Light driven Nuclear-Particle physics and Cosmology 2017 (Pacifico Yokohama)

Optical Cavity Tests of Lorentz Invariance

April 20, 2017

Yuta Michimura

Department of Physics, University of Tokyo

H. Takeda, Y. Sakai, N. Matsumoto, M. Ando

Abstract

- compared the speed of light propagating in opposite directions
- using a double-pass optical ring cavity

• put most stringent limits
$$\left|\frac{\delta c}{c}\right| \lesssim 6 \times 10^{-15}$$

- put new limits on higher order Lorentz violation
- upgrade of apparatus underway

Y. Michimura et al.: Phys. Rev. Lett. 110, 200401 (2013)

Y. Michimura et al.: Phys. Rev. D 88, 111101(R) (2013)

Y. Michimura et al.: arXiv:1602.00391

silicon

 $c + \delta c$

c -

 δc

SR and Lorentz violation

- Special Relativity (1905) speed of light is constant
- Lorentz invariance in electrodynamics
- no one could find any violation
- but...
 - quantum gravity suggests violation at some level e.g. $\delta c/c \sim 10^{-17}$

D. Colladay and V. Alan Kostelecký:PRD 58 (1998) 116002

anisotropy in CMB
 possible preferred frame?
 → motivation for testing SR

http://www.cpt.univ-mrs.fr/

Test of Special Relativity

- test of constancy of speed of light
- two types of test: even-parity and odd-parity

Anisotropy in the Speed of Light

can be expanded with spherical harmonics

 $c + \delta c \blacktriangleleft$

• multipole anisotropy comes from higher order Lorentz violation $\ell_{=0}$ $c + \delta c$

l=2

 $\dot{c} + \delta c$

l=3

 δc

Previous Limits

- l = even limits with even-parity experiments
- l = odd limits with odd-parity experiments

even-parity experiments using orthogonal cavities

M. Nagel+, <u>Nat. Commun. 6, 8174 (2015)</u> S. R. Parker+: <u>PRL 106, 180401 (2011)</u>

 $\lesssim 10$

odd-parity experiment using asymmetric ring cavity

F. Baynes+: PRL 108, 260801 (2012)

Our Limits

- improved limits on l = 1 (dipole) anisotropy
- new limits on l = 3 (hexapole) anisotropy

Optical Ring Cavity

sensitive to LV when a dielectric is contained

• $\nu_+ - \nu_-$ gives LV signal (null measurement)

How Do We Measure 1/4

inject laser beam in CCW

How Do We Measure 2/4

• lock laser frequency to CCW resonance (ν_+)

How Do We Measure 3/4

reflect the beam back into the cavity in CW

11

How Do We Measure 4/4

 LV signal obtained from cavity reflection (null measurement) CCW CW silicon $\nu_{-} = \nu + \delta \nu$ $\nu_{+} = \nu - \delta \nu$ ν_+ ν_+ Laser LV signal frequency $\propto
u_+ -
u_$ servo

Experimental Setup

- frequency comparison using double-pass setup
- rotate and modulate LV signal

Photo of the Optics

40 cm

30 cm

Rotation

• 12 sec / rotation, alternately

Observation Data

- from July 2012 to October 2013
- 393 days, 1.67 million rotations
- duty cycle: 53% (64% after Oct 2012)

Data Analysis 1/3

- demodulate each 1 rotation data with $\omega_{
m rot}$

Data Analysis 2/3

• next, demodulate 1 day data with ω_\oplus

Data Analysis 3/3

• higher order LV appear at higher harmonics

Demodulation Amps($\omega_{\rm rot}$)

zero consistent at 2σ
 → no significant LV can be claimed

Demodulation Amps($3\omega_{rot}$)

zero consistent at 2σ
 → no significant LV can be claimed

Our Limits on Anisotropy

- each demodulation amplitude is related to each anisotropy component
- limits three dipole (l = 1) components

$$\left| \frac{\delta c}{c} \right| \lesssim 6 \times 10^{-15}$$

more than an order of magnitude improvement

• limits on seven hexapole (l = 3) components $\left| \frac{\delta c}{c} \right| \lesssim 2 \times 10^{-15}$ new limit

Our Limits on SME Coefficients

- Standard Model Extension (SME)

 [D. Colladay and V. Alan Kostelecký: <u>PRD 58, 116002 (1998)</u>]
- · test theory with all realistic Lorentz violation
- our result put new limits on "camouflage coefficients" of LV in photon sector

limits on LV of	Measurement	Coefficient	Dimension
	$(-0.1 \pm 1.5) \times 10^3 \text{ GeV}^{-2}$	$(\overline{c}_{F}^{(6)})_{110}^{(0E)}$	d = 6
dimension 6	$(-0.8 \pm 1.1) \times 10^3 \text{ GeV}^{-2}$	${ m Re}[(\overline{c}_F^{(6)})_{111}^{(0E)}]$	
$10^3 C_0 V^{-2}$	$(-0.6 \pm 1.0) \times 10^3 \text{ GeV}^{-2}$	$\operatorname{Im}[(\overline{c}_{F}^{(6)})_{111}^{(0E)}]$	
IU Gev	$(-0.2 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$	$-0.020(\overline{c}_F^{(8)})_{110}^{(0E)} + (\overline{c}_F^{(8)})_{310}^{(0E)}$	d = 8
	$(1.4 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	$\operatorname{Re}[-0.020(\overline{c}_F^{(8)})_{111}^{(0E)} + (\overline{c}_F^{(8)})_{311}^{(0E)}]$	
limits on LV of	$(0.1 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	$\operatorname{Re}[-0.020(\overline{c}_F^{(8)})_{111}^{(0E)} + (\overline{c}_F^{(8)})_{311}^{(0E)}]$	
	$(-0.8 \pm 3.3) \times 10^{19} \text{ GeV}^{-4}$	$(\overline{c}_{F}^{(8)})_{330}^{(0E)}$	
dimension 8	$(-0.3 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$	${ m Re}[(\overline{c}_F^{(8)})_{331}^{(0E)}]$	
$10^{19} \text{ C}_{2} \text{ V}^{-4}$	$(-2.8 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$	$\operatorname{Im}[(\overline{c}_{F}^{(8)})_{331}^{(0E)}]$	
10 Gev	$(2.2 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	${ m Re}[(\overline{c}_F^{(8)})_{332}^{(0E)}]$	
	$(0.2 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	${ m Im}[(\overline{c}_F^{(8)})_{332}^{(0E)}]$	
24	$(-0.1 \pm 1.6) \times 10^{19} \text{ GeV}^{-4}$	${ m Re}[(\overline{c}_F^{(8)})_{333}^{(0E)}]$	
24	$(-0.1 \pm 1.6) \times 10^{19} \text{ GeV}^{-4}$	$\text{Im}[(\overline{c}_{E}^{(8)})_{333}^{(0E)}]$	

Upgrade of the Apparatus

current noise level is limited by noise from rotation

 semi-monolithic optical bench to reduce vibration sensitivity

25

continuous rotation for more stable operation

Apparatus Comparison

26

Apparatus Comparison

Previous Model

- non-monolithic optics
- alternative rotation

New Model

- semi-monolithic optics
- continuous rotation

Continuous Rotation System

rotary connector

wireless data logger

- semi-monolithic optics
- continuous rotation

Magnetic Noise

- environmental magnetic field noise couple into electronics noise
- can be subtracted by magnetic field measurement

magnetic field noise subtraction

Optics Comparison

reduced beam height simplified electronics

Previous Model - non-monolithic optics

New Model - semi-monolithic optics³⁰

Optics Comparison

preliminary noise measurement noise analysis ongoing

New Model - semi-monolithic optics³¹

Summary and Outlook

<u>Summary</u>

- compared the speed of light propagating in opposite directions
- using a double-pass optical ring cavity
- new limits on higher order LV in photons

<u>Outlook</u>

- currently upgrading the apparatus (Y. Sakai and H. Takeda)
- semi-monolithic optics
- continuous rotation

silicon

Additional Slides

Higher Order Lorentz Violation

- Standard Model Extention
- add LV term in Lagrangian for electromagnetic field
- $\hat{k}_F^{(d)}$ is zero for non-LV, d is mass dimension

Higher Order LV and Anisotropy

HOLV gives multipole anisotropy

Systematic Errors

 10% of stati at maximum 	stical error gravity	optio	cs turntable
Cause	Amount	Ratio	
Sagnac effect	< 1mrad/sec	<2%] offset
turntable tilt	< 0.2 mrad	<10%	
detuning	_	3%	7
TF meas.	-	3%	
laser frequency actuation meas.	12.9±0.6 MHz/V	5%	calibration
refractive index	3.69 ± 0.01	0.4%	
cavity length	192±1 mm	0.5%	36

Some Photos

Cheat Sheet

- rotation frequency f_rot = 0.083 Hz (T_rot = 12 sec)
- wavelength $\lambda = 1550$ nm
- laser frequency v = 1.9e14 Hz
- input power P0 = 1 mW
- finesse F = 120
- cavity length L = 140 mm
- silicon length d = 20 mm
- silicon refractive index n = 3.69
- silicon dn/dT = 2e-4 / K
- silicon thermal expansion = 3e-6 /K
- Super Invar thermal exp. = ~ 1e-7 /K
- silicon AR loss I < 0.5 % / surface
- incident angle θ = 9.5 deg
- FSR = 1.5 GHz
- FWHM = 12 MHz

- current sensitivity ~ 6e-13 /rtHz (~ 4e-11 /rtHz when rotated)
- shot noise ~ 6e-16 /rtHz
- thermal noise ~ 8e-16 /rtHz (all @ 0.1 Hz)
- Sun speed in CMBR = 369 km/s
- orbital speed of Earth = 30 km/s
- rotational speed of Earth = 0.4 km/s
 - History Jul 2011: idea Nov 2011: first run (10hour) Jul 2012: data taking started Oct 2012: continuous data taking Oct 2013: shut down
- cost < ~200万円