 +/- 10 mm
 - Reflectivity 99.95 %
- Ordered 8, but received 7

 (only 1 without cracks)
 crack during coaing
- Measured
 - RoC 15.9 +/- 0.5 mm
 - Reflectivity >99.5%

Alternative Way?

Any Ideas Welcome!

- We have been focusing on sensing vertical motion of a mirror, but sensitivity design is tough due to intracavity power constraints to levitate a mirror → mirror rotation sensing?
- Triangular pyramid mirror?
- Levitate a mirror in space
 - less power since less gravity
 - 50cm cubic, ~50kg satellite could be feasible
- Suspend curved mirror?
 - no alignment instability if curved

Supplementary

Parameters for Sensitivity Calc.

Table 1. Parameters for reaching the SQL. The suffix indicates s for the substrate, Ta for the TiO_2 :Ta₂O₅ coating layer, Si for the SiO₂ coating layer, L for the lower cavity and U for the upper cavity.

11 2		
Levitated mirror		
mass	m	0.2 mg
radius	r	0.35 mm
ROC	R	30 mm
beam radius	WL,U	0.14 mm, 0.19 mm
coating thickness	d_{Ta}	$91\mathrm{nm} \times 7\mathrm{layers}$
	$d_{\rm Si}$	$237\mathrm{nm} \times 6\mathrm{layers}$
Young's modulus	$Y_{\rm s, Ta, Si}$	73 GPa, 140 GPa, 73 GPa
Poisson ratio	$v_{\rm s, Ta, Si}$	0.17, 0.28, 0.17
loss angle	$\phi_{\rm s, Ta, Si}$	$1 \times 10^{-6}, 2 \times 10^{-4}, 5 \times 10^{-5}$
refractive index	n _{s, Ta, Si}	1.45, 2.07, 1.45
Laser		
wavelength	λ	1064 nm
input power	$P_{\rm L}^{\rm in}$	13 W, 4 W
frequency noise	δf_{a}	$0.1 \mathrm{mHz}/\sqrt{\mathrm{Hz}}$
Cavity		
length	$l_{L,U}$	95 mm, 50 mm
fixed mirror's ROC	$R_{\rm L,U}$	120 mm, 30 mm
COC distance	$a_{\rm L,U}$	5.0 mm, 1.3 mm
finesse	$\mathcal{F}_{L,U}$	100, 100
intracavity power	$P_{\rm L}^{\rm circ}$	420 W, 130 W
normalized detuning	$\delta_{L,U}$	-0.005, 0.018
Temperature	Т	300 K
Air pressure	P	10 ⁻⁵ Pa

YM+, Optics Express 25, 13799 (2017)