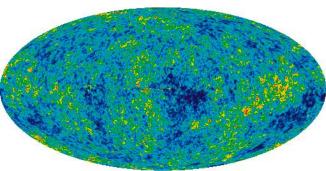

光リング共振器による 高次ローレンツ不変性検証

道村唯太

東京大学 大学院理学系研究科 物理学専攻安東研究室

特殊相対論(電磁気学のLorentz不変性)の検証実験 その中でも光速の等方性検証 $c-\delta c$ 特にその奇パリティ成分

• 光リング共振器を用いた新しい手法

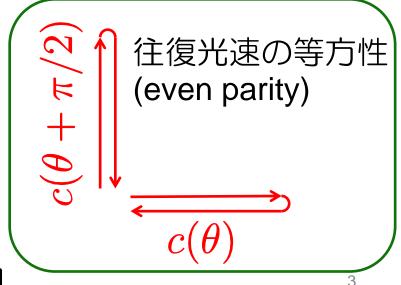

- 光速の等方性を $|\delta c/c|\lesssim 10^{-15}$ の精度で検証
- 高次のLorentz不変性の破れに初の上限

[Y. Michimura et al.: Phys. Rev. Lett. 110, 200401 (2013)]

[Y. Michimura et al.: Phys. Rev. D 88, 111101(R) (2013)]

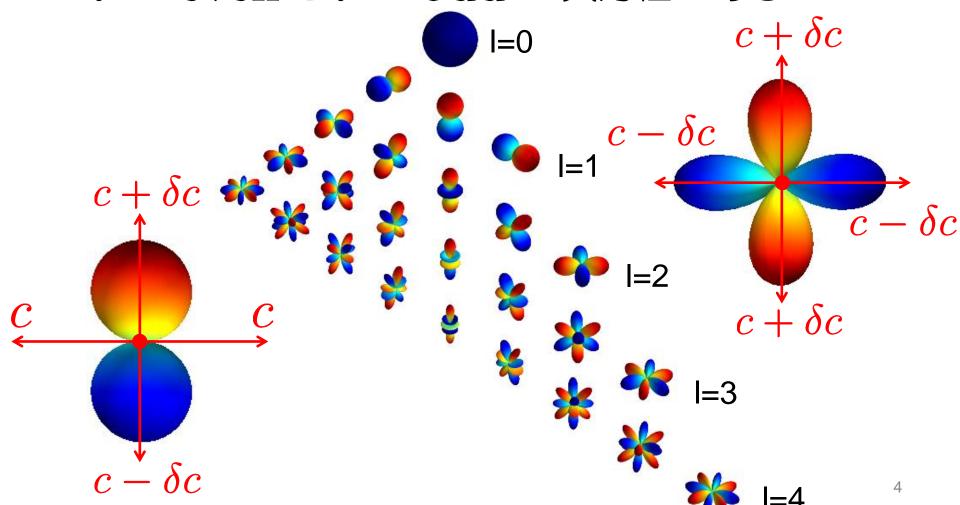
Lorentz不変性の検証

- 特殊相対論(1905) 光速度不変の原理
 - →電磁気学のLorentz不変性
- Lorentz不変性の破れ(LV) 量子重力理論、CMBの異方性

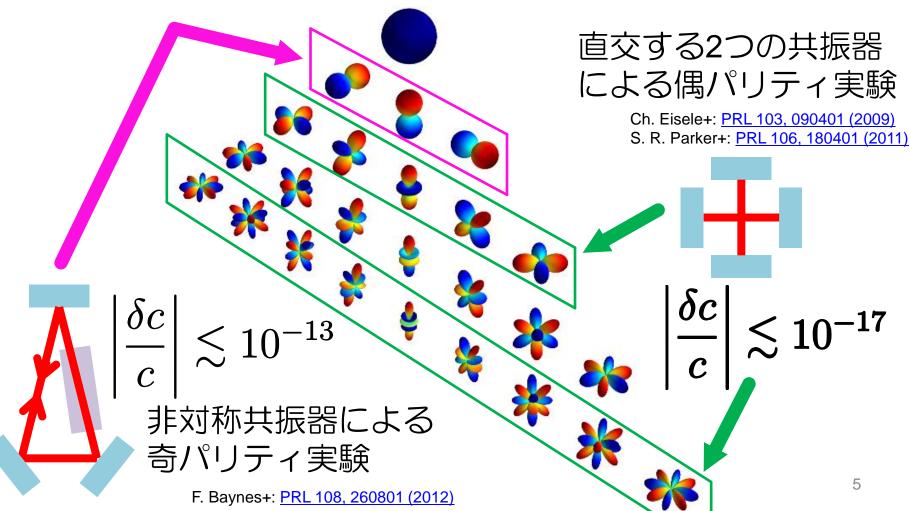

http://en.wikipedia.org/wiki/File:WMAP_2010.png

• 実験的検証が必要 →光速の等方性の検証

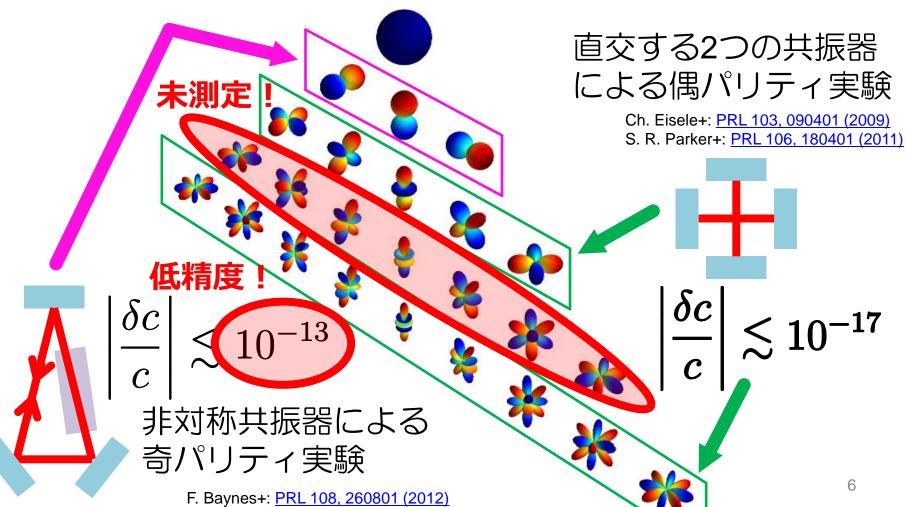
片道光速の等方性 (odd parity) $c(\theta)$ $c(\theta)$ $c(\theta+\pi)$


• 片道光速の等方性検証

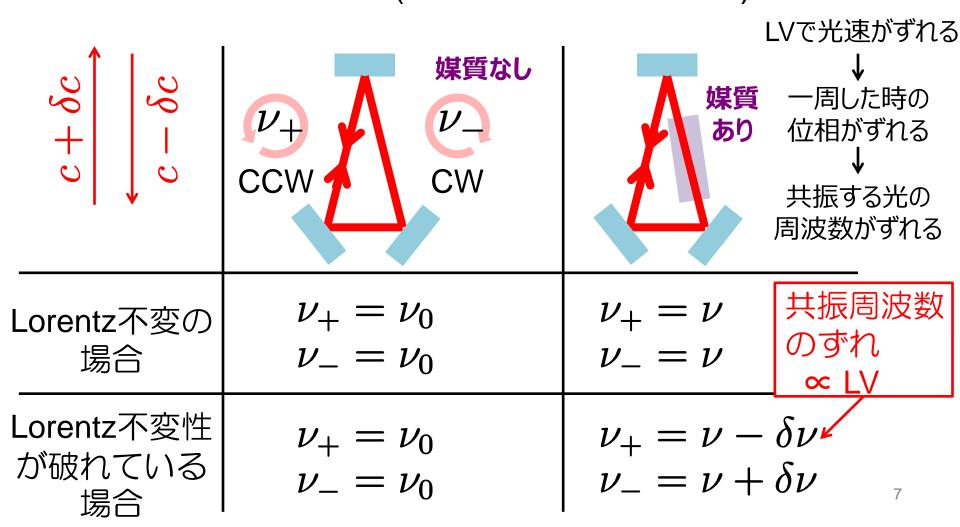
→ 光リング共振器を利用


光速の異方性

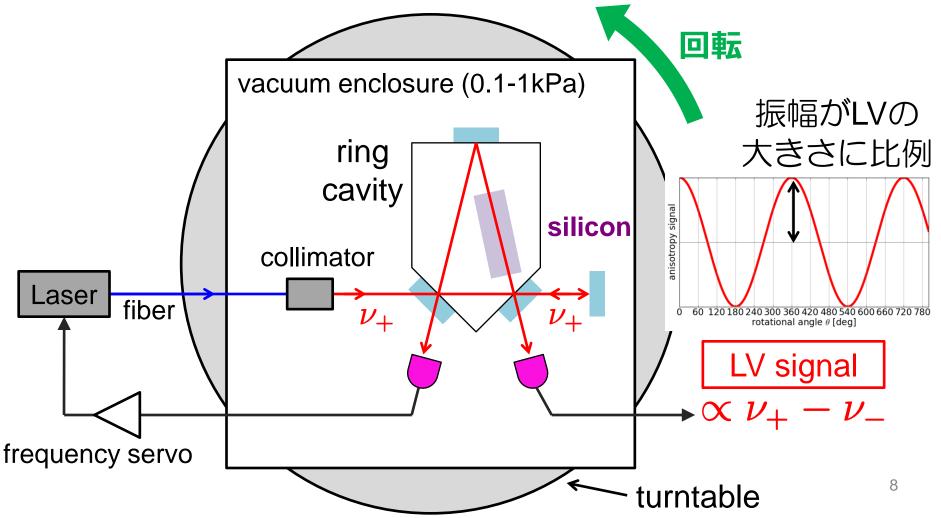
- ・ 球面調和関数展開できる


これまでの上限値

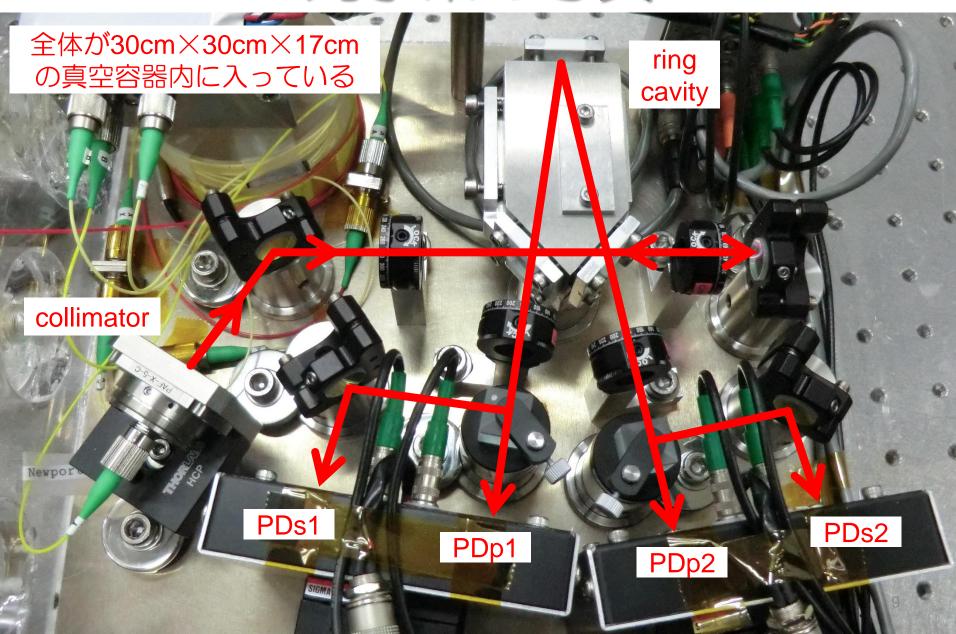
- 偶パリティ実験は $l={
 m even}$ を測定可能
- 奇パリティ実験は $l=\mathrm{odd}$ を測定可能


これまでの上限値

- 偶パリティ実験は $l={
 m even}$ を測定可能
- 奇パリティ実験は $l=\mathrm{odd}$ を測定可能


非対称光リング共振器

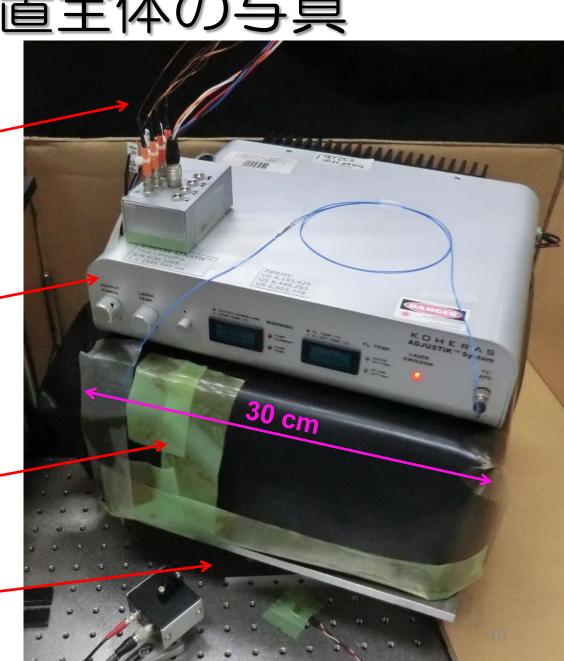
・ 媒質を入れて非対称にすると、Lorentz不変性の 破れに感度を持つ(共振周波数がずれる)



実験装置の概要

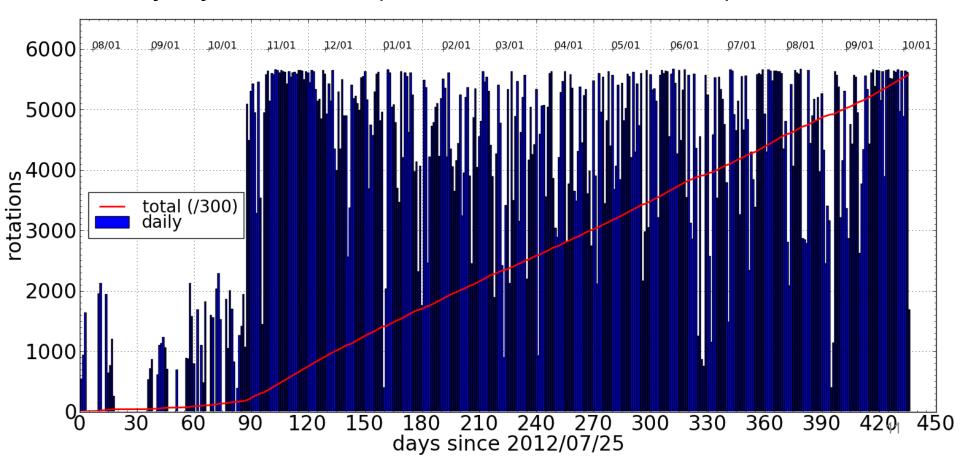
- ダブルパス構成による周波数比較
- 回転によりLorentz不変性の破れ信号を変調

光学系の写真


実験装置全体の写真

電源/信号ケーブル

レーザー光源


光学系の入った真空容器 + 遮光シート

回転台

観測データ

- 2012年7月末から2013年10月初まで測定
- 測定日数: 393日 総回転数: 167万回転
- Duty cycle: 53% (10月中旬以降は64%)

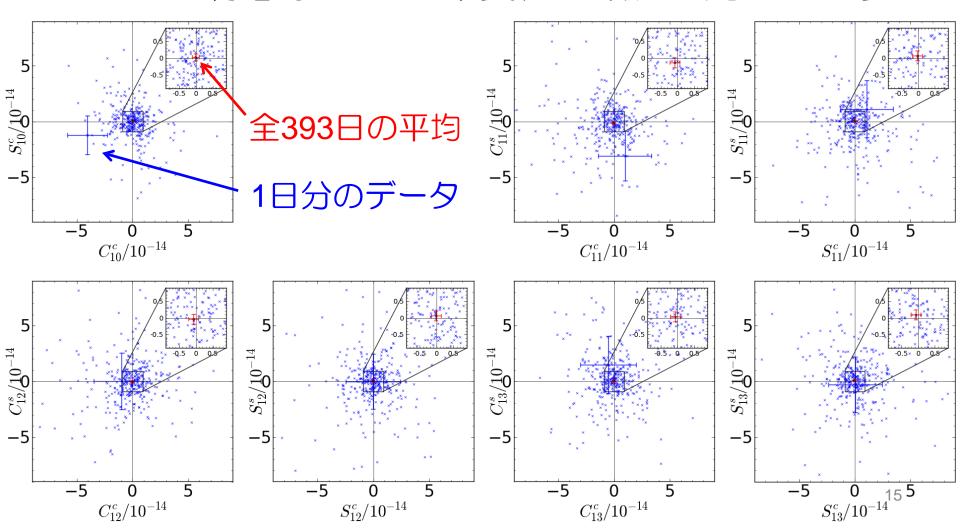
データ解析1

・ まず1回転分のデータを回転周波数で復調 $c - \delta c$ $c + \delta c$ 太陽 360度の 回転対称性 回転 $\omega_{
m rot}$ 周波数 $\omega_{
m rot}$ 得られたLV信号 復調振幅が 地球 LVの大きさに比例 12

60 120 180 240 300 360 420 480 540 600 660 720 780 rotational angle θ [deg]

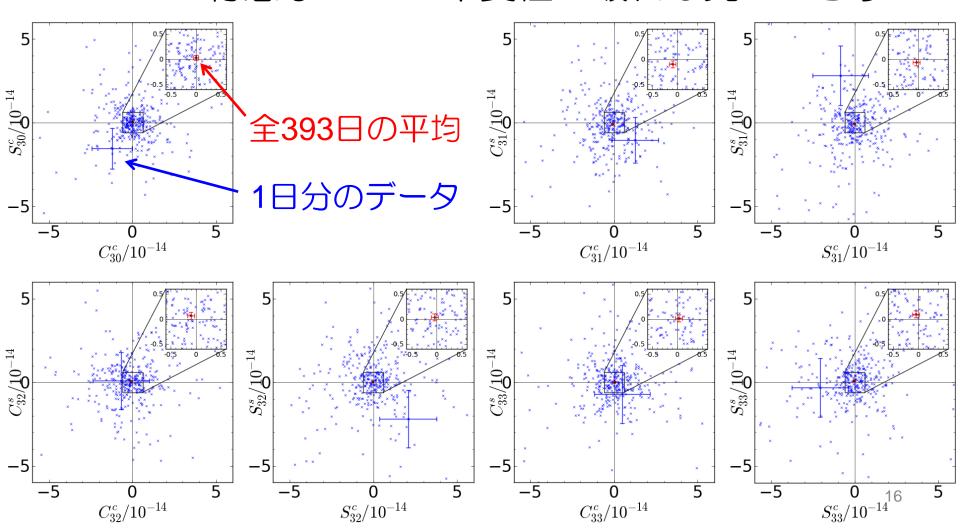
データ解析2

・ 次に1日分のデータを自転周波数で復調 $c-\underline{\delta c}$ 太陽 360度の 回転対称性 回転 $\omega_{
m rot}$ 周波数 得られたLV信号 復調振幅が 地球 地球自転で変調される 13


60 120 180 240 300 360 420 480 540 600 660 720 780 rotational angle θ [deg]

データ解析3

• 高次Lorentz不変性破れは高調波に出てくる 太陽 回転 $3\omega_{
m rot}$ 周波数 $\omega_{
m rot}$ 地球 360度の 120度の 回転対称性 回転対称性 14

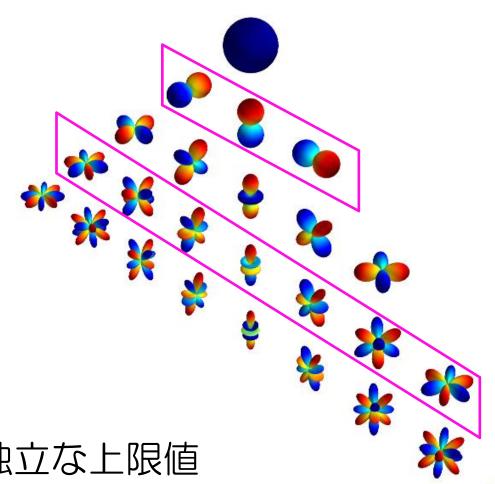

得られた復調振幅($\omega_{ m rot}$)

- 2σでゼロと一致
 - → 有意なLorentz不変性の破れは見つからず

得られた復調振幅($3\omega_{ m rot}$)

- 2σでゼロと一致
 - → 有意なLorentz不変性の破れは見つからず

得られた上限値

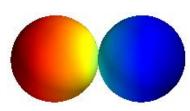

- 各復調振幅は各異方性成分と関連付けられる
- l = 103 $\supset C$ $\left| \frac{\delta c}{c} \right| \lesssim 6 \times 10^{-15}$

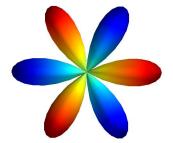
1桁以上更新

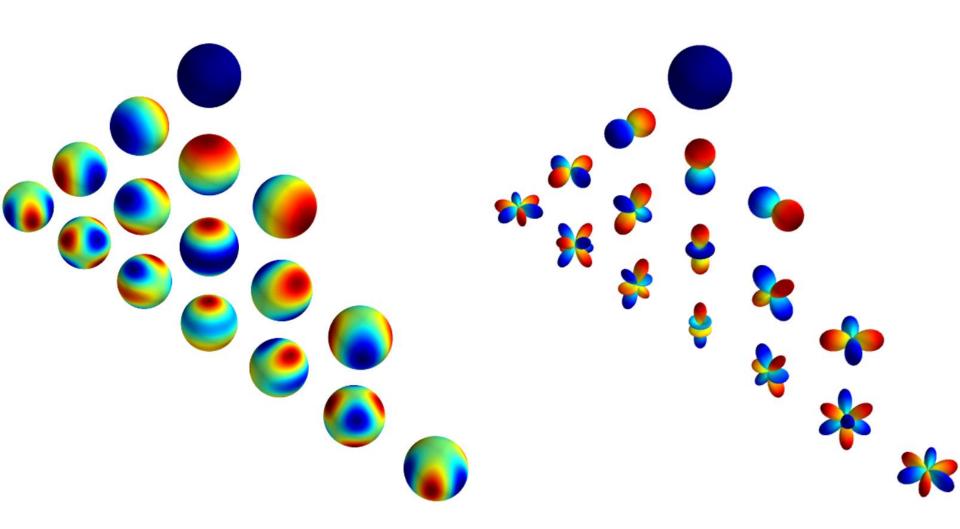
• l = 307) $\left| \frac{\delta c}{c} \right| \lesssim 2 \times 10^{-15}$

初の上限値

• それぞれの成分に独立な上限値


拡張標準理論での上限値

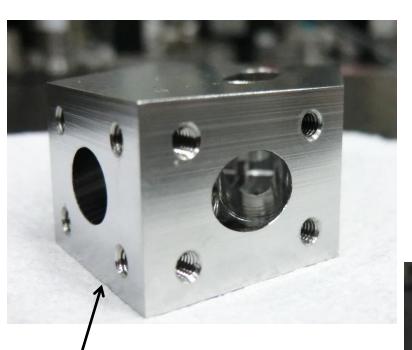

- 拡張標準理論(SME; standard model extension) [D. Colladay and V. Alan Kostelecký: PRD 58, 116002 (1998)]
- 電磁場のLagrangianにLV項を追加


- 高次のLV項が高次の異方性を生む 6次は四重極成分、8次は八重極成分まで
- 6次の奇パリティLV項に $10^3~{
 m GeV}^{-2}$ の上限値初の上限値 偶に比べて6桁更新
- 8次の奇パリティLV項に $10^{19}~{
 m GeV^{-4}}$ の上限値 初の上限値 偶に比べて14桁更新

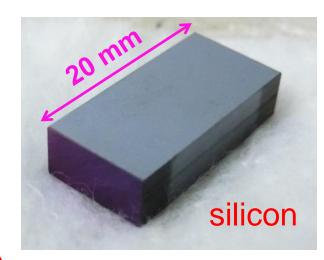
まとめ

- ダブルパス構成による光リング共振器を用いた 光速の異方性探査装置を製作
- ・ 光リング共振器は回転台で回転
- 1年に渡ってデータ取得を継続 観測日数: 393日 回転数: 167万回転
- $|\delta c/c| \lesssim 10^{-15}$ の精度で等方性を検証
- 異方性の双極子成分の上限値を1桁更新
- 異方性の六重極成分に初の上限値
- ・ 拡張標準理論の枠組みでは、高次のLVのうち、奇 パリティ成分に初の上限値
- これまでの偶パリティ成分への上限値に比べて、 6次は6桁更新、8次は14桁更新

球面係数への上限値

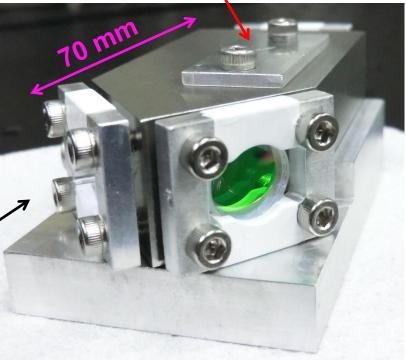

Coefficient	Measurement
\overline{y}_1^0	0.4 ± 4.4
$\operatorname{Re}[\overline{y}_1^1]$	-5.7 ± 6.3
$\operatorname{Im}[\overline{y}_1^1]$	-3.2 ± 6.2
\overline{y}_3^0	0.1 ± 1.9
$\operatorname{Re}[\overline{y}_3^1]$	2.9 ± 2.2
$\operatorname{Im}[\overline{y}_3^1]$	-3.2 ± 2.1
$\operatorname{Re}[\overline{y}_3^2]$	2.1 ± 1.8
$\mathrm{Im}[\overline{y}_3^2]$	1.5 ± 1.8
$\operatorname{Re}[\overline{y}_3^3]$	-0.2 ± 2.2
$\operatorname{Im}[\overline{y}_3^3]$	-0.7 ± 2.2

単位は全て10-15

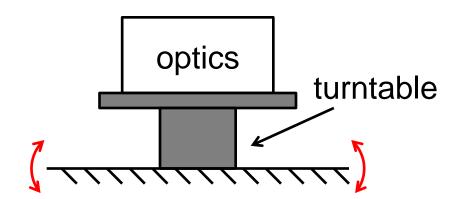

SME Camouflage係数への上限値

Dimension	Coefficient	Measurement
d = 6	$(\overline{C}_F^{(6)})_{110}^{(0E)}$	$(-0.1 \pm 1.5) \times 10^3 \text{ GeV}^{-2}$
	$\text{Re}[(\overline{c}_F^{(6)})_{111}^{(0E)}]$	$(-0.8 \pm 1.1) \times 10^3 \text{ GeV}^{-2}$
	$\operatorname{Im}[(\overline{c}_F^{(6)})_{111}^{(0E)}]$	$(-0.6 \pm 1.0) \times 10^3 \text{ GeV}^{-2}$
d = 8	$-0.020(\overline{c}_F^{(8)})_{110}^{(0E)} + (\overline{c}_F^{(8)})_{310}^{(0E)}$	$(-0.2 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$
	$\operatorname{Re}\left[-0.020(\overline{c}_F^{(8)})_{111}^{(0E)} + (\overline{c}_F^{(8)})_{311}^{(0E)}\right]$	$(1.4 \pm 1.3) \times 10^{19} \; \mathrm{GeV^{-4}}$
	$\operatorname{Re}\left[-0.020(\overline{c}_F^{(8)})_{111}^{(0E)} + (\overline{c}_F^{(8)})_{311}^{(0E)}\right]$	$(0.1 \pm 1.3) \times 10^{19} \; \mathrm{GeV^{-4}}$
	$(\overline{C}_F^{(8)})_{330}^{(0E)}$	$(-0.8 \pm 3.3) \times 10^{19} \text{ GeV}^{-4}$
	$\text{Re}[(\overline{c}_F^{(8)})_{331}^{(0E)}]$	$(-0.3 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$
	$\operatorname{Im}[(\overline{c}_F^{(8)})_{331}^{(0E)}]$	$(-2.8 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$
	$\text{Re}[(\overline{c}_F^{(8)})_{332}^{(0E)}]$	$(2.2 \pm 1.3) \times 10^{19} \; \mathrm{GeV^{-4}}$
	$\operatorname{Im}[(\overline{c}_F^{(8)})_{332}^{(0E)}]$	$(0.2 \pm 1.3) \times 10^{19} \; \mathrm{GeV^{-4}}$
	$\text{Re}[(\overline{c}_F^{(8)})_{333}^{(0E)}]$	$(-0.1 \pm 1.6) \times 10^{19} \text{ GeV}^{-4}$
	$\operatorname{Im}[(\overline{c}_F^{(8)})_{333}^{(0E)}]$	$(-0.1 \pm 1.6) \times 10^{19} \text{ GeV}_{22}^{-4}$

Some Photos



silicon inside


spacer made of Super Invar

cavity mirrors

Systematic Errors

- 10% of statistical error at maximum
- sidereal tilt of turntable

Cause	Amount	Ratio compared with stat.
rotational speed fluctuation (Sagnac effect)	< 1 mrad/sec	< 2 %
turntable tilt	< 0.2 mrad	< 10 %
calibration (detuning)	-	3 %
calibration (openloop)	-	3 %
calibration (laser PZT)	-	5 %
refractive index	-	< 0.1 %

Cheat Sheet

- rotation frequency f_rot = 0.083 Hz (T_rot = 12 sec)
- input power P_in = 1 mW
- finesse F = 120
- cavity length L = 140 mm
- silicon length d = 20 mm
- silicon refractive index n = 3.69
- silicon AR loss I < 0.5 % / surface
- incident angle $\theta = 9.5 \deg$
- FSR = 1.5 GHz
- FWHM = 12 MHz
- laser: Koheras AdjustiK C15
- motor: Nikki Denso τDISC (ND110-85-FC)

- sensitivity ~ 4e-13 /rtHz
- shot noise ~ 7e-14 /rtHz
 (∞ 1/F, ∞ 1/sqrt(P_in))
- mirror thermal ~ 5e-16 /rtHz

(all @ 0.1 Hz)