2023 Fall meeting of APS DNP and JPS DBD23 (Hilton Waikoloa Village, Hawaii) December 1, 2023

Ultralight axion dark matter search with DANCE

Caltech Yuta Michimura

LIGO Lab, California Institute of Technology

yuta@caltech.edu

Research Center for the Early Universe, University of Tokyo michimura@phys.s.u-tokyo.ac.jp

Dark Matter Models

- ~90 orders of magnitude in mass
- Searches focused on WIMPs, but not detected yet
- Motivates new searches for other candidates

Ultralight DM with Interferometers

- Bosonic ultralight field (<~1 eV) are well-motivated from cosmology
- Behaves as classical waves

$$f = 242 \text{ Hz} \left(\frac{m_{\text{DM}}}{10^{-12} \text{ eV}} \right)$$

 Laser interferometers are sensitive to such oscillating changes

Recent Proposals and Searches

U(1)_B or U(1)_{B-L} gauge bosons(vector field)

- P. W. Graham+, PRD 93, 075029 (2016)
- A. Pierce+, PRL 121, 061102 (2018)
- H-K Guo+, Commun. Phys. 2, 155 (2019) LIGO O1 data analysis
- Y. Michimura, T. Fujita, S. Morisaki, H. Nakatsuka, I. Obata, PRD 102, 102001 (2020)
- D. Carmey+, New J. Phys. 23, 023041 (2021)
- J. Manley+, PRL 126, 061301 (2021)
- S. Morisaki, T. Fujita, Y. Michimura, H. Nakatsuka, I. Obata, PRD 103, L051702 (2021)
- LIGO-Virgo-KAGRA Collaboration, PRD 105, 063030 (2022) LIGO/Virgo O3 data analysis

Scalar bosons

- Y. V. Stadnik & V. V. Flambaum, PRL 114, 161301 (2015)
- Y. V. Stadnik & V. V. Flambaum, PRA 93, 063630 (2016)
- A. A. Geraci+, PRL 123, 031304 (2019)
- H. Grote & Y. V. Stadnik, PRR 1, 033187 (2019)
- S. Morisaki & T. Suyama, PRD 100, 123512 (2019)
- C. Kennedy+, PRL 125, 201302 (2020)
- E. Savalle+, PRL 126, 051301 (2021)
- S. M. Vermeulen+, <u>Nature 600, 424 (2021)</u> GEO600 data analysis

Many recent proposals

This talk

First searches with real data from GW detectors already done for gauge bosons and scalar bosons.

Axion & axion-like particles (ALPs)

- W. DeRocco & A. Hook, PRD 98, 035021 (2018)
- I. Obata, T. Fujita, Y. Michimura, PRL 121, 161301 (2018) 🖊 This talk
- H. Liu+, PRD 100, 023548 (2019)
- K. Nagano, T. Fujita, Y. Michimura, I. Obata, PRL 123, 111301 (2019)
- D. Martynov & H. Miao, PRD 101, 095034 (2020)
- K. Nagano, H. Nakatsuka, S. Morisaki, T. Fujita, Y. Michimura, I. Obata, PRD 104, 062008 (2021)
- Y. Oshima+, <u>PRD 108, 072005 (2023)</u> DANCE first results
- J. Heinze+, arXiv:2307.01365 LIDA first results

Not exhaustive. The ones which require magnetic fields are not listed.

Axion and Axion-Like Particles

- Pseudo-scalar particle originally introduced to solve strong CP problem (QCD axion)
- Various axion-like particles (ALPs) predicted by string theory and supergravity
- Many experiments to search for ALPs through axion-photon coupling

Especially by using magnetic fields

Polarization Modulation from Axions

• Axion-photon coupling $(\frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu})$ gives different phase velocity between left-handed and right-handed circular polarizations

Enhancing the Signal with Cavities

• Polarization rotation is small for short optical path

Enhancing the Signal with Cavities

- Polarization rotation is small for short optical path
 Laser
- Optical cavities can enhance the path, but polarizations flips upon mirror reflections

Enhancing the Signal with Cavities

- Polarization rotation is small for short optical path
 Laser
- Optical cavities can enhance the path, but polarizations flips upon mirror reflections

• Bow-tie cavities can enhance the signal

Setup of DANCE

bow-tie

- Dark matter Axion search with riNg Cavity Experiment
- Aim for most sensitive search for axion DM

DANCE and DANCE Act-1

- Reach beyond CAST limit by several orders of magnitude with cutting-edge frequency (Hz) $10^{-2} \ 10^{-1} \ 10^{0} \ 10^{1} \ 10^{2}$ 10³ 10^{4} 10⁵ 10^{-9} technologies and ABRA-10cm 10^{-10} CAST 1-year run SHAFT 10^{-11} SN1987/
- CAST level reach even with moderate parameters
 - * Shot noise limited sensitivity assumed

	DANCE Act-1 target	DANCE
Round-trip length	1 m	10 m
Input laser power	1 W	100 W
Finesse (how many times light travels inside the cavity)	3×10 ³	1×10 ⁶

Status of DANCE Act-1

- Started in 2019
- First observing run in May 2021
- ~x100 improvement since then frequency (Hz) 107 10^{-2} 10^{-1} 10^{0} 10² 10³ 10¹ 10^{4} 10^{5} 10^{6} 10^{8} 10^{0} axion-photon coupling $|g_{a\gamma}|$ (GeV $^{-1}$ Y. Oshima+, Limit from 10^{-1} May 2021 run PRD 108, 072005 (2023) 10^{-2} 10-3 **Estimated reach in Nov 2022** 10^{-4} 10^{-5} 10^{-6} 10^{-7} **Current shot noise level** Current 10^{-8} 10^{-9} estimated CAST 10^{-10} DANCE Act-1 target reach 10^{-11} SHAFT ABRA 10-cm **SN1987A** (March 2023; with 10-12

First Observing Run in May 2021

- Same scale as Act-1
 target
- 12-day test run from May 8th to 30th

Y. Oshima+, JPCS 2156, 012042 (2021)

	May 2021	Act-1 Target
Round-trip length	1 m	1 m
Input power	242(12) mW (Source: 0.5 W)	1 W
Finesse (for carrier)	2.85(5)×10³ s-pol	3×10 ³
Finesse (for sidebands)	195(3) p-pol	3×10 ³
s/p-pol resonant freq. difference	2.52(2) MHz	0 Hz

Data Analysis Pipeline

- **Nearly monochromatic signal** $\omega_i = m_A \left(1 + \frac{v_i^2}{2} \right)$
- Stack the spectra in this frequency region to calculate SNR

$$\rho = \sum \frac{4|\tilde{d}(f_k)|^2}{T_{\text{obs}}S_n(f_k)} \text{ Data}$$

$$m_A \le 2\pi f_k \le m_A(1 + \kappa v_{\text{DM}}^2) \text{ PSD}$$

- Obs. time **Detection threshold** determined assuming ρ follows χ^2 distribution (=assuming Gaussian noise)
- From ρ , calculate 95% upper limit on coupling constant

PSD

Applied the pipeline to mock data for verification

15

Stochastic Nature of DM Signal

- DM signal is from superposition of many waves with various momentum, phase and polarization
- The amplitude fluctuates at the time scale of

 $\tau = 2\pi/(m_A v_{\rm DM}^2)$

- At low frequencies, DM signal could be too small by chance and elude detection
- Method to calculate upper limit taking into account this stochasticity developed H. Nakatsuka+, 0.0 PRD 108, 092010 (2023)

First Results

- Used 24 hour data from 12-day run
- 551 candidates found
- Veto analysis
 - Persistence veto
 (If dark matter, two data sets should give the same frequency → 257 candidates)
 - Linewidth veto (If dark matter, Q~10⁶ → 7 candidates)
 - All remaining 7 candidates were also found in the frequency servo data, and found to me mechanical origin (all harmonics of ~40 Hz)
- First end-to-end test
- First limit with no magnets

Resonant Frequency Split

- During the first run, s-pol and p-pol did not resonate simultaneously
- Due to phase difference in mirror reflections from non-zero incident angle

Simultaneous Resonance

 Carrier pol and sideband pol needs to be enhanced simultaneously for improving the sensitivity

Auxiliary Cavity as Solution

- Make resonant condition for auxiliary cavity different
 between s/p-pol to make reflected phase different
- This compensates phase difference in the main cavity

Optical Losses and Vibrations

- Finesse was limited due to optical losses in auxiliary cavity
- Noise from vibrations were worse due to reduced common mode rejection

	May 2021	Best (March 2023)	Act-1 Target
Round-trip length	1 m	1 m (+0.5 m aux. cavity)	1 m
Input power	242(12) mW (Source: 0.5 W)	21.4(9) mW (Source: 2 W)	1 W
Finesse (for carrier)	2.85(5)×10³ s-pol	549(3) s-pol, with cavity lock	3×10 ³
Finesse (for sidebands)	195(3) p-pol	36.8(2) p-pol, with cavity lock	3×10 ³
s/p-pol resonant freq. difference	2.52(2) MHz	~0 Hz with lock (Originally ~92 MHz)	0 Hz 22

Next Idea: Wavelength Tuning

- Phase difference between polarization is wavelength dependent
- Simultaneous resonance can be obtained by tuning the laser wavelength
- Developed wavelength tunable laser (External Cavity Diode Laser) wavelength: 1045-1068 nm linewidth: 200 kHz output: 50 mW

PZT

Output

Measuring Phase Anisotropy

- Phase difference of a mirror measured with V-shaped cavity
- Zero-phase shift achieved at ~1067 nm (designed at 1065 nm)

Future Plans

- Demonstrate simultaneous resonance with a bowtie cavity by tuning laser wavelength
 - Can be done within the range of tuning
 - Finesse of ~10⁴ can be achieved
 - High common-mode rejection ratio
- First data taking by Spring 2024
- x10 larger cavity & higher laser power
 - vibration isolation
 - In-vacuum

Use phonon to improve higher mass sensitivity

C. Murgui, Y. Wang, K. M. Zurek, arXiv:2211.08432

Search with KAGRA and LIGO

- Linear cavities can be sensitive when the round-trip time equals odd-multiples of axion oscillation period
- Polarization optics installed at 3-km arm cavity transmission of KAGRA
- O4b run in Spring 2024

K. Nagano, T. Fujita, Y. Michimura, I. Obata, <u>PRL **123**</u>, <u>111301 (2019)</u> K. Nagano, H. Nakatsuka, S. Morisaki, T. Fujita, Y. Michimura, I. Obata, <u>PRD **104**</u>, <u>062008 (2021)</u>

Summary

- DANCE searches for ultralight axion dark matter by polarization measurements with optical cavity
- Data analysis and veto pipeline developed, first results released Y. Oshima+, PRD 108, 072005 (2023)
- Stay tuned for H. Nakatsuka+, PRD 108, 092010 (2023)
 new results from the upgrade

ダークマターの正体は何か? 広大なディスカバリースペースの網羅的研究 XMM What is dark matter? - Comprehensive study of the huge discovery space in dark matter (2020

Japan Science and Technology Agency

27

Supplemental Slides

AxionLimits

Losses in Auxiliary Cavity

- Amount of p-pol is affected by optical losses at back reflections and mode mis-match
- Signal is largely lost due to this optical losses

Axion + Optomechanics

 Optomechanics to improve higher mass sensitivity C. Murgui, Y. Wang, K. M. Zurek, <u>arXiv:2211.08432</u>

Sensitivity to Pol. Rotation Angle

Veto Analysis

TABLE II. Summary of remaining peaks after the veto procedures.

Frequency (Hz)	SNR ρ (Measured value)	SNR ρ (Detection threshold)
81.6712	3243	109
119.983	2073	137
120.001	2616	137
120.113	1125	137
120.117	159	137
120.118	7637	137
396.142	373	313

Y. Oshima+, PRD **108**, 072005 (2023)

Methods Comparison

	Auxiliary cavity	Wavelength tunable laser	Incident angle tuning
Proposal	Birmingham PRD 101, 095034 (2020)	This work	MIT PRD 100, 023548 (2019)
Demostration	DONE (This work)	On-going	Not yet
High finesse	Limited	Possible	Possible
High laser power	Easy	Wide-band amp might be needed	Easy
Cavity lock	Complicated	Easy	Easy
Sweeping for search	Easy	Need to re-lock	Need to change mechanically
Coating dependence	Not much	Depend on luck	Depend on luck
Vibration CMRR	Different path beteeen s/p	Same path between s/p	Same path (but complicated mount)