Development of the interferometer module for DECIGO Pathfinder

Yuta Michimura
Tsubono Group
Department of Physics, University of Tokyo

Yoichi Aso, Koji IshidoshiroA, Shuichi SatoB, Masaki AndoC,
Akitoshi UedaD, Seiji KawamuraD, Kimio Tsubono
U of Tokyo, KEKA, Hosei UB, Kyoto UC, NAOJD
DECIGO Pathfinder

• the first milestone mission for DECIGO
• carries stabilized laser source and Fabry-Perot cavity
• observe GW and measure gravitational field of the Earth
• earliest possible launch: ~2015-16
• what I do: assemble BBM of the interferometer module and verify the operation
Interferometer Module

- 2 monolithic optical benches, 2 test masses, thermal shields + servo system (PDH, WFS)
Mass Module

- surrounded by 12 electrodes work as electrostatic sensors/actuators

*see poster by A. Shoda (#59)
Overview of the BBM Experiment

• aim: test the operation on the ground
 - components are the same scale as BBM
 - realistic digital servo system
 same FPGA board used for the prototype of SWIMμν*

• what’s different?
 - test masses are suspended
 the shape of the test mass is slightly different from the original BBM

*GW detector launched in 2009 see poster by W. Kokuyama (#31)
Status of the BBM Experiment

- making the suspension system
- installing the monolithic optical bench
- fiber injection
- cavity length control by PDH
- coil-magnet actuators first
- digital servo using FPGA
- alignment control by WFS
currently working on QPD circuits
- electrostatic actuators, modularization
- thermal shields, vacuum …..
Experimental Setup

- lock cavity length by PDH
Experimental Setup

- laser source (1064nm)
- isolator
- optical bench
- fiber EOM
- FP cavity
- PD
- FP cavity
- laser source (1064nm)
- isolator
- optical bench
- fiber EOM
- PD
Suspension of the Test Mass

- aluminum, 70mm cube, 0.71kg
- 4 magnets for actuation
- suspended by 4 wires near the center of mass
- resonant frequency (calculated)

\[
\begin{align*}
f_x &= 0.91 \text{ Hz} \\
f_{\text{pitch}} &= 3.24 \text{ Hz} \\
f_{\text{yaw}} &= 0.24 \text{ Hz}^{\text{pitch}}
\end{align*}
\]
Fabry-Perot Cavity

- Finesse: 208 (designed)

Front Mirror
 plane
 PR=98%

End Mirror
 r=500mm
 PR=99%

waist size: 0.29mm

cavity length: 30cm
Optical Bench

- Pyrex glass base plate with the optical components silicate bonded to it

350 × 200 × 35 mm
Optical Bench

FP cavity

fiber collimator

WFS(end)

WFS(front)

PDH

PD
Servo System

- digital control by FPGA
- same board used for the prototype of SWIMμν
 \(f_s = 26.8\text{kHz} \), PD servo
- coil-magnet actuators
Openloop Transfer Function

- Gain: $\sim 3 \times 10^5$
- Phase Margin: $\sim 40\text{deg}$
- UGF: ~ 1 kHz

![Graph showing openloop transfer function with frequency on the x-axis and gain/phase on the y-axis. The graph includes data points and a fitted line.]
Cavity Length Noise Spectra

- spectrum when the servo is turned off (green) is estimated by openloop calibration

- servo off: RMS = 6×10^{-7} m
- servo on: RMS = 2×10^{-11} m
Next Step

- install QPDs
- alignment control by WFS
Summary

- DPF is the first milestone mission for DECIGO
- BBM experiment is ongoing
- succeeded in the cavity length control monolithic optical bench digital control using FPGA coil-magnet actuators
- next step is to install QPDs and start the alignment control
Suspension Frame

Size of the interferometer module (800 × 300 × 300mm)

Stage for alignment adjustment

Suspended by 4 wires (W, φ=0.1mm, l~30cm)

Optical axis

Monolithic optical bench

FP cavity

Test mass (70mm cube)
FPGA

• Field Programmable Gate Array
• sampling frequency: 26.8kHz
• PD servo

\[fb[k]=P \times er[k]+D \times (er[k]-er[k-1]) \]
Actuation Efficiency

- measured using photo-sensors