Testing Lorentz Invariance with an Optical Cavity

Yuta Michimura

Department of Physics, University of Tokyo

Self Introduction

- Assistant Professor(助教), Ando Group from July 2014
- Gravitational Waves - DECIGO Pathfinder

prototype experiment

- KAGRA

KAGRA main interferometer design & development

- Test of Lorentz Invariance
 - anisotropy search in the speed of light asymmetric optical ring cavity
- "interferometry for fundamental physics" macroscopic quantum mechanics, test of gravitational inverse square law, dark matter search etc.....

optical ring cavity

2

KAGRA

- Large-scale Cryogenic Gravitational wave Telescope being built in Kamioka mine, Gifu
- initial phase observation run in FY2015 KAGRA
 - room temperature
 - 3km Michelson
- final phase observation run in ~ FY2017
 - cryogenic temperature (20K)
 - 3km RSE

Recent KAGRA News

- inauguration
 of initial stage
 facility
 ^{2015年11月6日}
 朝日新聞
- mirror installation ongoing
- very exciting stage!

動画】報道公開された重力波観測装置「KAGRA」=川村直子撮影

Test of Lorentz Invariance

- LI could only be an approximate
- test isotropy of the speed of light
 - two-way test (Michelson-Morley type)

Asymmetric Optical Ring Cavity

 compare resonant frequencies of counterpropagating modes of asymmetric optical ring cavity

Method for Frequency Comparison

double-pass configuration for null measurement

Experimental Setup

- frequency comparison using double-pass setup
- rotate and modulate LV signal

Photo of the Optics

C

GM

Rotation

• 12 sec / rotation, alternately

Observation Data

- from July 2012 to October 2013
- 393 days, 1.67 million rotations
- duty cycle: 53% (64% after Oct 2012)

Data Analysis

- demodulate data with $\omega_{
m rot}$ and then ω_{\oplus}

Demodulation Amps

Upgrade of the Apparatus

- current noise level is limited by vibration noise from rotation

 ^{10⁻⁹}
 ^{10⁻⁹}
- semi-monolithic optical bench to reduce vibration sensitivity

- continuous rotation for more stable operation
- aim to have reduced noise by ~ 1/100

Apparatus Comparison

16

Current Status of the New Model

10⁻⁹,

10⁻¹⁰

10⁻¹¹

10⁻¹²

10⁻¹³

 10^{-14}

 10^{-2}

- assembly mostly done
- stationary noise higher than before
- investigation ongoing (scattering?)

work done by Jake Guscott (undergrad from U of Adelaide) ¹⁷

fractional frequency noise $\delta
u_{
m j}$

Summary

- compared the speed of light propagating in opposite directions
- using a double-pass optical ring cavity
- put new limits on Lorentz violation in photons $\left|\frac{\delta c}{c}\right| \lesssim 10^{-15}$
- currently developing an upgraded apparatus
- Y. Michimura+, Phys. Rev. Lett. 110, 200401 (2013)
- Y. Michimura+, Phys. Rev. D 88, 111101(R) (2013)
- supported by JSPS科研費 若手A 15H05445