Development of the interferometer module for DECIGO Pathfinder

Yuta Michimura

Tsubono Group

Department of Physics, University of Tokyo

Yoichi Aso, Koji Ishidoshiro^A, Shuichi Sato^B, Masaki Ando^C, Akitoshi Ueda^D, Seiji Kawamura^D, Kimio Tsubono

U of Tokyo, KEKA, Hosei UB, Kyoto UC, NAOJD

DECIGO Pathfinder

- the first milestone mission for DECIGO
- carries stabilized laser source and Fabry-Perot cavity
- observe GW and measure gravitational field of the Earth
- earliest possible launch:
 ~2015-16
- what I do: assemble BBM of the interferometer module and verify the operation

Interferometer Module

 2 monolithic optical benches, 2 test masses, thermal shields
 +servo system(PDH, WFS)

Mass Module

 surrounded by 12 electrodes work as electrostatic sensors/actuators

Overview of the BBM Experiment

- aim: test the operation on the ground
 - components are the same scale as BBM
 - realistic digital servo system
 same FPGA board used for the prototype
 of SWIMµv*

 *GW detector launched in 2009

see poster by W. Kokuyama (#31)

- what's different?
 - test masses are suspended the shape of the test mass is slightly different from the original BBM

Status of the BBM Experiment

- ✓ installing the monolithic optical bench
 - ✓ fiber injection
- ✓ cavity length control by PDH
 - ✓ coil-magnet actuators first
 - ✓ digital servo using FPGA
- alignment control by WFS currently working on QPD circuits
- electrostatic actuators, modularization
- thermal shields, vacuum

Experimental Setup

Experimental Setup

Suspension of the Test Mass

- aluminum, 70mm cube, 0.71kg
- 4 magnets for actuation
- suspended by 4 wires near the center of mass
- resonant frequency (calculated)

$$f_{\rm x} = 0.91 \, {\rm Hz}$$

$$f_{\rm pitch} = 3.24\,{\rm Hz}$$

$$f_{
m yaw} = 0.24\,{
m Hz}$$
 pitch $^{
m N}$

Fabry-Perot Cavity

Finesse: 208 (designed)

0.29mm

10

Optical Bench

 Pyrex glass base plate with the optical components silicate bonded to it

Optical Bench

Servo System

- digital control by FPGA same board used for the prototype of SWIMµv f_s=26.8kHz, PD servo
- coil-magnet actuators

Openloop Transfer Function

Cavity Length Noise Spectra

spectrum when the servo is turned off(green) is estimated by openloop calibration

Next Step

- install QPDs
- alignment control by WFS

QPD (on the back)

Summary

- DPF is the first milestone mission for DECIGO
- BBM experiment is ongoing
- succeeded in the cavity length control monolithic optical bench digital control using FPGA coil-magnet actuators
- next step is to install QPDs and start the alignment control

Suspension Frame

FPGA

- Field Programmable Gate Array
- sampling frequency: 26.8kHz
- PD servo
 fb[k]=P*er[k]+D*(er[k]-er[k-1])

Actuation Efficiency

 measured using photo-sensors

